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Statistical process control (SPC) involves ongoing checks to ensure that neither the mean nor the vari-
ability of the process readings has changed. Conventionally, this is done by pairs of charts—Shewhart X
and S (or R) charts, cumulative sum charts for mean and for variance, or exponentially weighted moving
average charts for mean and variance. The traditional methods of calculating the statistical properties of
control charts are based on the assumption that the in-control true mean and variance were known exactly,
and use these assumed true values to set center lines, control limits, and decision intervals. The reality,
however, is that true parameter values are seldom if ever known exactly; rather, they are commonly esti-
mated from a phase I sample. The random errors in the estimates lead to uncertain run length distribution
of the resulting charts. An attractive alternative to the traditional charting methods is a single chart using
the unknown-parameter likelihood ratio test for a change in mean and/or variance in normally distributed
data. This formulation gives a single diagnostic to detect a shift in mean, in variance, or in both, rather
than two separate diagnostics. Using the unknown parameter formulation recognizes the reality that at
best one has reasonable estimates of parameters and not their exact values. This description implies an
immediate benefit of the formulation, that the run behavior is controlled despite the lack of a large phase [
sample. We demonstrate another benefit, that the changepoint formulation is competitive with the best of
traditional formulations for detecting step changes in parameters.

KEY WORDS: Control charts; Generalized likelihood ratio; Phase I; Phase II.

1. INTRODUCTION

The conceptual model underlying statistical process control
(SPC) is that variability in process measurement comes from
two basic sources: “common cause” variability, which is all
sources of unavoidable random variability that can be removed
only by changing the system, and “special cause” variability,
which results from some potentially identifiable source that can
be removed. A system is said to be in the state of statistical
control when the only variability is that due to common causes.
When a special cause intervenes, the process is said to be out
of control. Operationally, when the system is in control, the
process readings appear to be a realization of some random
model—in the simplest case, independent observations from
some common statistical distribution. SPC is a framework of
procedures to detect when a system has gone from in control
to out of control. Its objectives may include providing a signal
that the process is out of control, an estimate of when it went
out of control, and a diagnosis of the way in which it went out
of control—for example, whether the mean shifted, the variance
jumped, or either of these quantities started a slow drift.

Although process readings can follow any statistical distrib-
ution, the most common assumption is the simplest model for
SPC: that while the process is in control, the process readings
appear to follow a normal distribution and are statistically in-
dependent. Our approach uses independent normal readings as
the working model, with the note that extending the methodol-
ogy to more complex settings is a matter of adapting rather than
redefining it.

Under this model, while the process is in control, the normal
distribution will have some mean x| and standard deviation oy.
Emportant departures from control include the following:

e The mean could shift from 4} to some other value.

e The standard deviation could shift from o to some other
value.

e The distribution could shift from normal to some other
form.

e The mean or variance could drift from the in-control
levels.

We concentrate on the first two of these possibilities, both be-
cause they are the most likely and because, at least descrip-
tively, they are able to approximate other departures.

A further dichotomy can be made between settings in which
the departure from control is transient, or isolated, by which
we mean that the system goes out of control but then returns
to control even in the absence of any intervention, and those
in which it is persistent, or sustained, by which we mean that
having left the state of control, the system will remain out of
control or even go further from control, until some corrective
action is taken. Corresponding to this four-way distinction, the
standard tools in SPC are

o The Shewhart / or X chart for detecting transient shifts in
mean

o The Shewhart S or R chart for detecting transient shifts in
standard deviation

e The location cumulative sum (cusum) or exponentially
weighted moving average (EWMA) chart for detecting
sustained shifts in mean
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» The variance cusum or EWMA chart for detecting sus-
tained shifts in standard deviation.

We do not dwell on the properties and relative performance of
these charts here (see Montgomery 2004; Hawkins and Olwell
1998 for more information).

The performance of control charts is measured by their run
length distribution. While the process is in control, the runs
should typically be long, but once the process is no longer in
control, the response time should be short. The central tendency
of the run length distribution is often summarized by the av-
erage run length (ARL). The ARL of all the standard charts
depends on the distributional form, true mean, and true stan-
dard deviation of the process readings, as well as the values of
the chart constants (center line and control limits for Shewhart
charts; reference value and decision interval for cusums). It can
be computed using available software, provided that all of these
quantities are known. This is true both while the process is in
control and following a persistent step change to a fixed out-of-
control level.

The problem with this is that the in-control process mean
and standard deviation are seldom known to high precision. If
the control chart is designed with its chart constants based on
estimates, then the actual run length behavior will be different
than these calculations claim. Because the error in the estimates
is random, this imparts a systematic distortion in the behavior
of the charts. For example, if the estimate of the standard devia-
tion is below the true value, then the chart’s run lengths will be
systematically shorter than the calculations claim; if it happens
to be above the true value, then the run lengths will be systemat-
ically longer. For the Shewhart and cusum charts, Quesenberry
(1991, 1993) and Hawkins and Olwell (1998) showed that this
systematic distortion can be large even if quite large calibration
samples are used.

Jones et al. (2004) elaborated on this point and obtained the
marginal distribution of the run length of a location cusum by
mixing the conditional distribution given the parameter esti-
mates over the distribution of the estimators. Parallel develop-
ments for the EWMA were given by Jones (2002) and Jones
and Champ (2001). However, it should be borne in mind that
this marginal distribution of run length applies to conceptual
ensembles of control charts calibrated using different phase I
datasets. It does not describe the behavior of any single control
chart. Although someone using a chart with estimated parame-
ters could use these results to understand the range of behaviors
that a chart like this might reasonably have, the calculations do
not describe the characteristics of any particular chart with es-
timated parameters.

2. THE UNKNOWN-PARAMETER
CHANGEPOINT MODEL

To avoid this problem of the dependence on assumed known
parameter values, Hawkins, Qiu, and Kang (2003) (abbreviated
as HQK hereafter) proposed an alternative to the X and location
cusum charts. For ease of understanding, we briefly recap their
procedure. It is motivated by modeling a persistent change in
the process mean by

XiN{N(m,oz) ifi<t

¢!
N(uz, 02y ifi> 1. )

where X1,X5,...,X;,... are the successive process readings,
{1 1s the in-control true mean, w; is the out-of-control value to
which the process mean shifts, v is the changepoint, and o is
the standard deviation of the process readings, assumed to be
constant. If all of the parameters except T were known, then the
diagnostic of choice would be a cusum using reference value
(w1 + p2)/2. We instead assume that none of these parameters
is known a priori. Consider the setting where n process readings
have accrued. For 0 <i < k < n, define the summary statistics

k
Xiv= Y Xj/tk—1) )
j=it+1
and
k -
Vie= Y (X - X 3)
j=it]

Suppose that it were known that the changepoint was at instant
7 = k. The conventional estimates of the remaining parameters
would then be

a1 = Xox, 4)
fi2 = Xin, (5)

and
6% = (Voi + Vin)/(n — 2). ©)

The likelihood ratio test for the null hypothesis Hy: ;| = p is
the two-sample ¢ statistic,

[k(n — k) Xok — Xi.n
Tk,n = ~ *
n (e}

which in the null case, and assuming constant variance, follows
a ¢t distribution with n — 2 degrees of freedom. The change-
point T is unknown, however. The generalized likelihood ratio
(GLR) test assuming all four parameters unknown is given by
finding Tmax,», the maximum of | T ,| across all possible k val-
ues.

There is a vast literature on the fixed-sample (phase I)
changepoint formulation (see, e.g., Hawkins 1977; Worsley
1979, 1982; Carlstein, Miiller, and Siegmund 1994). In the
phase II SPC setting, however, the sample is not fixed. It con-
tinues to grow as long as the process is judged to be in con-
trol, and so is allowed to continue without intervention. The use
of the changepoint approach in this setting has also received
much attention (see, e.g., Lai 2001), though in the context of
known in-control parameters. Another stream of phase II ap-
plication of the changepoint formulation includes the work of
Pignatiello and Samuel (2001) and Samuel, Pignatiello, and
Calvin (1998a, b). These authors, however, used the change-
point formulation not as a stand-alone procedure, but rather
for follow-up estimation after a signal has been given by some
other diagnostic, such as a Shewhart chart.

The fixed-sample unknown-parameter changepoint formula-
tion can be adapted to the phase II dynamic setting as follows:

o After observation n has been added to the total record of
the process, compute Tiax », the GLR test statistic for a
change in mean at some previous instant.
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o If Thax.n < hyn, where h, is some suitable control limit,
then conclude that there is no evidence of a mean shift,
and leave the process running uninterrupted.

o If, however, Tmax.n > hn, then conclude that there is ev-
idence of a mean shift. Complete the diagnosis by not-
ing that the & value maximizing Ty, is the maximum
likelihood estimator (MLE) of the instant at which the
variance changed, and that the MLEs of the before- and
after-change means are the within-segment means Xo.2
and X; n

This framework leaves open the issue of choosing the sequence
of control limits, &,,. HQK proposed that these limits be defined
by the property that while the process is in control, the proba-
bility of a signal is fixed at some user-selected constant level «;
in symbols,

Pr{Twax.n > hanmaXJ < h], j<nl=a.

This constant probability of a signal parallels the Shewhart X
chart, and a proposal by Margavio et al. (1995) to use non-
constant control limits for the EWMA chart. It contrasts with
the conventional cusum and EWMA charts, where the proba-
bility changes from one observation to another. The necessary
sequence of constants 4, does not seem to be amenable to any
theoretical calculation, and HQK estimated it by simulation.

As noted in Section 1, control charts have generally come in
pairs, one chart for the mean and one for the standard devia-
tion. In line with this, Hawkins and Zamba (2005) developed a
procedure parallel to that of HQK for detecting changes in the
variance of the process readings without regard to the constancy
or otherwise of the mean.

3. A COMBINED CHART FOR MEAN OR
VARIANCE SHIFTS

Returning to the changepoint formulation, we general-
ize (1) to

N(ui.of) ifi<t
X; ~ S (7)
N(uz,05) ifi>t.

In this formulation, the mean, the variance, or both can change
when the process crosses the changepoint 7. If the change-
point T were known to be &, then the GLR test statistic would be

k) log S »
where we define S;; = V;; / ( j — i) to be the MLE (without the
usual degrees of freedom bias adjustment of the denominator)
of the variance of the sequence X4 1, ..., X|.

In the null case of no shift, this statistic has an asymptotic
chi-squared distribution with 2 degrees of freedom. The quality
of this approximation can be improved substantially (Lawley
1956) by making the Bartlett correction, dividing by a factor
that will make the expectation of the GLR equal to the degrees
of freedom. The expectation of the GLR is known but involves
the digamma function, one of the less familiar transcendental
functions. A standard expansion of the expectation (see, e.g.,
Kendall and Stuart 1961) shows that to terms of order o(n™?),

BGLR =2+ 14— ol
- 6|k -k n R -k 2|
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This leads then to the Bartlett-corrected test statistic

) /e ®
c:1+—{—+

1 1 1 1
k n—k n] + [kz + (n—k)? nz]’
where C is the Bartlett correction factor. If the changepoint is
not known a priori but must be estimated along with the testing
process, then the two-stage GLR is found by maximizing Gy,
over all possible split points k, yielding Gmax,» = maxy Gy n.

An earlier proposal by Sullivan and Woodall (1996) was
to use the maximum GLR for the analysis of fixed-sample
phase I data. These authors also suggested a correction to
bring the statistics computed for different &£ values to a com-
mon distribution—analogous to the Bartlett correction—but es-
timated the correction from simulation rather than deriving it
analytically.

We have not explicitly defined the range of k. Note that be-
cause S(0, 1) = S(n — 1, n) =0, the GLR can be made infinite
by making either of the segments of length 1. These degener-
ate solutions are not interesting, however, and so we restrict the
lengths of both segments to be at least 2, giving strlctly positive
values for the two segment variances.

Finally, adapting this formulation to use in the SPC setting
where the sample size is not fixed but grows indefinitely, we set
up the ongoing SPC phase II procedure:

Gkn—<klog3,—+(n—

1 1

e After observation n has been added to the total record of
the process, compute Gmax,n-

o If Guax.n < hn, Where h, is some suitable control limit,
then conclude that there is no evidence of a shift in either
mean or variance, and leave the process running uninter-
rupted.

o If, however, Gmax.n > hp, then conclude that there is evi-

dence of a shift in the mean, the variance, or both.

If there is a signal, then the question arises of exactly what
changed between the two segments. A thorough investigation
of this question would best be done by splitting the process
history at the estimated changepoint and carrying out a two-
sample comparison between the two resulting segments, us-
ing graphical methods, such as comparative boxplots, and more
formal parametric or nonparametric tests. The GLR approach
is designed for sustained shifts in mean and/or variance, but
the trigger could be outliers, a false alarm resulting from
nonnormality of the process readings, or a number of other pos-
sibilities. A useful starting point, however, is to take the nor-
mal distribution changepoint model at face value and test for a
shift in mean and for a shift in variance using conventional nor-
mal distribution methods. If the changepoint & had been chosen
ahead of time, then the conventional parametric tests for these
possibilities would be as follows:

e The two-sided F test for a variance change using de-
grees of freedom k& — 1 and n — k — 1 and test statistic
F=Vou(n—k—1)/(tk— DVin).

e The approximate s-test for a change in mean using the
Satterthwaite—Welch approximate ¢ statistic

— XO,k_Xk,n
VSo.x/k—1) + Sin/(n—k — D’
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which follows an approximate 7 distribution with r degrees
of freedom, where

S0,k Sk.n 2
’“(k—l +n—k—1)

/ 1 So.x 2+ 1 Sk.n 2
k—1\k—-1 n—k—1\n—-%k—-1 )

The searching over &, and conditioning on the large Gmax »
value that triggers these follow-up tests, invalidate the assump-
tions that lead to the null F and approximate ¢ distributions of
these statistics, and indeed also those of any other two-sample
test procedures that might be substituted for them. However,
they do not detract from their value in providing practical guid-
ance on whether the cause of the signal is more plausibly a vari-
ance shift, a mean shift, or a shift in both.

3.1 The Choice of the Control Limits

We have not specified how the control limit sequence #,, is to
be chosen. The hazard function, familar from life testing, is the
probability than a unit will fail at time #, conditional on its not
having failed before time n. Analogously, the hazard function
of an SPC scheme may be defined as the conditional probabil-
ity of a signal at process reading n, conditional on there having
been no signal up to that instant. The Shewhart chart has a con-
stant hazard function, but most other SPC approaches do not.
An attractive choice for the changepoint approach, paralleling
the proposals of HQK and Margavio et al. (1995), would be to
have a constant hazard function while the process is in control.
In symbols,

PlGmax,n > hno|Gmaxj < hjo, j<nl=a, &)

where « is the specified probability of an erroneous signal, and
we rewrite the control limit as A, , to emphasize this depen-
dence. Because this probability is constant, it corresponds to an
in-control ARL of 1/«. It does not seem possible to solve for
these Ay o values theoretically, and so they were estimated us-
ing simulation. This used 10 million random samples of N(0, 1)
data series of length up to 500, and covering « values of .05, .02,
01, .005, .002, and .001. The resulting estimated fractiles have
standard errors of approximately .02.

Because there must be a minimum of two observations in
each segment, it is logically possible to start testing right from
the fourth observation, but this is unlikely in most applications.
Although it is an attraction of the formulation that it does not
require a large (and thus expensive) phase I data-gathering ex-
ercise to estimate the in-control parameters accurately, standard
practice is likely to involve gathering at least some carefully
monitored observations before the formal SPC is set in place.
Our simulations incorporated this possibility, generating 17 ta-
bles of hy, o values corresponding to gathering 3,4, ..., 19 ob-
servations without applying the Gmax,» screen and then starting
with the next reading. The full table is available on the website
www.stat.umn.edu/hawkins.

A reasonable approach to the monitoring might be to gather
nine observations without formal monitoring, and start monitor-
ing with the tenth observation. Table 1 is a table of cutoffs for
this setting. We stress that this is not a prescription, but simply

Table 1. Control Limit hp o for Sample Size n, Hazard «
Starting atn= 10

Threshold hp o
n .05 .02 .01 .005 .002 .001
10 10128 12237 13795 15330 17.352  18.840
11 9.213 11.389 12996 14556 16.609 18.173
12 8.854  11.083 12719  14.313 16.397  17.965
13 8.690 10.961 12631 14265 16.353 17.950
14 8.616 10.917 12.610 14.249 16.361 17.978
15 8.588  10.909 12618 14.277 16423 18.015
16 8.582  10.928 12637 14.324 16464  18.083
17 8.586 10942 12,664 14345 16501  18.113
18 8590 10964 12692 14.386 16550 18.192
19 8593 10973 12709 14394 16567 18.187
20 8.599 10.989 12.734 14.419 16.614 18.219
22 8611  11.015 12763 14462 16.653 18.261
24 8629  11.043 12790 14.497 16.682  18.343
26 8.644 11.060 12819 14536 16722  18.368
28 8.661  11.089 12846 14559 16.754 18.375
30 8.669  11.097 12877 14591 16785 18.436
35 8.683 11133 12,910 14636 16.845 18.478
40 8.692  11.151 12932 14657 16.884 18.572
45 8.712 11164 12947 14676 16908 18.572
50 8714 11181 12971 14713 16.946 18.617
60 8734 11197 12990 14746 16980 18.616
70 8745 11210 13.003 14.751 16.985  18.634
80 8.748 11224  13.022 14.766 16.989  18.679
90 8.743 11238 13.035 14.785 17.043  18.710
100 8770  11.231  13.029 14771 17.052  18.708
125 11257  13.061 14799 17.033  18.697
150 11253  13.037 14.812 17.069 18.756
175 11.283  13.060 14.822 17.069 18.729
200 11277  13.078 14.803 17.065 18.738
250 13.040 14.846 17.096 18.748
300 13.155 14.826  17.091  18.723
350 13.130  14.857 17.097 18.772
400 13.148  14.863 17.127  18.761
500 14.904 17.089 18.770

a guess at what practitioners might wish to do. Those who pre-
fer some different number of initial familiarization values can
replace the Table 1 figures with others from the website.

Basing an implementation on cutoffs in a table is cum-
bersome, and so it is helpful to have some more compact,
even if approximate, way of computing suitable cutoff values.
Based on this reasoning, we suggest the following approach
for obtaining contro! limits. Compare the first five test statis-
tics Gax,n (i.e., for n =10, ..., 14) to the first five entries of
the table; then for n > 14, use the approximation

.094 + .33 log(a)
n—9
if .001 <« < .05
8.43 4+ .074log(n —9) if o =.05.

This reproduces Table 1 with a maximum absolute deviation
of .09.

1.58 —2.52]og(e) +

hn,a =

3.2 Rational Groups

The discussion so far has been in terms of charting individ-
ual observations. In some circumstances, sampling economies
of scale may lead to the use of rational groups of size larger
than 1. Simply unravelling the successive rational groups into
individual observations and allowing a changepoint only at the
last observation of a rational group brings the rational group set-
ting within the framework of individual observations. This ap-
proach differs from the usual analysis of rational groups in that

TECHNOMETRICS, MAY 2005, VOL. 47, NO. 2
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the scale is estimated from a single common mean, rather than
from the individual rational groups’ means. It is certainly pos-
sible to recast the changepoint model to allow the more conven-
tional summaries of rational groups by their individual means
and variances, but it is less than clear that any performance ad-
vantage can be gained by this adaptation.

4. COMPUTATIONAL DETAILS AND WINDOWS

All of the computations necessary for the testing can be
found from two arrays—one array of the running total of the
data W, = Z'{ X;, and the other of Vj ,—the running sum of
squared deviations from the running mean. These have fast,
simple updates,

Wn+l =W, +Xn+1
and
Vours1 = Vo + n(Xng1 — Wa/m?/(n + 1).

From these two tables, all quantities needed to perform the
test (and to perform the follow-up parametric analyses) are easy
to compute,

Xix = (We — W)/ (k—i)
and
Vik = Vou — Vo — itk — i) /k(Xo,: — Xi o).

Note that because these formulas have some potential for loss
of precision due to subtractive cancellation, the tables and the
arithmetic should be in double precision.

The updates of the W,, and Vj ,, are fast, but searching for the
k maximizing the split statistic involves computing » — 3 test
statistics. Although the computations themselves are fast, for
very large n or in settings where many process characteristics
are to be monitored, this computation could become a burden.
A remedy for this that comes to mind is to restrict the searching
to a “window” of the most recent observations.

The obvious way to do this is using the Willsky—Jones
(1976) method of retaining only the M most recent observa-
tions and using only these observations in the testing proce-
dure, successively applying a fixed-sample-size phase I analysis
to the observations in the window. A less obvious but bet-
ter method flows from implementation based on the sum-
mary tables W, and Vj ,. This method involves retaining only
the M most recent values of W and V. When a new observation
accrues, the W and V arrays are moved down one place, drop-
ping the oldest entry and adding the newly created one. The
k search is then confined to the entries in the table and so does
not grow with n but rather remains bounded by M — 2.

Note that this approach is fully statistically efficient. Obser-
vations to the left of the window are not lost; they are still in-
cluded in all summary numbers. All that is lost is the ability
to declare a split point more than M time intervals in the past.
Because estimated split points in the remote past are unhelpful
in practice, and are common in neither the in-control nor out-
of-control setting, this loss is unlikely to cause much concern
or to invalidate using a window of moderate width (perhaps in
the low hundreds).

If a window restriction is desired, then we recommend this
approach rather than the “ignore everything outside the win-
dow” approach. Not only is it preferable statistically, but it is
also computationally much faster.

TECHNOMETRICS, MAY 2005, VOL. 47, NO. 2

5. PERFORMANCE

The control limits were chosen to make the in-control haz-
ard function constant, and the in-control run length therefore
follows a geometric distribution. This raises the question of
the form of the out-of-control run length distribution. Qualita-
tively, following a shift, the two-sample statistic splitting at the
true changepoint will change from an approximate central chi-
squared distribution to a noncentral distribution. The noncen-
trality parameter becomes nonzero with the first out-of-control
observation, then increases to a limit that depends on the mag-
nitude of the parameter shift and on the length of the in-control
history. To illustrate this, suppose that the variance remains at
the in-control level but the mean shifts by § standard deviations
immediately after observations . Then at observation n > T,
the Student ¢ component of the two-sample GLR statistic for a
split at T will have a noncentrality parameter that can be writ-

ten as
r(l - 3)52,
n

which increases to a maximum of 782, implying that the uncon-
ditional probability of a signal at observation n would increase
up to some limit. This suggests that the hazard function will
increase initially after the shift, but then may stabilize at some
level. To see where this leads in terms of the run length distrib-
ution, consider Figure 1, which shows the hazard functions for
the changepoint formulation and a small-shift cusum (details of
which are provided later) when a one standard deviation shift in
mean follows 50 in-control readings. The hazard functions were
estimated from a simulation of 200,000 normal series. Note that
both hazard functions rise to a maximum then drop off, but the
changepoint hazard function is relatively steady. This suggests
that the distribution of the run length is not heavy-tailed, an im-
pression confirmed by the mean and standard deviation (SD) of
the run lengths:

Mean SD
Changepoint 255 30.5
Cusum 16.8 20.2

The performance of quality control charts is commonly mea-
sured by their ARL. If the hazard function were constant, then
the ARL would completely characterize the run length distrib-
ution. Although the run length distribution of the changepoint
approach is not geometric, neither does it appear to have tail
weights far out of line with those of the geometric distribution.
We therefore believe that the ARL provides an adequate basis
for comparing the performance of the changepoint method with
a cusum approach.

This finding motivated more extensive simulations, involv-
ing each of 10,000 sequences of length up to 10,000 and using
o = .002 so as to get an in-control ARL of 500. Two other set-
tings need to be specified: the number of initial familiarization
observations gathered before the start of the testing and the in-
stant at which the change in the parameter(s) occurs. We set the
first of these at 9, so that formal testing began with the tenth
observation of the sequence.

Several instants of change were tested (observations 10, 20,
50, 150, and 250), but we report only the results for obser-
vations 10, 50, and 250, because the two intermediate values
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Figure 1. Percentage Hazard Function of Changepoint and (solid line) Cusum (dotted) Following Shift.

added little insight. At the instant of change, the in-control
N(0, 1) distribution was changed to N(8, 02). The values used
for § were 0, .5, 1, 1.5, and 2.0. The out-of-control standard de-
viation o was set to the —3, —2, ..., 2, 3 powers of 1.25, cov-
ering the range from a halving to a doubling of the standard
deviation in constant proportion steps.

Table 2 gives the resulting ARLs. All have standard errors
of approximately 1% of their value. The setting § =0, o = 1
represents the in-control setting, so the ARLs should be 500, as
they are to within random sampling errors.

Examining the 0 = 1 column reveals the procedure’s ability
to detect shifts in the mean only. If the process has run in control
for 250 periods, then detection of even modest shifts is quite
fast, but short in-control periods coupled with modest shifts are
much slower to detect, as the earlier comments on noncentrality
would lead one to expect. The rows with § = 0 demonstrate the
procedure’s ability to detect pure variance shifts. As with pure
mean shifts, there is quite low power if the initial in-control
period is very short, but much higher sensitivity if it is even 50.

The modest ability to detect small shifts occurring soon af-
ter the start of monitoring may cause dismay. This dismay is

Table 2. In-Control and Out-of-Control ARL

ARL
o

) T+ 1 .51 .64 .80 1.00 1.25 1.56 1.95

0 10 2876 4159 480.4 496.6 508.7 500.0 471.9
50 323 1232 3931 4984 4581 2054 305
250 23.2 446 1866 4911 2040 342 142

5 10 180.0 3211 4223 473.7 4927 477.7 44841
50 202 393 123.1 2651 2504 1054 2238
250 168 252 414 637 476 233 124

1.0 10 47.2 1205 2283 3550 4106 419.0 407.2
50 11.0 139 188 250 286 221 13.6
250 10.0 120 143 162 157 128 9.2

1.5 10 123 210 552 1327 2309 2986 316.9
50 7.0 8.0 9.0 10.1 10.7 10.4 8.8
250 6.5 74 7.8 8.2 8.2 7.7 6.7

2.0 10 7.2 88 136 269 658 1322 1789
50 5.0 5.4 5.8 6.3 6.6 6.5 6.1
250 4.6 4.9 5.2 5.4 5.4 5.3 5.0

misplaced, however. It is a strength of the unknown-parameter
changepoint formulation that it can control its ARL while mon-
itoring short runs. It would be too much to expect it to do so
with the same sensitivity as methods that require long, carefully
controlled phase I studies.

Moving off the first row—fourth column “T”-shaped portion
of the table shows that the performance of the procedure for
detecting shifts in both mean and variance is generally better
than the performance in detecting either departure alone. This
is to be expected, both on intuitive grounds and because of the
fact that the noncentrality of the GLR statistic combines the
separate noncentralities of its # and F components.

The second performance issue relates to the follow-up diag-
noses made after a signal to decide whether this was due to a
change in mean, a change in variance, or a change in both mean
and variance. Table 3 follows the layout of Table 2 and gives the
percentage of times the follow-up approximate #-test for equal-
ity of mean attained significance at the nominal 1% level and
the percentage of times the F test attained nominal 1% signif-
icance. The figures shown are for shifts at sample number 50;
the other sample size gave qualitatively similar pictures. The
three entries for § = 0,0 = 1 show that in this null case, the
foilow-up diagnoses a mean shift in some 80% of cases and a
variance shift in some 90% of cases. Note that this is not the

Table 3. Percentage of Signals Diagnosed to Mean and
to Variance Shift

Percent nominal significance in follow-up tests

o
8 .51 .64 80 100 125 156 195
0 Mean 8 25 66 82 77 40 13

Variance 100 99 94 90 86 88 90

5 Mean 65 71 84 88 82 48 18
Variance 95 82 61 57 64 77 84

1.0 Mean 99 99 99 97 89 62 28
Variance 66 43 23 14 21 49 70

1.5 Mean 100 100 99 96 85 62 35
Variance 34 21 12 10 14 33 56

2.0 Mean 99 98 96 89 77 56 33
Variance 17 12 8 8 12 27 48
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probability of a type I error; that error already occurred in the
signal being given.

The patterns in the table are quite complex. Moving down the
o = 1 column, the proportion of variance signals decreases, as
one would expect. The proportion of mean signals increases but
then, counterintuitively, decreases. This decrease comes about
because the short run before detection leads to the combined
test giving a signal before sufficient observations have accrued
for its r component to reach statistical significance.

Looking at the 8 = 0 rows shows that, perhaps surprisingly,
recognition of a variance decrease is more reliable than that of
a variance increase of the same size, although all show a signal
rate of at least 85%.

Moving into the non-T portion of the table shows that the
simultaneous occurrence of a shift in mean reduces the ability
to diagnose a shift in variance. An increase in variance hurts
the ability to diagnose in mean, but a variance reduction im-
proves it. This indeterminacy in the cause of the signal comes
from the short run lengths to signal in these settings. Although
it might seem a drawback that one can have a signal without a

A cusum is “tuned” to shifts of a specific magnitude. We
used two benchmark cusum schemes, a “small-shift” scheme
and a “large-shift” scheme. Each scheme comprised two pairs
of cusum charts, a location chart for an upward shift in mean
and another for a downward shift, and a scale chart for an up-
ward shift in variance and another for a downward shift (see
Hawkins and Olwell 1998 for details of cusum design). Each of
the four charts was calibrated for an in-control ARL of 2,000,
so that the combined cusum scheme would have an in-control
ARL of approximately 500.

The small-shift scheme, “tuned” for a location shift of .5
standard deviations and for a scale shift of 25%, had refer-
ence value X = .25 and decision interval H = 9.93 for the
two location cusums. The variance cusums used K = 1.24,
and H =22.5 for upward shifts and K = .79 and H = 15.37
for downward shifts. The large-shift scheme was “tuned” for
a 2 standard deviation shift in the mean and for a doubling
or halving of the standard deviation. The location cusums
used K =1 and H = 3.01. The upward variance cusum had
K =1.85 and H = 13.36, and the downward variance cusum
used K = .46 and H = 3.96. Normal sequences were then sim-

_ W TR T W TR TR . A

"—*-—

clear diagnosis, it is rather a tribute to the way the combined ¢ - : . it. A la
method is able to detect a problem before its individual compo- ulated, and Shl_fts wgre introduced aftfsr 50 in-control readings. varianc
nent tests do. A.ny sequence in which Fhe cl.langepou‘lt or cusums would-he.lve scale c
given a signal before this point was discarded. The remaining cation
sequences were used to estimate the ARL of each scheme. Over
6. COMPARISON WITH THE CUSUM Figure 2 shows the resulting ARLSs in response to shifts in the despite

mean. The performance agrees with what one would expect—

In advancing a new methodology, one wishes to compareitto  the “small-shift” cusum scheme is the best of the three where lc)uzum
an existing standard. A suitable benchmark is the self-starting  the shift in mean is relatively small (below approximately 1.5 odes s
cusum proposal, which is also intended for the situation of un-  standard deviations), and the “large-shift” cusum scheme is best
known parameters. The method was explained by Hawkins and  when the shift in mean is large (above 2 standard deviations).

Olwell (1998). Briefly, each successive observation X, is Stu- At all values of the shift, the changepoint is best or a close

dentized using the running mean and standard deviation of all  second-best method.

preceding observations, and the Studentized deviation (which For scale shifts (shown in Fig. 3), the changepoint method Sam

follows a scaled r distribution) is transformed to a N(0, 1) vari- s attractive in settings where the variance decreases but is less lar spac

ate U, using the probability integral transform. A cusum of the  powerful than the cusums for variance increases. However, the content

sequence U, then provides a test for shifts in location, and 2  good performance of the cusum schemes for variance increases some o

cusum of the X12 quantity Uﬁ gives a simultaneous test for shifts  is not quite what it seems; a variance increase reduces the ARL of samyj

in variance. of the location cusum, whereas a variance decrease increases one by
of the :

i Q0o

1.5 2 2.5 3

delta

Figure 2. Comparing Changepoint (solid line) With Cusums (dash-lines).

TECHNOMETRICS, MAY 2005, VOL. 47, NO. 2



STATISTICAL PROCESS CONTROL WITH A CHANGEPOINT FORMULATION 171

T T

oy Qo

T T T

0 0.5 1

log lambda

Figure 3. Comparing Changepoint (solid line) With Cusums (dash-lines).

it. A large part of the cusums’ ARL reduction following small
variance increases comes not from correct signals from the
scale cusums, but rather from wrong signals given by the lo-
cation cusums.

Overall, the changepoint approach is competitive in that,
despite their potential appeal to optimality properties, neither
cusum dominates it for either location or scale shifts. This
bodes well for the changepoint formulation.

7. EXAMPLE: GOLD MINE SAMPLING
QUALITY CONTROL

Samplers in gold mines extract samples of the face at regu-
lar spacings and submit them for chemical assay for their gold
content. As a quality check, supervisors cut fresh samples at
some of the locations already sampled. This gives rise to pairs
of samples and of gold content, one by the original sampler and
one by the supervisor. The log of the ratio of the gold content
of the sampler to that of the supervisor has an approximately

normal distribution. This distribution should have a zero mean
(or else the sampler is biased) and a small variance (or else the
sampler is erratic). Figure 4, one of a number of examples given
by Rowland and Sichel (1961), shows a sequence of such log
ratios for a junior sampler.

Changepoints in both mean and variance are possible and im-
portant. A change in mean leads to a bias in mine valuation.
An increase in variance may warn of loss of motivation to sam-
ple carefully, whereas a decrease in variance indicates a highly
desirable improvement in measuring quality, perhaps as a result
of learning skills. We address these questions using our change-
point formulation to look for changes in this sampler’s output.

Although the log ratio was described as approximately nor-
mal, it has a potentially troublesome feature—that, due to
rounding of the gold assays, the distribution is “grainy,” with
10% of the log ratios being recorded as exactly 0 and some tied
nonzero values. To avoid the problem of the log of a zero vari-
ance, we preclude two-point segments with identical X values.

Another potential modeling concern has to do with possible
dependence. Because the entire data sequence reflects the work
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Figure 4. Sample vs. Log Ratio of Sampler to Supervisor Assay.
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of a single sampler and supervisor, there are no cluster effects in
the data. Serial correlation is possible from the sampler having
“good” and “bad” days (perhaps through patches of unusually
hard or friable rock), but the sequence did not demonstrate any
such autocorrelation. We thus feel justified in proceeding with
the changepoint analysis as described.

Figure 4 suggests that the variability in the portion up to
around observation 40 is higher than that for the remainder of
the sequence. The mean, however, appears to center on 0 for
the whole sequence. Figure 5 gives the chart of the GLR along
with the control limit, A, ooz, corresponding to an in-control
ARL of 500 for normally distributed data.

Gmax.n first crosses the control limit at reading 70, and con-
tinues upward except for a brief dip below at reading 74.

Right from the first hint of a changepoint, the GLR gave the
left-segment estimates ¢ = 42, {i; = .053, and 61 = .42. Ta-
ble 4 lists the summary statistics of the right segments, the GLR,
the separate test statistics for identity of mean and of variance,

Table 4. The Gold Mine Summary Statistics

i Xf',' Sdf,,' Gmax t IOg P F lOg P
69 —.035 297 16.60 .85 —.40 4.74 —4.39
70 -.027 .294 17.36 .79 —.36 4.83 —4.59
71 —.024 .289 18.47 77 -.35 4.99 —4.85
72 —.037 .292 18.72 .88 -.42 4.90 —4.88
73 —.020 .303 17.60 .72 -.33 4.57 —4.68
74 —.037 314 16.70 .87 —.41 4.24 —4.44
75 —.034 .310 17.66 .86 —.40 4.36 —4.66
76 —.033 .305 18.70 .85 —.40 4.50 —4.91
77 —.032 .301 19.76 .85 —.40 4.63 -5.15
78 —.032 .296 20.84 .85 —.40 4.77 —-5.40
79 —.047 .306 19.94 .98 —.48 4.47 -5.16
80 —.044 .302 20.87 .96 —.47 4.58 -5.38
81 —.055 .306 20.86 1.06 -.53 4.47 —5.34
82 —.052 .303 21.76 1.03 —.52 4.57 —5.55
83 —.054 .299 22.79 1.06 —.53 4.67 -5.78
84 —.056 .296 23.85 1.08 —.54 4.79 —6.01
85 —.057 .292 24.91 1.10 —.56 4.89 —6.24
86 —.050 .293 25.11 1.03 —.52 4.88 —-6.32
87 —.047 .290 25.94 1.01 —.50 4.97 —6.53
88 —.047 .287 27.01 1.01 —.50 5.08 —-6.77
89 —.052 .286 27.71 1.06 —.53 5.11 -6.90
90 —.052 .283 28.79 1.06 —.53 5.22 ~7.15
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and the base-10 log of their normal-distribution p values. For
all values in this range, h g2, is close to 17.

These values confirm that there is no indication of a shift in
mean, but that the standard deviation is substantially smaller af-
ter the changepoint than before. By the time of the first signal
at sample 70, the estimated postchange standard deviation has
stabilized close to its ultimate value of .283—about two-thirds
of its value in the first portion of the series. This reduction of
variance is of substantial value to the mine; it means that each
sample now produced by this junior sampler is more informa-
tive than two of his previous samples were. This has obvious
implications for the improvement in mine valuation and selec-
tion of which ore to extract.

8. CONCLUSION

Unknown-parameter changepoint models are attractive for
a number of reasons, of which not needing values of the in-
control parameters is the most immediately visible. The formu-
lation presented here for detecting changes in mean, in variance,
or in both mean and variance has the further attraction of
parsimony—of using a single chart rather than separate charts
to monitor both mean and variance. The combined chart has
good performance against process shifts.

There is a tension between the objective of starting process
monitoring as soon as possible and that of gathering sufficient
preliminary information to have confidence in one’s baseline
data. Although we presented the changepoint formulation as
one that in principle can start phase II monitoring after gath-
ering only three phase I readings, we do not see it being used
in any such extreme fashion. In some settings, such as short-
run job-shop problems, there may be a considerable history
supporting the expectation that the process readings will fol-
low a normal distribution. In this case, the changepoint charting
could indeed be started with the minimal accumulation of base-
line information. At the other end of the spectrum are settings in
which there is no advance reason to expect normally distributed
process readings and there is no particular obstacle to gather-
ing a reasonably sized phase I dataset. In this setting, we see
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the changepoint as a valuable adjunct to other phase I analysis
tools, and leading to the possibility of an earlier transition out
of this precursor mode into ongoing production monitoring.

There is also the question of how appropriate it is to use a nor-
mal distribution framework if the data do not conform to the
normal distribution very well. The GLR statistic is not robust
against heavy tails and is likely to give more false alarms than
expected. Here perhaps the easiest approach is to transform the
data to approximate the tail weight (if not the full distribution)
of the normal distribution.

In settings where the working distribution is known but is
other than normal (e.g., when working with strength or life
distributions where the Weibull distribution is the standard),
gaining the full power of the changepoint approach will require
the development of distribution-specific models, a nontrivial but
feasible task.
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