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A control chart for detecting shifts in the variance of a process is developed for the case where the
nominal value of the variance is unknown. As our approach does not require that the in-control variance
be known a priori, it avoids the need for a lengthy Phase | data-gathering step before charting can begin.
The method is a variance-change-point model, based on the likelihood ratio test for a change in variance
with the conventional Bartlett correction, adapted for repeated sequential use. The chart may be used

alone in settings where one wishes to monitor one-degree-of-freedom chi-squared variates for departure

from control; or it may be used together with a parallel change-point methodology for the mean to monitor

process data for shifts in mean and/or variance. In both the solo use and as the scale portion of a combined

scheme for monitoring changes in mean and/or variance, the approach has good performance across the

range of possible shifts.
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Introduction

HE PURPOSE of control charts is the detection of
T instants when the process has gone out of control.
This detection is the vital precursor to an investiga-
tion of the assignable causes of the loss of control.
Traditionally, the first step of setting up a charting
scheme is to gather a substantial data set in a Phase
I study. After data cleaning, this Phase I data set is
used to assess the in-control distribution of the pro-
cess readings and to estimate its parameters—in the
simplest case, the mean and standard deviation.

Following the Phase I study, the user then goes on
to Phase II monitoring using the calibrated control
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charts. The most widely used charting framework
is to chart means and variances to monitor possi-
ble shift in location and scale. A frequent, if often
unvoiced, implied supposition is that a model of in-
dependent process readings from the normal distri-
bution provides an adequate working model. We will
also use this conceptual framework, concentrating on
the question of detecting changes in the variance.
Historically, emphasis was on detecting increases in
variance, as these were a sign of trouble. For ex-
ample, Shewhart’s R chart is incapable of signaling
a decrease in variance using small rational groups,
and some scale proposals—for example, Crowder and
Hamilton (1992)—use this reason to search only for
variance increases. Current thinking, by contrast,
recognizes variance decreases as the key to quality
improvement, and leads to a realization that proper
control on variance requires the capability to detect
decreases as well as increases.

Shewhart methodology uses the R or S chart for
the process variance. This requires rational groups
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of size n > 1. Monitoring the variability of individu-
als has traditionally been done using a moving range
(MR) chart. This, however, has been shown to be
only minimally effective (Roes, Does, and Schurink
(1993), Rigdon, Cruthis, and Champ (1994)).

Where rational groups of size > 1 are taken, an al-
ternative to the R or S chart is a CUSUM or EWMA
control chart. For a more complete exposition of
CUSUMs in general and variance CUSUMs in par-
ticular, see Hawkins and Olwell (1998). A valuable
discussion of both some technical considerations and
the choice of rational group size is given by Reynolds
and Stoumbos (2004a, 2004b).

The CUSUM has attractive optimality proper-
ties for the detection of step changes in parame-
ters. Note, though, that to achieve this optimality re-
quires advance knowledge of both the in-control and
out-of-control true variances. This is true for all the
standard tools for detecting persistent shifts. These
requirements are severe limitations in startup and
short-run processes.

Standard practice has been to substitute the
Phase T estimates of process parameters for the true
parameters and to treat these estimates as if they
‘were the exact true parameters. This, however, is far
from the truth. Even large Phase I samples leave
considerable random variability in parameter esti-
mates, and these random errors of estimation then
carry over to distort the Phase II performance of
the charts—see, for example, Quesenberry (1991),
Hawkins and Olwell (1998, ch. 7), Jones and Champ
(2001), Jones et al. (2004). This distortion is par-
ticularly severe for sensitive methods, such as the
CUSUM or EWMA. Furthermore, the most obvious
remedy—larger Phase [ samples—which is unattrac-
tive at the best of times, is impossible in short-run
or startup settings.

The Change-Point Formulation

The CUSUM is the optimal diagnostic for detect-
ing a step change from one specified in-control level
to some other specified out-of-control level. A statis-
tical formulation that encapsulates this for normal
data is the “change-point” formulation,

) N(H1,0'1) ifiST,
Xi {N(,ug,ag) ifi>r. (1)

The parameter 7 is called the change point (if one
exists) and is unknown. The remaining parameters
U1, pz2, 01, o2 are the in- and out-of-control means
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and standard deviations. A location shift occurs if
g1 # uo; a scale shift occurs if oy # 2. Either or
both of these shifts could, in principle, occur.

We will be focussing on the unknown-parameter
change-point problem in which none of the param-
eters is assumed known a priori. Using the change-
point model in SPC leads to two statistical tasks:
testing for the presence of a change, and estimating
the parameters. Whether in SPC, regression analy-
sis, image processing, or discontinuity curves and sur-
faces, the standard approach to these problems is to
split the data into time-ordered segments and test for
differences between the segments using some hetero-
geneity criterion. Most work on change-point prob-
lems has focussed on the fixed-sample setting, such as
is seen in the analysis of Phase | data. A thorough re-
view of this setting and various techniques addressing
it can be found in Bhattacharya (1994), and relevant
individual papers include Sen and Srivastava (1975),
Hawkins (1977), Worsley (1979), Worsley (1982), and
Sullivan and Woodall (1996).

Phase II application of the change-point prob-
lem with at least some parameters prespecified is
addressed implicitly in Siegmund and Venkatraman
(1994), Pollak and Siegmund (1991), and the excel-
lent review paper by Lai (2001). The setting in which
none of the parameters is known in advance has re-
ceived much less attention. Hawkins, Qiu, and Kang
(2003) (which we abbreviate to HQK) address the
constant-variance mean-change-point formulation in
which the mean might change but the variance re-
mains constant.

‘ N(py,o) ifi<T,
X {N(,ug,a) ifi>r 2)

(7, 1, p2, o all unknown.) The HQK paper adapts
the classic fixed-sample change-point formulation to
a Phase II setting by defining a repeated testing
framework in which, as each new observation accrues,
the change-point test is reapplied to all accumulated
data, but this is done in such a way that the proba-
bility of a false alarm remains constant.

This paper develops a parallel methodology for
detecting changes in variance, with no assumption of
the constancy or otherwise of the means.

Testing for a Change-Point in Variance

Let X, be the sequence of process readings, as-
sumed to follow the change-point model of Equation

(1).
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Suppose n process readings have accrued and, for
0 < i < k < n, define the summary statistics

k
Xig= Y X;/(k—1) 3)
j=it1
k J—
Vik = Z (X;— Xix)? (4)
j=it1

Suppose it were known that the change-point was
at instant 7 = k. Estimates of the remaining param-
eters would then be

11 =Xok (5)
fio =Xk.n (6)
6% =Voi/(k—1) (7)
65 =Vin/(n—k—1), (8)

and under the constant-variance assumption, the es-
timate for the common variance would be

G2 = (V()JC + kan)/(n - 2).

These variance estimates have the usual degrees-of-
freedom divisor to make them unbiased. The like-
lihood ratio test statistic for equality of variance
is (Bartlett and Kendall (1946), Bartlett (1937),
Bartlett (1955))

(%n:hk—nm<g)+%n—k—mm(%>pc

where C is the Bartlett correction factor
C=1+[k-1)"1+n-k-1)""~(n-2)""/3.

Gk,n has an approximate null chi-squared distribu-

tion with 1 degree of freedom. Not surprisingly, Gi »

can be written as a function of the familiar F' ratio

for testing equality of variance: if F = 63/6%, then

Gk:,n

=C7Mk-DIn{k—1+(n—k-1)F}

+n—k-DIn{(k-1)F'+n-k-1}
~ (n—2)In(n - 2)],

showing that G, is a two-sided test, giving large

values for F ratios substantially above or below 1.

Note, however, that while the distribution of F' de-

pends strongly on the values of k and n — k — 1, the

approximate null distribution of Gy, is the same re-
gardless of n and k.

Turning to the situation of a possible change in
variance at an unknown change-point 7, the general-
ized likelihood ratio test is given by maximizing G »
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across all possible k values. As regards the range of
k, note that G is undefined if k =1lork=n—1, so
that the permissible range of kis 2 <k <n —2.

The GLR test statistic for a change in variance is
therefore

Gmaxn = max Ggn.
2<k<n—2

Ongoing Monitoring for
Variance Change

So far, we have discussed the likelihood ratio test
statistic and its asymptotic distribution as a testing
problem for a single static sample of size n, as in
a Phase I setting. And, indeed, these static change-
point formulations provide a potentially valuable tool
for verifying that a Phase I sample was homoge-
neous, as implied by the in-control assumption. It is,
however, its potential for ongoing process monitoring
that is more exciting.

Paralleling the HQK procedure for monitoring the
mean, we will assume that an ongoing stream of pro-
cess data accrues and that a step change in the vari-
ance may occur at any instant. The SPC procedure
is then defined by

e After observation n has been added to the to-
tal record of the process, compute the statis-
tic Giax,n—the GLR for a shift in variance at
some unknown previous time.

o If Gmax,n < hn, where h,, is some suitable con-
trol limit, then conclude that there is no evi-
dence of a variance shift and leave the process
running uninterrupted.

o If, however, Gmax,n > hn, then conclude that
there is evidence of a variance shift.

Note some important differences between this ap-
proach and the more traditional SPC approaches us-
ing Shewhart, CUSUM or EWMA charts. One is the
point already made—that the traditional charts are
commonly calibrated by plugging in parameter esti-
mates from a Phase I data set, but that these es-
timates are treated as if they were the true values.
Our formulation is explicit that the estimates are no
more than estimates and aims to control the false-
alarm rate without any assumption of knowledge of
unknowns.

The other difference is that, unlike the conven-
tional setting, where learning about the true param-
eter values stops along with the Phase I data gath-
ering, the change-point formulation continues to use
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the ongoing stream of process data to refine its esti-
mates of process parameters.

The Choice of the Control Limits

There is a vital issue remaining to be resolved, and
that is the choice of the sequence of control limits
h,. An intuitively desirable property of the sequence
(HQK, Margavio et al. (1995)) would be to give a
constant probability of a false alarm for each n. If
this probability is to be a constant «, say, then the
sequence, which we will relabel h,, o, must satisfy

P[Gmax,n > hn,a | Gmax,j < hj‘ou 1 < TL] = (. (9)

It does not seem to be possible to solve for these
hpo values theoretically, and so a simulation was
used to estimate them. This involved 5 million ran-
dom samples of sizes up to 500 and covering o values
of 0.05, 0.02, 0.01, 0.005, 0.002, and 0.001 and gave
fractiles h,, , with standard errors of approximately
0.02.

Having said that it is possible to start testing right
from the fourth observation (a minimum of two ob-
servations per segment being required to calculate
the test statistic), we think that few practitioners
would do so. We think ordinary prudence would lead
one, except in short-run settings, to accumulate a
few observations before starting testing. Our simula-
tions incorporated this possibility, giving rise to 17
tables of hy, o values, corresponding to initial skips of
the first 4, 5, 6, ..., 20 observations. The full table
can be found on the Web site www.stat.umn.edu/
hawkins. Table 1, extracted from this fuller table, is
the table of cutoffs for skipping nine initial observa-
tions and starting testing with the tenth.

Using tabled cutofls is not particularly attractive
in a computer implementation, so it is helpful to
have some more compact, even if approximate, way
of computing suitable cutoff values. Based on this
reasoning, we suggest the following approach for get-
ting cutoff values:

e For n = 10....15, use the cutoffs from Table 1.
e For n > 15, use the approximation

~1.38 — 2.241 In(«x)
1.61 + 0.691 In(a)

if 0.001 < «

hipa = \/(n -9)
< 0.05,
5+ 0.0661n{n — 9) if @« = 0.05,
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TABLE 1. Control Limits h, o
Starting Testing at Sample 10

[0

n 005 0.02 0.01 0.005 0.002 0.001

10 6.374 8.003 9.229 10.451 12.039 13.238
11 5.651 7.328 8.585 9.840 11.489 12.734
12 5.357 7.077 8373 9.653 11.357 12.631
13 5.228 6.988 8.312 9.634 11.367 12.672
14 5.173 6.960 8304 9.658 11.423 12.760
15 5.149 6.960 8.323 9.692 11.469 12.828
16 5.141 6.974 8357 9.731 11.541 12.885
17 5.145 6.992 8.386 9.776 11.596 12.962
18 5.142 7.010 8.413 9.808 11.651 13.034
19 5.145 7.020 8.434 9.838 11.696 13.070
20 5.150 7.034 8458 9.875 11.722 13.120
22 5.160 7.064 8.500 9.921 11.788 13.191
24 5.173 7.085 8529 9.961 11.853 13.297
26 5.184 7.108 8.562 10.000 11.894 13.340
28 5.196 7.125 8.585 10.035 11.947 13.385
30 5.204 7.136 8.610 10.065 11.981 13.408
35 5.224 7.171 8.653 10.133 12.064 13.519
40 5.237 7.187 8.678 10.165 12.114 13.575
45 5.245 7.205 8.698 10.191 12.140 13.604
50 5.243 7.223 8.721 10.210 12.172 13.649
60 5.260 7.235 8.740 10.242 12.210 13.694
70 5.279 7.246 8.757 10.262 12.244 13.715
80 5.291 7.262 8.773 10.278 12.255 13.765
90 5.309 7.261 8.785 10.297 12.288 13.765
100 5.312 7.267 8.789 10.302 12.290 13.806

125 7.277 8.802 10.323 12.323 13.825
150 7.269 8797 10.352 12.336 13.840
175 7.304 8.831 10.350 12.341 13.854
200 7.334 8.804 10.332 12.356 13.863
250 8.829 10.337 12.356 13.882
300 8.859 10.370 12.370 13.889
350 8.838 10.368 12.395 13.908
400 8914 10371 12379 13.921

500 10.410 12.391 13.907

which reproduces Table 1 with a maximum absolute
error of 0.08. This functional form is not based on
any theoretical model but was selected empirically
using a combination of graphs and regression fits.

Computational Details and Windows

All the computations necessary for the testing can
be found from two tables—one of the running total of
the data W,, = Z’f X;, and the other of the running
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sum of squared deviations from the running mean
Vo.n- These have very simple updates,

WTL+] =W, + Xn+1
Vos1r = Vo + n(Xp41 — Wn/n)Q/(n + 1).

From these two tables, the quantities needed to
perform the test are easy to compute,

Xigp= Wi —Wy)/(k—1)
Vik = Vo — Vou —ilk — i) (Xo,; — Xin)?/k.

As these formulas have some (though limited) po-
tential for loss of precision due to subtractive can-
cellation, the tables and the arithmetic should be in
double precision.

The updates of the W, and Vj, are fast, but
searching for the k maximizing the split statistic
involves computing n — 2 test statistics, and even
though the computations themselves are fast, for
very large n or in settings where large numbers of
process measurements are monitored, this could be-
come a burden. A remedy that comes to mind is to
restrict the searching to a window of the most recent
observations. An effective way of reducing the com-
putations without discarding information is a win-
dowing approach of retaining only the M most recent
values of W and V and restricting the search to these
tabled values. When a new observation accrues, the
W and V tables are (conceptually rather than liter-
ally) moved down one place, the oldest entry dropped
and the newly updated entry added. The k search is
then confined to the entries in the W and V tables
and so does not grow with n, but remains bounded
by M — 2.

Note that this approach is fully statistically effi-
cient in that observations to the left of the window
are not lost—they still feature fully in all summary
numbers. All that is lost is the ability to declare a
split point more than M time intervals in the past.

Performance

The performance of quality-control charts is com-
monly measured by their average run length (ARL).
To explore this, we carried out simulations—each of
10,000 sequences of length up to 10,000. We used the
a = 0.002 cutoffs so as to get an in-control ARL of
500. There are two further settings that need to be
specified—the number of initial familiarization obser-
vations gathered before the start of the testing and
the instant at which the change in variance occurs.
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In(ratio of standard deviations)

FIGURE 1. ARL Following Changes in Standard Devia-
tion—Instants of Change 20-50-250; z-Axis In(g2/01), y-
Axis In(ARL).

We set the first of these at nine, so that formal testing
began with the tenth observation of the sequence.

Several instants of change 7 + 1 were tested—
observations number 20, 50, 80, 150, and 250, but
we report only the results for 20, 50, and 250, the
two intermediate values adding little insight. The in-
control standard deviation was taken as 1, and the
out-of-control values ranged from 0.5 to 2. Figure 1
shows the resulting ARLs. Both scales are logarith-
mic.

The figure shows that large shifts (whether up-
ward or downward) are detected quickly, regardless
of how soon after the start of the series they oc-
cur. The ability to detect downshifts effectively is
a marked contrast with Shewhart R and S charts.

For relatively small shifts, the time of occurrence
has a substantial impact. If the standard deviation
increases from 1 to 1.6 starting at observation num-
ber 20, 50, 80, 150, or 250, the ARL to detection is
354, 90, 38, 26, or 23, respectively. The long ARL to
detection of the shift at observation 20 might at first
blush suggest that the change-point formulation is
not very good. It more accurately reflects the limited
precision of the estimate of the prechange variance
when only a few observations accrue before the shift.
Suppose, for example, that the standard deviation in-
creases by 60% after 19 in-control observations. The
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TABLE 2. In- and Out-of-Control ARL of Combination Charts
Table of ARL(4, n, /\)
A

é T+1 0.512 0.640 0.800 1.000 1.250 1.563 1.953
0.0 20 61.2 180.2 302.4 329.2 274.0 178.6 78.2
50 22.4 75.9 278.2 325.5 202.4 55.4 13.2
250 17.6 32.5 208.1 405.7 87.9 19.6 8.6
0.5 20 35.5 98.1 194.1 242.3 216.3 159.0 73.1
50 19.7 37.5 85.8 129.0 99.5 37.3 11.7
250 17.6 27.2 39.2 41.8 29.2 14.6 7.7
1.0 20 14.6 20.4 32.6 55.9 79.4 79.8 43.7
50 12.2 13.7 15.2 16.0 16.0 12.8 7.9
250 11.1 11.8 11.9 11.5 10.3 8.2 6.0
1.5 20 8.0 8.7 9.7 11.0 13.6 18.9 17.4
50 6.6 6.7 6.7 6.9 6.7 6.3 5.3
250 5.9 5.9 5.9 5.7 5.5 5.0 4.3
2.0 20 5.1 5.2 5.5 5.8 6.0 6.5 6.7
50 4.0 4.1 4.1 4.1 4.1 4.0 3.8
250 3.6 3.6 3.6 3.6 3.6 3.4 3.2

power of the F test for equality of variance of the
first 19 observations against the subsequent observa-
tions using a 0.2% significance level increases to an
asymptote of 57% as the length of the right segment
tends to oo. Adding observations after the change
does not remove the indeterminacy of estimating o,
from such a modest sample size.

Control of Both Mean and Variance

There are settings in which this scale control
might be used alone, but a more common use will
likely be alongside the HQK procedure for a change
in mean to provide a pair of charts monitoring data
for shifts in mean, variance, or both. This pair of
change-point methodologies parallels, for example,
the Reynolds and Stoumbos (2001) scheme using
EWMA charts. An out-of-control would then be sig-
nalled if either of the charts were to exceed its control
limit. It is of interest to explore the performance of
this combination.

We used simulation (each of 10,000 sequences) to
evaluate the performance of this combined scheme
when the in-control distribution of N(0,1) changed
to one of N(8,A?). The HQK location change-point
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formulation and this scale proposal were each run
using the a = 0.002 cutoffs, which would give each
of them an in-control ARL of 500.

Table 2 shows the resulting ARLs. As before, we
introduced the shifts starting at observations number
20, 50, 80, 150, and 250, but show only the results for
20, 50, and 250. The first row of results shows how
the combined scheme reacts to shifts in variance only
and the middle (A = 1) column shows the response
to shift in mean only.

In a fixed-sample setting, the ¢ test for the means
and the GLR test for the variances are statistically
independent. Thus, one might expect the combined
charts to have an in-control ARL near 250. That the
actual null ARLs are much higher than this shows
that the repeated testing done in the change-point
formulation nullifies this independence, creating a
positive relationship between the two charts’ run
lengths.

Because one is likely to interpret a signal on the lo-
cation chart as indicating a change in mean, and one
on the scale chart as indicating a change in variance,
it is of interest to know what proportion of the signals
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TABLE 3. Percentage of Signal Coming from Location (M) Chart or Scale (V) Chart

Table of Percentage of Signal(4,M,V, )

A
) mean & var 0.512 0.640 0.800 1.000 1.250 1.563 1.953
0.0 mean 0.82 5.26 31.87 59.87 68.78 56.28 50.00
var 99.13 94.63 67.97 39.24 27.53 30.88 26.45
mean & var 0.05 0.11 0.16 0.88 3.69 12.84 23.55
0.5 mean 14.73 36.37 64.21 79.85 82.76 68.87 56.21
var 84.09 62.66 35.38 19.76 14.70 20.43 21.28
mean & var 1.18 0.97 0.41 0.39 2.54 10.70 22.51
1.0 mean 66.22 84.63 93.24 97.00 95.43 85.86 68.92
var 30.60 13.98 6.26 2.59 2.45 5.77 10.65
mean & var 3.18 1.39 0.50 0.41 2.12 8.37 20.43
1.5 mean 93.77 96.96 98.03 97.91 96.18 90.11 75.49
var 4.23 2.29 1.22 0.92 0.95 2.05 4.52
mean & var 2.00 0.75 0.75 1.17 2.87 7.84 19.99
2.0 mean 98.42 98.64 98.13 96.76 94.85 89.05 77.09
var 0.65 0.46 0.56 0.70 0.70 0.89 1.83
mean & var 0.93 0.90 1.31 2.54 4.45 10.06 21.08

come from each. Table 3 covers the same ground as
Table 2, and shows the percentage of signals coming
from the location, from the scale, or from both charts
in each setting. The table shows only the results for
a change starting at observation 50, as the figures for
other epochs are qualitatively similar.

The first row of Table 3 shows that increased vari-
ance, even unaccompanied by any shift in mean, is
quite likely to trigger the location chart. Though not
universally recognized, this is true of all standard lo-
cation charts. The middle column shows a high speci-
ficity for the location chart; signals when the mean
shifts but the variance does not are overwhelmingly
likely to come just from the location chart with few
false alarms from the scale chart. Moving left and
right along each row shows that variance decreases
tend to reduce the frequency of signals from the lo-
cation chart and increase that from the scale chart.

Comparison with the
CUSUM and EWMA

Comparing our approach with a standard alter-
native is complicated by the fact that there is no
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standard alternative, as the standard methods rely
on the availability of values for the in-control pa-
rameters. We therefore chose a perhaps imperfect
comparison—with the cumulative sum and the ex-
ponentially weighted moving average following 200
in-control learning samples, the values of which were
used to calibrate the charts. We simulated 10,000
sequences, changing the standard deviation start-
ing at the 201st reading, discarding any sequence
in which the change-point test signaled before the
actual change. The change-point chart was exactly
as described, using an in-control ARL of 1,000. One
benchmark was the EWMA recommended by Crow-
der and Hamilton (1992). This used as data the vari-
ances of rational groups of size 5, and was tuned for
best performance at a 30% increase in standard devi-
ation. Writing S? for the variance of the ith rational
group of size 5, this uses the recursion

EO = 0, El = max((), (1 - A)Ei,1 + )\hl(S,?))

with A = 0.16. The chart signals if

E>K\/

Var In(S?)) = 0.236K.
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In(ARL)

T T T T T T T
10 1.6 20 25 8.0 35 4.0

In{retio of standard deviations)

FIGURE 2. Comparison of Change Point with CUSUM
and EWMA, z-Axis In(02/01), y-Axis In(ARL).

The choice K = 1.45 gives an in-control ARL
of 200 rational groups, or 1,000 individual readings,
matching that of the change point test.

The other benchmark was an upward scale
CUSUM using the variances of rational groups of size
5. It was also tuned for optimal response to an up-
ward shift of 30% in standard deviation—details are
in Hawkins and Olwell (1998). The CUSUM recur-
sion was

Co=0; C; =max(0,C; 1 +S?—1.285),

with a signal of an upward shift if C; > 3.69. We
note that this comparison is somewhat unfair to the
change point test in that the change point test is a
two-sided monitoring scheme, but both the schemes
with which it is being compared are one-sided. On
the other side, Reynolds and Stoumbos (2004b) sug-
gest that the use of rational groups of size greater
than 1 in the CUSUM and EWMA is not the best
choice for these methodologies either. Neither criti-
cism, however, blunts the broad comparison of the
approaches.

Figure 2 shows the ARLSs of the three schemes for
various post-shift standard deviations. Several points
are noteworthy. First, the CUSUM and EWMA have
in-control ARLs substantially above the nominal
1,000—that of the CUSUM is 1,750 and the EWMA
is 1,600. This shows that calibrating the CUSUM and
EWMA using variance estimates having 199 degrees
of freedom is not enough to get rid of the substantial
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FIGURE 3. Log;g of Sampler to Supervisor Gold Content
Ratio.

effect of estimating parameters. This observation for
scale monitoring parallels the observations of Jones
and Champ (2001) and Jones et al. (2004) for the
location CUSUM and EWMA.

As regards the comparative performance, the fig-
ure shows that the CUSUM outperforms the EWMA
throughout the range, but increasingly so for large
shifts. This is probably due less to the CUSUM’s gen-
eral performance advantage over the EWMA than to
the latter’s accumulating on the log and not the orig-
inal scale. The change-point chart lags the other two
for standard deviation ratios less than 2, but outper-
forms them for larger increases in variability.

Example:
Gold Mine Sampling Quality Control

Samplers in gold mines cut samples from the face
at regular spacings, and submit them for chemical as-
say for their gold content. As a quality check, super-
visors cut out fresh samples at some of the locations
already sampled. This gives rise to pairs of samples
and of gold content -one by the original sampler and
one by the supervisor. The log of the ratio of the gold
content of the sampler to that of the supervisor has
an approximately normal distribution. The variance
of the log ratio is extremely important because of
its implication for the precision of the estimates that
are used to decide which blocks of ore to extract and
which to leave in place. Figure 3, one of a collec-
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tion given by Rowland and Sichel (1961), shows a
sequence of such ratios for a junior sampler. For this
analysis, we will assume that the mean of the log ra-
tio is zero throughout the sequence (as Figure 3 sug-
gests), and our main interest will be to see whether
there has been change in the variance. Variance re-
duction will imply quality improvement and knowl-
edge about the sampler as to whether he has gained
some learning over time, while increased variance will
indicate a deterioration in quality. Did the sampler
help improve quality? When did he start getting bet-
ter? We will address these questions using our vari-
ance change-point formulation.

While the log ratio was described as approxi-
mately normal, it has two features that make it a
less-than-perfect example. One is that, due to round-
ing of the gold assays, the distribution is grainy, with
10% of the log ratios being exactly zero. The other
is that it has a regular sprinkling of outliers. To the
extent that our methodology provides good results in
the face of these complications, it can be supported
for settings of more nearly normal data.

Another potential modeling issue has to do with a
possible dependence. Because the entire data reflects
the work of a single sampler and a supervisor, there
are no cluster effects in the data. Even though serial
correlation is possible through the sampler having
good or bad days, the sequence did not show any such
autocorrelation. Thus, we feel justified in proceeding
with the change-point analysis.
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Examining the plot in Figure 3, it looks as though
the variability in the portion up to around observa-
tion 80 is higher than that for the remainder of the
sequence. We will apply the change-point technique
for change in variance as might be done in routine
control in a mine. Figure 4 gives the values of Grax »
along with the control limits hy ¢.002, corresponding
to an in-control ARL of 500 for exactly normal data.

Gmax.n €xceeds hy, 0002 three times, with first ex-
ceedances at readings 48, 75, and 87. The details of
these signals are

1. Signal at 48. Adding the 48th observation to
the process takes Gmaxas over the threshold
hag 0.002 and estimates the change point as hav-
ing occurred after observation 41. The esti-
mates of the standard deviations of the two
segments defined are &y, .41 = 0.839 and
G42,...a8 = 0.149, a substantial decrease. With
this clue, we identify the short but unusually
constant segment around observation 40 in Fig-

ure 3.

2. After spiking at reading 49, Gmax,n goes back
below hy, 0002 following some readings of size
more typical of the earlier segment. A second
signal then occurs at reading 75. This signal
also flags observation 41 as the last of the
original-variance segment, but estimates the
subsequent standard deviation as G40,..75 =
0.5231, also lower than the starting variability
but not as dramatically so. A visual difference
in the variability of these two subsequences is
less clear than was that leading to the first sig-
nal.

3. Once again, a large discrepancy brings Gmax.n
below the control limit, where it remains until
reading 87, when it punches through the control
limit decisively and remains above it for the rest
of the sequence (and for several dozen further
readings shown in Rowland and Sichel, but not
reported here). With this signal, 7 moves up
to 80, capturing the visual change point in the
plot. The before and after standard deviations
are 5'1,...,80 = 0696, (}81 _____ 87 — 0.120. As the
process history grows beyond this point, the es-
timate of the after standard deviation increases,
but to no more than some 0.43. This represents
a substantial improvement in the measurement
variance than the sampler displayed initially.

This reduction in measurement variance is of ma-
jor benefit to the mine because it leads to a much-
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imi)roved precision in the localization of higher grade
areas in the ore body.

Reviewing the whole analysis, in hindsight, we
can conclude that the two early unconfirmed signals
probably did presage some improvement in the vari-
ability, but this was initially too small to stay well
quantified. It was at around reading 80 that the sam-
pler’s training and further experience led to a perma-
nent reduction in variability.

Conclusion

The importance of monitoring process variability
has been recognized since Shewhart’s earliest writ-
ings but has often played second fiddle to monitor-
ing of location. A wider awareness of the importance
of variance has come with the quality improvement
movement and the increased awareness that variabil-
ity is a major source of quality problems. In some
settings, only the variability needs to be monitored;
in others, we require tools for control of both mean
and variability.

Conventional charting methods such as the Shew-
hart, CUSUM, and EWMA charts are calibrated as-
suming that the in-control process parameters are
known exactly. To the extent that this is untrue, the
in-control run behavior of the resulting chart will dif-
fer from what the user expected. The CUSUM and
EWMA have a further failing that realizing their best
performance requires tuning to the size of the shift,
requiring even more prior knowledge.

There has always been a tension between the ob-
jective of starting process monitoring as soon as pos-
sible and that of conducting a good process perfor-
mance study to have confidence in the baseline pa-
rameters. While we present the change-point formu-
lation as a method that can start Phase II moni-
toring after gathering only three Phase I readings,
we do not see it being used in any such extreme
fashion. In some settings, there may be substantial
historical precedent supporting the expectation that
the process readings will follow a normal distribu-
tion. In this case, the change-point charting could
indeed be started with the minimal accumulation of
baseline information. At the other end of the spec-
trum are settings in which there is no advance reason
to expect normally distributed process readings and
there is no particular obstacle to gathering a reason-
ably sized Phase I data set. In this setting, we see
the change point as a valuable adjunct to the other
Phase I analysis tools, leading to the possibility of

Journal of Quality Technology

an earlier transition out of this precursor mode into
ongoing production monitoring.

In this paper, we developed a change-point ap-
proach for variance shifts. This can be used alone
or in conjunction with already-extant change-point
control for the process mean to provide a powerful
SPC methodology.
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