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Statistical process control (SPC) requires statistical methodologies that detect changes in the pattern of
data over time. The common methodologies, such as Shewhart, cumulative sum (cusum), and exponentially
weighted moving average (EWMA) charting, require the in-control values of the process parameters, but
these are rarely known accurately. Using estimated parameters, the run length behavior changes randomly
from one realization to another, making it impossible to control the run length behavior of any particular
chart. A suitable methodology for detecting and diagnosing step changes based on imperfect process
knowledge is the unknown-parameter changepoint formulation. Long recognized as a Phase | analysis tool,
we argue that it is also highly effective in allowing the user to progress seamlessly from the start of Phase
| data gathering through Phase Il SPC monitoring. Despite not requiring specification of the post-change
process parameter values, its performance is never far short of that of the optimal cusum chart which
requires this knowledge, and it is far superior for shifts away from the cusum shift for which the cusum
chart is optimal. As another benefit, while changepoint methods are designed for step changes that persist,
they are also competitive with the Shewhart chart, the chart of choice for isolated non-sustained special

causes.

Introduction

ITH statistical process control (SPC), one aims

to detect and diagnose situations in which a
process has gone out of statistical control. This prob-
lem has both process and statistical aspects to it—for
an outline of some of its statistical modeling aspects,
see Crowder et al. (1997). Operationally, the state of
statistical control may be described as one in which
the process readings appear to follow a common sta-
tistical model. One model is that while the process
is in statistical control, the successive process read-
ings X; are independent and sampled from the same
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distribution. When the process goes out of control, it
can do so in several ways. A distinction can be made
between isolated special causes, those that affect a
single process reading and then disappear, and sus-
tained special causes, those that continue until they
are identified and fixed. In statistical terms, an iso-
lated special cause results in a single process reading
(or a single rational subgroup) that appears to come
from some distribution other than the in-control dis-
tribution. It is analogous to an outlier. The Shew-
hart X with an R- or S- chart is an excellent tool for
detecting special causes that lead to large changes,
whether sustained or isolated. It is less effective for
diagnosing small changes in the process.

A sustained special cause changes the statistical
distribution from the in-control distribution to some-
thing else, and the distribution will remain in this
out-of-control state until some corrective action is
taken. For example, the mean of the process read-
ings could change to a different value, or the vari-
ability could change. Standard tools for detecting
sustained changes are the cumulative sum (cusum)
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chart and the exponentially weighted moving aver-
age (EWMA) chart. This paper focuses on another,
less familiar, method aimed at detecting sustained
changes, the change-point formulation.

Making the model more specific, we suppose that
the process readings can be modeled by two normal
distributions,

X; ~ N(p1,0?) fori=1,2,...,7;
X; ~ N(ug,03) fori=7+1,...,n.

The series length n is fixed in traditional statisti-
cal settings, but increases without limit in Phase II
SPC settings. Both settings will be discussed, with
context indicating which of the two applies. The in-
control distribution is N (p1,0%). The readings follow
this distribution up to some instant 7, the change-
point, at which point they switch to another normal
distribution differing in mean (u; # p2), in variabil-
ity (01 # 02), or in both mean and variability. Using
this changepoint model to describe process readings
leads to two statistical tasks; a testing task and an es-
timation task. The testing task is to decide whether
there has indeed been a change. If so, the estimation
task is to estimate 7, the time at which it occurred,
and perhaps also to estimate some or all of the pa-
rameters ji1, fto, 01, and os.

With few exceptions, work on changepoints has
focused on shifts in mean only, i.e., u3 # ps but
01 = 09 = 0, and this framework is used here also.

Within this changepoint model are three scenarios
based on the amount of process knowledge: (1) all
parameters p1, it2, and o are known exactly a prior;
(2) the in-control parameters pu; and o are known
exactly, but pso is not; and (3) all parameters py, po,
and o are unknown.

First Scenario—the Cusum Chart

The cusum chart for location is appropriate for
the first of these settings, where all the parameters
except the changepoint are known. We assume that
o > 1, the case ps < py being handled analogously.
The cusum chart is then defined by

So=0
S; = max(0,5;,_1 + X; — k),
where the ‘reference value’ k = (u1 + p2)/2.

The cusum chart signals a shift if S; > h, where
h is the ‘decision interval,” which is chosen to set the
in-control average run length (ARL) at some accept-
able level. If a shift is signaled, then the most recent
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epoch j at which S; = 0 gives the maximum like-
lihood estimate of the last instant before the mean
shift (Lai, 2001).

The cusum method has attractive theoretical
properties in that, in a certain sense, it is the optimal
test for a shift in mean from p; to ps. See Hawkins
and Olwell (1998) for a more detailed discussion of
cusum methods, their properties and further refer-
ences.

Note that we need to know all three parameters
to set up the cusum chart. We need to know p; and
ue to calculate the reference value, and pq and o to
calculate the decision interval h.

We do not consider the EWMA procedure. It also
requires known in-control parameters, also involves a
tuning constant and a control limit, and if properly
tuned gives performance close to that of the cusum
chart. Our later comments on cusum charts largely
carry over to EWMA methods.

Second Scenario—Cusum
and GLR Changepoint

It is rare indeed that there is only one value of po
to which the mean might shift after a change, and
so the optimality properties of the cusum chart are
less attractive than they might seem. However, al-
though strictly optimal only for the particular shift
corresponding to its reference value, the cusum chart
is close to optimal for the range of shifts close to that
for which it is optimal. Common practice is there-
fore to design the cusum chart for some shift just
large enough to be thought detectable and practi-
cally significant, and to rely on this near-optimality
argument to believe that this cusum chart will be a
good choice for all po values likely to occur.

An alternative is the generalized likelihood ratio
(GLR) approach discussed in Lai (2001) for the sit-
uation p1, o0 known, but ps unknown. In this case,
the unknowns ps and 7 are estimated by maximum
likelihood, and then the maximized likelihood gives
a GLR test for the presence of a changepoint against
the null hypothesis of a single unbroken sequence.
This same modeling framework was used by Pig-
natiello and Samuel (2001). This latter work dif-
fers from the GLR approach in being an ‘add-on’
to conventional charting methods such as Shewhart,
cusum, or EWMA. The conventional method is used
to decide that a change has occurred, and then the
changepoint likelihood is used for the followup prob-
lem of estimating 7 and py. This differs from Lai’s
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self-contained GLR in which the maximized likeli-
hood and the likelihood ratio are used for both de-
tection and estimation.

Gombay (2000) extended this framework to one
allowing for additional unknown ‘nuisance’ parame-
ters. This leads to a procedure in which o can be un-
known. However, the in-control mean p; still needs
to be known a priori in order to have known statis-
tical properties.

The assumption of known in-control mean and
standard deviation underlies both the standard
charting methods (Shewhart, cusum, and EWMA
charts), and the GLR changepoint approach set out
by Lai (2001), Pignatiello and Samuel (2001), and
Nedumaran and Pignatiello (2001). Where do these
known parameter values come from? The values used
are generally not exact parameter values, but esti-
mates obtained in a Phase I study. Any errors in
these quantities, including the random errors that
are inevitable if the p; and o values are estimated,
lead to an inability to fix the in-control run length
properties of the more sensitive methods such as the
cusum, EWMA, and GLR.

To illustrate this point, we suppose that a Phase
I sample of size 100 is used, and its mean and
standard deviation substituted for pu; and o. Let
X take one of three values: the true value ui; a
‘low’ value one standard error below p;; or a ‘high’
value one standard error above p;. We do the same
for the sample standard deviation. We consider a
cusum chart designed for a one-sigma upward shift
in mean and an in-control ARL 500. Then, the ac-
tual ARL values for these possible estimates of p4
and o (calculated using the public-domain software
on www.stat.umn.edu/users/cusum) are given in Ta-
ble 1.

The top left and bottom right corners of this ta-
ble show ARLs a factor of three different from the
nominal 500. Since a random error of at least one
standard error occurs in about a third of the sam-
ples, this means that the unavoidable random errors
in the estimates make even reasonably accurate tar-
geting of the in-control ARL impossible. While it
is not essential to get the ARL exactly right for a
chart to be useful, it is surely a cause of concern that
the false alarm rate could easily, uncontrollably, and
undetectably vary by an order of magnitude.

The framework of ‘exactly known in-control pa-
rameters’ is then more of a convenient fiction than
fact. When only rather insensitive methods such as
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TABLE 1. The Actual ARL of the Cusum Procedure
With Estimated Mean and Standard Deviation

X
low true high
low 190 300 500
S true 290 500 900
high 450 850 1680

the Shewhart chart were used, having only estimates
was not a source of much concern, but this is no
longer true when we add sensitive procedures such as
cusum charts, EWMA charts, and the GLR method
to the mix.

Recognition that estimating parameters affects
run length behavior is not new. Quesenberry (1993)
noted that the run length behavior of Shewhart X
charts using estimates of the in-control mean and
standard deviation could differ substantially from the
known-parameter case. Nedamaran and Pignatiello
(2001) suggested modifications to the control limits
to account for the change in false alarm probability,
and Jones and Champ (2001) gave some discussion
in the context of the EWMA chart.

Third Scenario—None of
the Parameters Known

Finally, consider the model with none of the pa-
rameters known. We can test for the presence of a
changepoint with another generalized likelihood ratio
test. This test is a ‘two-sample ¢ test’ between the
left and right sections of the sequence, maximized
across all possible changepoints (Sen and Srivastava
(1975), Hawkins (1977), and Worsley (1979)). For a
given putative changepoint j where 1 < j <n—1, we
let X,,= >7_, X;/j be the mean of the first j ob-
servations, )?;n: Yo i1 Xi/(n — j) be the mean
of the remaining n — j observations, and V, =

! (Xi— )?j)2+2?:j+1(X,»— )*(:)2 be the residual
sum of squares.

Based on the assumption that there is a single
changepoint at instant j, X jn and )?;n are the max-
imum likelihood estimators (MLEs) of p; and po,
and 67, = Vj,/(n — 2) is the usual pooled estima-
tor of 2. A conventional two-sample t-statistic for
comparing the two segments would be

jn—7) Xjn — X5

n Oijn

Tj, =
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In the null case that there was no changepoint and j
was chosen arbitrarily, T}, would follow a Student’s
t-distribution with n — 2 degrees of freedom.

The generalized likelihood ratio test for the pres-
ence of a changepoint consists of finding Tiax,n, the
maximum of |Tj,| over all 1 < j < n—1. The j giving
the maximum is the MLE of the true changepoint T,
and the corresponding X ; and )?; are MLEs of the
unknown means jq and po. If Tay , exceeds some
critical value h,, then we conclude that there was
indeed a shift. Otherwise, we conclude that there is
not sufficient evidence of a shift.

Finding suitable critical values h,, is not a trivial
task. A very easy conservative bound for the cut-
point giving a significance level of no more than a
comes from the Bonferroni inequality

n—1
Pr[Tmax,n > hn] < ZPTHCTJR‘ > hn]
j=1
= (n = D) Pr{ltn—2| > hn],

which is (n — 1) times the two-sided tail area of a
t-distribution, with n — 2 degrees of freedom. Thus,
choosing for h,, the two-sided a/(n — 1) fractile of
a t-distribution with n — 2 degrees of freedom will
give a test of size at most «. This simple Bonferroni
inequality is exact (Worsley (1979)) if

-2

n [n++/(n?—4)], ifniseven
hpzq 2

n(n — 2),

if n is odd.

This condition is met for small n and small @ combi-
nations, but the Bonferroni bound becomes very con-
servative if n is large. Worsley (1982) gave a much
tighter conservative bound that could be used for
moderate-size n, and large-sample asymptotics were
given by Irvine (1982).

We also mention briefly the more general change-
point formulation in which either or both of the pa-
rameters p, 0 may change at the changepoint 7. Sul-
livan and Woodall (1996) discussed this formulation
and the resultant generalized likelihood ratio test. It
has the advantage of providing a single diagnostic
that can be used to detect shifts in either the mean
or the variance, or in both. It has the disadvantage of
being much more sensitive to the normality assump-
tion than is Tinax,n. Furthermore, while bounds, ap-
proximations, and extreme value results are known
for the null distribution of Ti,axn, there is hardly
any finite-sample theory for Sullivan and Woodall’s
statistic. For these reasons, we will not consider it
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further here. We use the term ‘changepoint formula-
tion’ to mean the formulation in this third scenario,
in which none of the process parameters is considered
known exactly.

Phase I and Phase II Problems

We have so far assumed that we had a single sam-
ple of size n. Turning to SPC applications, standard
practice involves two measurement phases. In Phase
I, a set of process data is gathered and analyzed.
Any unusual ‘patterns’ in this data set indicate a
lack of statistical control and lead to adjustments
and fine tuning. It is common, for example, that the
early readings will be more variable than the later
as a result of adjustments and fine-tuning. There
may be outliers, indicative of isolated special causes;
these too will be diagnosed and steps taken to pre-
vent their recurrence. One or more changepoints in
mean is another possibility.

Once all such assignable causes are accounted for
though, we will be left with a clean set of data, gath-
ered under stable operating conditions and illustra-
tive of the actual process performance. This set is
then used to estimate the in-control distribution of
X, including its mean pu;, standard deviation o, and
form.

The changepoint formulation has not been used
extensively in the SPC context, but where is has, has
tended to be confined to Phase I problems. This, for
example, is the setting of the Sullivan and Woodall
(1996) proposal for finding changepoints in the mean
and/or variance.

In Phase I, with its static set of data Xy, ..., X,,,
traditional fixed-sample statistical methods are ap-
propriate. So, for example, it is appropriate to calcu-
late Tiax,n for the whole data set and test it against
a suitable fractile of the null distribution of the test
statistic for that value of n. If the analysis indi-
cates a lack of control in the Phase I data set, more
data will be gathered after process adjustment until
a clean data set is achieved.

Phase II data are the process readings gathered
subsequently. Unlike the fixed set of Phase I, they
form a never-ending stream. As each new reading
accrues, the SPC check is re-applied. For this pur-
pose, fixed significance level control limits are not
appropriate; rather, concern is with the run lengths,
both in- and out-of-control. A convenient summary
of the frequency of false alarms is the in-control av-
erage run length (ARL), which should be large, and
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a method’s performance can be summarized by its
out-of-control ARL values.

Traditional methods such as the Shewhart, cusum,
and EWMA charts require a Phase I data set to have
parameter estimates that can be plugged into the
Phase II calculations. These methods require one to
draw a conceptual line below the Phase I data, and
separate the estimation data (Phase I) from the on-
going SPC data (Phase II). With the changepoint
formulation by contrast one does not assume known
parameters and so does not require the estimates pro-
duced by a Phase I study. Rather, once the prelim-
inaries are complete and the initial process stability
has been achieved, the formulation allows us to go
seamlessly into SPC in which, at each instant, all ac-
cumulated process readings are analyzed and all data
used to test for the presence of a changepoint. It also
provides an ongoing stream of ever-improving esti-
mates of the parameters while the process remains
in control.

The schematic of this approach is that as each
new observation X, is added to the data set, the
changepoint statistic Tinax,» is computed for the se-
quence X1, X2, ..., Xpn. If Tiax,n > hy (where {h,}
is a suitably chosen sequence of control limits), then
we conclude that there has been a change in mean.
The MLEs of the changepoint 7, the before-and-after
means pq and po, and the standard deviation o fol-
low at once. By looking for something in the process
that changed around the time of the estimated 7, we
can then take appropriate corrective action.

Using the changepoint approach in ongoing SPC
charting leads to a number of questions arising
from differences between the changepoint and cusum
methodologies and between the fixed-sample and
dynamic-sample situations of the changepoint test.
The most immediate is the choice of the control
limit sequence {h,}. While fixed-sample distribu-
tional theory makes it possible to specify a value
of h, that will give a marginal false alarm proba-
bility of «, such a sequence is not suitable for SPC
purposes. It is the conditional probability of a false
alarm, given that there was no false alarm at the
previous test, that is relevant. Since the successive
Tnax,n values are highly correlated and the correla-
tion increases with n, the conditional probability is
far below the marginal probability, making marginal
« control limits irrelevant.

The ideal would be a sequence of h,, such that the
‘hazard’ or ‘alarm rate’ (the conditional probability
of a false alarm at any n, given that there was no
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previous false alarm) was a constant «, as is the case
with the Shewhart chart. With constant hazard, the
in-control ARL would be 1/, providing the same di-
rect link between the hazard rate and the ARL that
the Shewhart chart has when the in-control parame-
ters are known. This approach was used by Margavio
et al. (1995) in the context of an EWMA chart in
which, even with known parameters, the false alarm
rate changes over time. Margavio et al. (1995) de-
rived control limit sequences that would fix the false
alarm rate for the EWMA chart to a specified value,
just as we wish to do for the changepoint approach.
Distributional theory of the Tax . sequence is far
from being able to provide such a sequence, however,
so we attacked this problem using simulation.

In principle, since the changepoint method does
not rely on parameter estimates from Phase I, it is
possible to start testing for a changepoint with the
third process reading. Table 2 (obtained by simula-
tion of 16 million sequences of length 200) shows the
control limits for « values of 0.05, 0.02, 0.01, 0.005,
0.002, and 0.001, corresponding to in-control ARLs
of 20, 50, 100, 200, 500, and 1000, for n values in the
range 3 to 200.

As the values in Table 2 illustrate, for each « the
control limits Ay, o decrease sharply initially, but then
stabilize. The last four entries for « = 0.05 are omit-
ted because the simulation did not allow for accurate
estimation of the control limit, but the value 2.30 can
be used.

We believe that starting testing at the third obser-
vation is not a good idea, however. Leaping straight
into the changepoint formulation with three readings
would imply enormous faith in a not-yet-tested as-
sumption of normality, and we assume that no one
would be so trusting. Rather, we assume that a prac-
titioner would gather a modest number of observa-
tions to get at least an initial verification that the
normal distribution was a reasonable fit, and only
then start the formal change-point testing. In line
with this thinking, our main simulation is based on
the assumption of an initial 9 readings without test-
ing, with testing starting at the 10th observation.
While 9 readings is also a slender basis for believ-
ing in a normal distribution for the quality variable,
it perhaps represents a reasonable compromise be-
tween the conflicting desires to start control as soon
as possible and to check for severe departures from
normality.

The same sixteen million sequences of length 200
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TABLE 2. Cutoffs h,, o for Sample Size n and Hazard Rate o Starting at Sample 3

o

n 0.05 0.02 0.01 0.005 0.002 0.001

3 38.19 95.49 191.0 382.0 954.9 1910

4 7.321 11.84 16.91 24.10 38.30 54.51

5 4.874 6.908 8.902 11.42 15.75 20.02

6 4.057 5.399 6.615 8.047 10.36 12.50

7 3.621 4.697 5.600 6.616 8.169 9.553

8 3.344 4.274 5.024 5.829 7.020 8.031

9 3.158 3.992 4.649 5.340 6.317 7.130

10 3.024 3.790 4.384 4.997 5.847 6.541
11 2.924 3.640 4.186 4.745 5.512 6.124
12 2.845 3.524 4.036 4.552 5.257 5.807
13 2.783 3.433 3.916 4.402 5.058 5.562
14 2.732 3.357 3.821 4.282 4.895 5.368
15 2.691 3.296 3.742 4.181 4.763 5.211
16 2.655 3.244 3.677 4.098 4.655 5.080
17 2.625 3.200 3.620 4.031 4.564 4.968
18 2.598 3.161 3.570 3.968 4.486 4.879
19 2.574 3.128 3.528 3.916 4.418 4.795
20 2.5564 3.100 3.491 3.871 4.362 4.727
22 2.521 3.050 3.429 3.794 4.260 4.607
24 2.493 3.011 3.380 3.732 4.184 4.511
26 2.470 2.979 3.338 3.682 4.117 4.439
28 2.452 2.952 3.305 3.641 4.064 4.375
30 2.435 2.929 3.277 3.607 4.022 4.324
35 2.405 2.886 3.221 3.538 3.936 4.222
40 2.383 2.854 3.182 3.491 3.873 4.147
45 2.366 2.830 3.151 3.453 3.827 4.094
50 2.354 2.810 3.127 3.426 3.790 4.053
60 2.334 2.785 3.094 3.383 3.736 3.990
70 2.323 2.765 3.070 3.355 3.702 3.947
80 2.316 2.751 3.053 3.333 3.677 3.918
90 2.308 2.741 3.040 3.318 3.656 3.895
100 2.304 2.734 3.030 3.307 3.640 3.875
125 2.717 3.010 3.281 3.610 3.844
150 2.711 2.997 3.264 3.591 3.822
175 2.705 2.994 3.257 3.579 3.804
200 2.701 2.985 3.248 3.570 3.794

were used to find cutpoints up to n = 200. An inde-
pendent set of five million sequences of length 1000
verified the visual impression that the cutpoints sta-
bilize to constant values in each column. The re-
sulting control limits, presented in Table 3, are our
recommendation for implementation of the change-
point SPC scheme. As in Table 2, there are blanks
where the surviving simulation sample size was too
small for reliable estimation of the control limit, but
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the missing values can safely be replaced by the
value immediately above. Table 2 and 3 are ex-
tracts from a larger table that can be downloaded
from www.stat.umn.edu/hawkins, which lists cutoffs
for all starting points from observation 3 through 21.
The entries in this table have standard errors with a
median of 0.03% of the table value and with a max-
imum of 1% of the value.

For purposes of implementation, this table can be
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TABLE 3. Cutoffs hy, o for Sample Size n and Hazard Rate a Starting at Sample 10

361

o
n 0.05 0.02 0.01 0.005 0.002 0.001
10 3.662 4.371 4.928 5.511 6.340 7.023
11 3.242 3.908 4.424 4.958 5.697 6.284
12 3.037 3.677 4.167 4.664 5.350 5.890
13 2.909 3.530 3.997 4.468 5.110 5.608
14 2.821 3.424 3.875 4.326 4.931 5.397
15 2.756 3.344 3.780 4.211 4.786 5.229
16 2.704 3.281 3.704 4.121 4.671 5.093
17 2.663 3.228 3.642 4.047 4.576 4.977
18 2.628 3.183 3.587 3.981 4.494 4.885
19 2.599 3.146 3.542 3.926 4.425 4.799
20 2.575 3.115 3.503 3.880 4.367 4.730
22 2.535 3.060 3.437 3.800 4.264 4.610
24 2.504 3.019 3.386 3.736 4.187 4.514
26 2.479 2.985 3.343 3.685 4.119 4.440
28 2.459 2.957 3.308 3.643 4.065 4.375
30 2.440 2.933 3.279 3.609 4.024 4.324
35 2.408 2.888 3.223 3.539 3.937 4.223
40 2.385 2.855 3.184 3.492 3.873 4.147
45 2.368 2.832 3.152 3.454 3.828 4.095
50 2.355 2.811 3.128 3.426 3.791 4.053
60 2.335 2.785 3.094 3.383 3.737 3.989
70 2.324 2.765 3.071 3.355 3.702 3.946
80 2.315 2.752 3.052 3.333 3.677 3.918
90 2.310 2.741 3.040 3.318 3.656 3.895
100 2.302 2.735 3.030 3.307 3.640 3.875
125 2.717 3.011 3.281 3.611 3.844
150 2.710 2.997 3.264 3.591 3.821
175 2.703 2.993 3.257 3.579 3.804

200 2.700 2.985 3.248 3.570 3.794

used as is with interpolation for the sample sizes not
listed explicitly. Alternatively, it may be replaced
by some closed-form approximation. In particular, a
simple, but quite accurate, approximation for n > 11
is given by

hn,a
1 —0.115/n(«) >

~ hio.a <0.677 +0.019n(a) + ——

where ¢n(-) is the natural log function.

This simple formula fits the table quite well. An
independent simulation of 30,000 samples showed
that it gives ARLs of 22, 48, 90, 185, 525, and 1180
for the nominal 20, 50, 100, 200, 500, and 1000 lev-
els. Users who find this level of approximation unac-
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ceptable have the choice of fitting some other more
precise model for Table 3, or using table lookup.

Implementation

Looking at the formulas suggests that calculat-
ing the T}yax »n values would be computationally bur-
densome. This is not the case. To implement the
method, build up two arrays of values of

Sn = i Xi7
i=1

and

The running mean an Sp/n need not be stored,
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but can be calculated ‘on the fly.” When a new ob-
servation is added, its two new table entries can be
calculated quickly from the numerically stable recur-
sions

Sn =81+ X,
and

Wp=Wu 1+ ((n—1X, —S,_1)*/[n(n—1)].

Finding Tiax,» then involves calculating the two-
sample statistic T}, for every possible split point 1 <
j < n. It is actually more convenient to find T’ an. The
variance explained by a split at point j can be shown
to be
Ejy = (nS; — jSn)*/[nj(n — )],
and the analysis of variance identity
V‘jn =W, — Ejn

leads to T3, = (n — 2)Ejn/(W, — Ej,). Finding
the maximum of these statistics across the allowed
j values and comparing this maximum with A2 then
gives the changepoint test. If T2, ., > h2, lead-
ing to the signal of a changepoint, then it is a triv-
ial matter to compute the maximum likelihood es-
timators [/Zl = Sj/j, ,[72 = (Sn — Sj)/(n — ]), and
5% = Vj,/(n—2) (the customary variance estimator),
using the value j leading to the maximum. Though
maximum likelihood, these estimators are somewhat

biased (see Hinkley (1970, 1971) for a discussion).

The maximizing j is that which maximizes Ej,,
so the searching step need only evaluate Ej,, for each
j, making further Tj2n calculation necessary only for
the maximizing E;,. Thus, while at process reading
number n there are n — 1 calculations to be per-
formed, each involves only about ten floating point
operations, so even if n were in the tens of thousands
calculating Tiax,», would still be a trivial calculation.

The ever-growing storage requirement for the two
tables might be more inconvenient. This can be lim-
ited (along with the size of the resulting search) if
it is acceptable to restrict the search for the change-
point to the most recent w instants. To do this, one
must keep a table of only the w most recent S; and
W; values.

Note that this is different than the ‘window’ ap-
proach discussed by Willsky and Jones (1976), in
that observations more than w time periods into the
past are not lost, since they are summarized in the
window’s leftmost S and W entry. All that is lost
is the ability to split at these old instants. Suitable
choices for the table size w might be in the 500 to
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2000 range. This is large enough that no interest-
ing structure is lost, but small enough to keep the
computation for each new reading to less than some
20,000 operations.

In-Control Run Length Behavior
and the Shewhart Shart

The purpose of a Shewhart I-chart is to compare
the latest reading with the in-control distribution,
signalling if it deviates by more than 3 standard devi-
ations. Note that using the trial split point j =n—1
leads to a comparison of X,, with the mean of all its
predecessors (essentially duplicating the Shewhart I-
chart, though with a non-constant control limit of
hy, standard deviations). From Table 3, we can see
that once the sequence has been running for a while,
hn,0.002 is not much over 3. This suggests that even
though the changepoint formulation is aimed at sus-
tained possibly small shifts, it is able to do most of
the work of the Shewhart I-chart as well. The same
applies to an X chart of rational subgroup means.

In the fixed-sample null hypothesis case, the dis-
tribution of the split point j maximizing |T},| is
known to have a steep ‘bathtub’ form of distribu-
tion, usually splitting off a handful of observations
from either the extreme left or the right end of the
series (Hawkins (1977)). In the repeated-use SPC
setting, except for the first few tests, splits near the
left end are rare, but splits close to the right end are
common. An independent simulation of 10,000 null
sequences illustrates this; the right segment length
n — j has a median of 3 readings at o = 0.05 and 5
at « = 0.001. The corresponding upper quartiles of 7
and 12 readings, respectively, show the compression
of this distribution.

Multiple Change Points

This brings us to the question of multiple change-
points. We believe it is in the spirit of SPC that
a sequence should contain at most one changepoint.
Detecting a changepoint means that there has been
a process change. If (as would usually be the case)
this is for the worse, then immediate corrective ac-
tion should be taken to restore the status quo ante,
and the observations from the estimated changepoint
up to the instant of process correction should be re-
moved from the sequence included in the changepoint
testing. If the change is for the better, then it is
the older readings that are be removed, and the new
readings become the equivalent of Phase I data. Mul-
tiple change points within a sequence should not hap-
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pen, as they imply that process operators are failing
to respond to out-of-control situations.

In startup situations, a slightly different situa-
tion is encountered. Myriad minor adjustments are
made to the process, as a result of which there may
be many changepoints corresponding to ever better
quality until the operators succeed in stabilizing the
process. In this situation, an appropriate analysis
would be to apply the changepoint model backwards
(starting from the most recent observation and mov-
ing toward the earliest). The first changepoint de-
tected would be an indication of when the last adjust-
ment took effect leading to the presumed in-control
state of the process. All data prior to that change-
point would then be discarded, and the changepoint
series started from that point.

Performance of the
Changepoint Approach

The performance of the changepoint approach can
be assessed by the ARLs, both in-control and fol-
lowing a shift in mean. This introduces a com-
plication not seen in Shewhart or known-parameter
cusum charts; the response to a shift depends on the
number of in-control observations preceding it. The
reason for this dependence is that the noncentrality
parameter of the two-sample t-statistic depends on
the sample sizes. A short in-control period leads to
a smaller non-centrality parameter and, therefore, a
slower reaction than a longer in-control period.

These points are illustrated in Table 4, where we
consider four a values: 0.02, 0.01, 0.005, and 0.002.
A shift of size § € {0,0.25,0.5,1.0,2.0} was intro-
duced at 7 € {10,25,50,100,250}. The numbers
presented in the table are the ARLs of the change-
point procedure. These were calculated by simulat-
ing a data series, adding the shift to all X;,7 > 7, and
counting the number of readings from the occurrence
of the shift until the chart signalled. Any series in
which a signal occurred before time 7 was discarded.
The approximate formula for h, was used, so the
in-control ARLs differ slightly from nominal.

It can be seen that the ARLs are affected by the
amount of history gathered before the shift, with a
faster response coming with more history. They also
depend on the values of o and §. When « is larger
(i.e., the false-alarm rate is higher) or 4 is larger (i.e.,
the shift size is larger), the ARLSs tend to be smaller,
as one would anticipate.
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Comparison with the Cusum Chart

Comparing the changepoint approach with a stan-
dard alternative is complicated by the fact that there
is no standard alternative. The cusum chart is the di-
agnostic of choice in circumstances where it applies,
but using the conventional cusum chart requires ex-
act knowledge of the in-control mean and standard
deviation. Because of this, the cusum chart can
clearly not be applied in the setting we are discussing,
in which monitoring starts when only 9 observations
have been observed.

The self-starting cusum chart was developed as a
way of setting up a cusum control without the de-
mand for a large Phase I sample to estimate param-
eters (see Hawkins (1987) and Hawkins and Olwell
(1998)). Like the changepoint formulation, it does
not draw a dividing line between Phases I and II,
and can be started with as few as three observations.
Writing X ; and s; for the mean and standard devi-
ation of the first j readings, the self-starting cusum
chart uses as summand

. In—1X,— Xn_1
n—2 n S 1 )

where @ is the standard normal cumulative distri-
bution function, and Fj,_o is the cumulative distri-
bution function of a t-distribution with n — 2 de-
grees of freedom. The sequences U, follow an ez-
act standard normal distribution for all n > 2 and
are statistically independent. Thus, they can be cu-
mulatively summed using known-parameter settings.
As the in-control history grows, X,, approaches 1,
sn approaches o, and U, approaches the Z-score
(X,, — p1)/o, so the self-starting cusum chart ap-
proaches a known-parameter cusum chart of N(0,1)
quantities.

U, =&"1

The self-starting cusum chart, therefore, oper-
ates in the same realm as our changepoint formula-
tion, but has the optimality properties of the known-
parameter cusum chart in the situation that the pro-
cess happens to stay in control for a long initial
period. It thus makes an appropriate benchmark
against which to compare the changepoint formula-
tion.

We set up three self-starting cusum charts, with
reference values k = 0.25, 0.5, and 1.0, thereby
being tuned to mean shifts of 0.5, 1, and 2 stan-
dard deviations, respectively. By using the software
from the Web site www.stat.umn.edu/users/cusum,
we can find the cusum decision intervals h leading to
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TABLE 4. The ARL of the Changepoint Procedure When Shift Occurs at the “Start” Position With Size §

0

« start 0 0.25 0.5 1.0 2.0
0.02 10 54.5 51.8 43.3 21.3 4.1
25 54.2 46.7 30.8 94 2.4

50 53.8 42.8 23.3 7.0 2.1

100 54.7 41.4 19.4 6.0 1.9

250 58.7 33.4 16.6 6.3 1.8

0.01 10 99.3 95.9 82.4 39.1 5.3
25 99.4 86.9 55.2 13.4 2.8

50 99.2 76.3 38.2 8.8 2.3

100 99.7 69.3 28.5 7.6 2.2

250 96.9 55.4 23.9 7.0 2.1

0.005 10 195.9 186.2 168.3 84.9 7.0
25 196.6 174.7 113.9 20.4 3.3

50 196.3 154.9 68.7 11.2 2.7

100 196.9 131.3 42.2 9.4 2.5

250 194.8 99.0 29.7 8.2 2.3

0.002 10 535.8 531.1 492.7 280.9 10.8
25 538.7 504.3 357.5 43.7 4.3

50 539.5 457.8 195.4 15.7 3.4

100 542.8 373.1 77.3 12.3 3.0

250 546.2 222.9 43.3 10.8 2.8

in-control ARLs of 100 and 500. These intervals are

for ARL = 100 :k = 0.25, h = 5.69; k = 0.5,
h=351;k=1.0h=1.87;

for ARL = 500 :k = 0.25,h = 8.76; k = 0.5,
h=>514;k=1.0,h = 2.71.

These choices provide benchmarks for the change-
point model with o = 0.01 and 0.002, respectively.

The cusum chart and changepoint tests were
started following 9 in-control observations. Two
mean-shift settings were simulated: a mean shift
starting from the 10*" observation, and a mean shift
starting from the 100" observation. The first of
these illustrates the extreme of using a very short
in-control learning period before the shift. This tests
not only the quick startup of the schemes but also the
potential of the two procedures to monitor short-run
settings. Shifting after 100 in-control observations
is intended to approximate using the conventional
cusum chart in the known-parameter setting (though
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imperfectly, as Table 1 shows that a calibration sam-
ple of size 100 is not enough to truly control the
cusum chart’s run length behavior.) We discarded
simulated runs in which either scheme signalled a
shift before time 7.

Figures 1(a)-1(d) present the resulting ARLs for
d values in the range [0,3]. These are on a log scale
for clearer comparison. Looking at the right panel,
we see that the changepoint formulation is generally
not the optimal diagnostic. For small shifts, it is
slightly worse than the & = 0.25 cusum chart; for
medium-size shifts slightly worse than the & = 0.5
cusum chart; and for large shifts slightly worse than
the £ = 1 cusum chart. This is no surprise, given
the theoretical optimality of a properly-constructed
cusum chart. However, for all shifts the cusum chart
that beats the changepoint diagnostic does so by only
a small margin, and at least one of the wrongly-
centered cusum charts is far inferior. In other words,
while it is never the best, the changepoint method is
always nearly best, something that is not true of any
of the choices for the cusum chart.
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FIGURE 1. The ARLs of the Self-Starting Cusum Chart Procedures and the Changepoint Procedure When a Mean Shift
of Size 0 is Introduced. (a) @ = 0.01 and the Shift Starts at the 10th Observation; (b) o = 0.01 and the Shift Starts at
the 100th Observation; (c) o = 0.002 and the Shift Starts at the 10th Observation; (d) a = 0.002 and the Shift Starts at

the 100th Observation.

Turning to the left two panels, the changepoint
formulation looks even better in comparison with the
cusum chart. Only the k£ = 0.25, ARL=100 cusum
chart comes close to matching it, while the £ = 1
cusum chart performs very poorly.

Vol. 35, No. 4, October 2003

Thus, these figures illustrate that the changepoint
formulation is preferable to the cusum chart over-
all. It involves a slight disadvantage in performance
where one knows in advance what the out-of-control
mean will be and one has a substantial in-control his-
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tory. For short in-control histories, as would be seen
in startup and short-run problems, it is slightly infe-
rior to the small-k cusum chart provided a short in-
control ARL is used. However these small worst-case
disadvantages are surely more than offset by poten-
tial large gains in performance elsewhere.

Conclusion

The unknown-parameter changepoint formulation
has long been thought of and used as a Phase I anal-
ysis tool. It is perhaps even more attractive in on-
going (Phase II) SPC settings in that it does not
require knowledge of the in-control parameters, and
can therefore dispense with the need for a long Phase
I calibration sequence. Not only is it flexible, it is
also powerful. While it can not quite match the per-
formance of the cusum chart tuned to the particular
shift that happened to occur, it is close to optimal
for a wide range of shifts, and so has a much greater
robustness of good performance.

Implementation requires control limit values. A
table found by simulation leads to a constant hazard
function. This table turns out to be quite well ap-
proximated by a simple analytical function, leading
to a straightforward implementation route.
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