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SUMMARY

During an investigation concerned with the relationship between air pollution and respiratory diseases in
children, the ‘Schweizerhalle’ accident occurred when unknown amounts of pollutants were discharged into
the environment. In that investigation, two series of medical data were collected during one year: (a) The
daily relative number of preschool children, exhibiting diseases of the respiratory tract, who either came to
the outpatients’ clinic of the Children’s Hospital or were reported by paediatricians in Basle; (b) The daily
number of respiratory symptoms per child, observed in a group of randomly selected preschool children.
The purpose of the present time series analysis is the assessment of possible change in these series after the
environmental accident. The nature of the change is studied by complementary approaches. First, a forecast
arising from models identified in the preaccident period is compared with the actual data. Thereafter,
intervention models which adequately and parsimoniously represent the change are identified. Finally, an
identification of a change-point is performed.

INTRODUCTION

Between 1 November 1985 and 23 November 1986 daily medical and environmental data were
collected to study the relationship between respiratory diseases in children and air pollution.
Results from this investigation analysed by means of transfer function models have been
presented in a previous case study.? During the time of this study the environmental accident at
‘Schweizerhalle’ occurred.

On 1 November 1986 a Sandoz storehouse containing about 1300 tons of chemical substances
(mainly agrochemicals) burned down in ‘Schweizerhalle’, located approximately 3 miles outside
Basle, a city with approximately 200,000 inhabitants. This fire was discovered at 0:30 h. At 3:00 h
the firebrigade decided to use water to extinguish it. This water was discharged into the river
Rhine causing what has been called ‘one of the worst chemical spills ever’.? Its effect on the Rhine
has been studied in depth.* When the water first came into contact with the fire, a foul smelling
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Figure 1. Upper curve: Relative number of entries with respiratory diseases in per cent (ENTRIES). Second curve:
Number of symptoms per child (SYMPTOMS)

cloud developed and was carried into the city of Basle. At 4: 30 the smell in the city was so intense
that the authorities decided to warn the public using sirens, police car megaphones and public
broadcasts, which informed people that they should keep windows closed and remain indoors. All
traffic was stopped at the city boundary and only at 7:00 h were the warnings withdrawn.
Authorities assured the public after 7:00 h that no health hazard existed. But, after many people
experienced symptoms and additionally when dead fish appeared in the Rhine, public pressure
demanded investigation of possible health effects. In addition to studies specially set up for this
purpose, it seems appropriate to analyse ongoing studies to investigate whether adverse health
effects could be discovered on or just after the day of the accident.

The study mentioned above was the only one in progress at the date of the accident. In that
study two daily series of medical data were collected:

1. The daily number of preschool children with ‘respiratory diseases’ divided by the daily
number of all children who either came to the outpatients’ clinic at the Children’s Hospital
or were reported by paediatricians in Basle. The following were defined to be ‘respiratory
diseases’: rhinopharyngitis, bronchitis, sinusitis, pneumonia, asthma, pseudocroup, otitis
and angina. This series is termed ‘ENTRIES’.

2. From the birth registry of Basle a random sample of children (aged 0 to 4 years) had been
selected. Of the 773 selected families, 575 (74 per cent) participated in the study. About 1/12
of the sample was contacted every month and one child from each family participated in the
study for 6 weeks. Parents recorded respiratory symptoms on daily diary forms. At the time
of the accident the last group of children were participating in the study. Details of
methodology have been reported previously.! For the present analysis the daily series of
‘number of respiratory symptoms per child’ was available. The following respiratory
symptoms were recorded: cough, runny or stuffy nose, sore throat, earache and fever (more
than 38°C). This series will be termed ‘SYMPTOMS".

Figure 1 shows these two series. A vertical bar indicates the 1 November 1986 (a Saturday).
After this date, the series SYMPTOMS exhibits an increase. The corresponding period for the
preceding year (November 1985) shows no corresponding behaviour.
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The purpose of the present investigation is the assessment of a possible change in these series by
means of time series methods. In recent years, time series methods have found an increasing
interest in medical statistics, in particular with regard to modelling and forecasting epidemi-
ological series;>~® in addition, they have been found useful in assessing relations between series
which are dominated by seasonal variation and trends.” '? Recently, the ‘change-point problem’
has become of epidemiological relevance when studying changing prevalence rates of hypo-
spadias (a rare malformation) by fitting a change-point Poisson process to registry data.*! To our
knowledge, time series methods have not been used to assess changes in health after an
environmental disaster. In the present case study the problem of ‘change’ is studied using
complementary time series methods. In the next section, a comparison between a forecast arising
from models identified in the preaccident period (24 November 1985-31 October 1986) and the
actual data is performed.'? Thereafter, parsimonious intervention models'3 which adequately
represent the characteristic properties of the change are presented. Since some readers may be less
familiar with intervention models this section is preceded by a short non-technical introduction.
Finally, identification of a possible change-point is performed. In the following, we concentrate

on the series of SYMPTOMS since only here were significant changes identified after the
environmental accident.

STATISTICAL METHODS AND RESULTS

We let ...yi—1,y, Yi+1,. .. be the observations (entries, number of symptoms) at times

...t—=1t¢t+1,.... Then it is assumed that y, may be represented by an autoregressive
integrated moving average model (ARIMA model).!#

Wy = del)

and

Wi=@GiWwir 4. ..+ GpWi—p+ a — 0101 — ... — Bga-y,
Vye=y— yi-1, VZy = V(Vy).

The a; are independent identically distributed random variables with expectation 0 and
variance o?. ¢1,. . ., ¢, are the autoregressive parameters, 0y, . . ., 0, are the moving average
parameters; V is the differencing operator, d is the order of the differencing operator (usually
d=0,1or2).

A short non-technical introduction to ARIMA models may be found in Reference 15. Extensive
mathematical presentations of time series methods sufficient for the present case study are given
in References 16 and 17. A condensed presentation of the application of time series methods in
epidemiology may be found in Reference 18.

Comparison of forecast and actual data

A natural way to assess a possible change of a time series after an environmental accident is to
compare actual data with a forecast arising from stochastic models which are appropriate before
the accident.!?

For the preaccident period of the series of SYMPTOMS, the iterative method of model
identification, fitting and diagnostic checking proposed by Box and Jenkins'* was straight-
forward. The autocorrelation function showed an approximately exponential decay and the
partial autocorrelation function showed a marked peak at lag 1. Therefore, an AR(1) model was
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Figure 2. Solid curve: Last part of the series of SYMPTOMS (x 100). Dashed curves: Estimated forecast function with
95 per cent probability limits

tentatively fitted. The autocorrelation function of the residuals showed no marked peaks. The
Ljung-Box goodness-of-fit test'® revealed no sign of model inadequacy.

Figure 2 depicts the estimated forecast function arising from the preintervention model.
According to the AR(1) model, it corresponds to an exponential curve starting at the last
observed value (31 October 86) and finally reaching the mean value of the preaccident series.
Since this last value is close to the mean value, the forecast function is hardly distinguishable from
a straight line. In addition, the figure shows the 95 per cent probability limits for the individual
forecasts, spanning a region where the actual data are expected to be found. The series of
SYMPTOMS clearly exceeds the expected level.

An overall test by Tiao, Box and Hamming?° may be applied to investigate the deviation
between forecast and actual data. For lead time L, a statistic Q which follows approximately a
x* distribution with L degrees of freedom is calculated, where

L

Q=02 Z a?

i=1
and the g; are obtained by solving

1
e,=Zlﬁl,ja} (lzl,,L)
ji=1
where e, = yr., — $r(l) are the forecast errors, T is the time of the accident, $,(/) are the lead
I forecasts at origin T and y, are the weights of the moving average representation of the process:
=atya a4+

Here a value Q = 83-2 was found, which exceeds the 0-0001 value of y2 with L = 23 degrees of
freedom.

More insight into the characteristic properties of the change may be found by means of
intervention models presented in the next section.

Intervention models

Since some readers may be less familiar with intervention models'® we precede the discussion of
results concerning ‘Schweizerhalle’ with a short non-technical introduction to this method.
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Figure 3. Basic patterns of response to a unit pulse and step input. For explanation see the section on Intervention
models

The intervention model has the following structure:
V=u+n

where u, represents the ‘explained’ part of the model and n, represents the ‘noise’. n, is an ARIMA
process as described above. The explained part u, is considered to be the ‘response’ of a system to
a dummy input variable &,:

u, = f(&)
The ‘input’ is usually taken as the unit step function & or the unit pulse function ¢®;
1 fort>T 1 fort=T
() = d (p)
' {0 for t<1, " 3 {0 otherwise.

The step function ¢ may represent a disturbance starting at time T (the time of the accident). The
pulse function £ may represent an event which acts only at time 7.
Figure 3 shows basic types of response to the dummy input variables ¢ and ¢, Figure 3(a)
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shows the simplest case where the response is just the input multiplied by a constant w,:

f&) = woé,.

This model predicts that the final level is reached immediately. A more refined model is shown in
Figure 3(b):

f(ét) = woé: — ét—l
or
S(&) = (wo — w, B)¢,

where the symbol B is the so-called ‘backshift’ operator: B¢, = £,_ . In this model the final level is
reached in two steps. If w, = 0 the response is as in (a) but 1 time unit delayed.

Figure 3(c) shows another basic type of response where the final level is reached only gradually
in the following way:

&) =wol& + &1 + %85+ .. )
= wo(é, + OBE, + 82B2E, + .. )
= wo(l + 0B + 2B* + .. )&,
= [wo/(1 — éB)]1¢,.

The above responses are special cases of the general response

(&) = [w(B)/6(B)],,
with
wB)=wy— o, B—...— wB*

5(By=1—-6,B—...—4,B"

and the corresponding intervention model (of order r) is given by:
Fig

v=f()+n,. SY
In the following, three intervention models of increasing complexity are fitted to the series of

SYMPTOMS in such a way that each additional parameter allows a refined explanation of the
data. The simplest model is found by setting r = s = 0;

(1) intervention model of order O:
Vo= wol, + n,

where £, is the unit step function. The estimated parameters of this model are shown in
Table I below the univariate model. Figure 4(a) shows as the second line the estimated (
function wy &, (the point labelled 370 corresponds to the date of the accident). This model
gives a better fit to the data (62 = 0:00454) than the univariate model. However, this
simplified model does not fully represent all characteristic properties of the series: it
predicts, for example, that the final level is reached immediately. It is therefore natural to
consider the more elaborate model of order 1.
(1) intervention model of order 1:

Ve = wo(l — 51B)_1£t + n,.
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Figure 4. Two preliminary intervention models:

(a) Model of order 0. (b)
SYMPTOMS y,. Second curve: u,

(w(B)/3(B))¢,. Lower part: Noise series
are shown multiplied by 100

Model of order 1. Upper curve: Series of
"y =y, — u, (shifted downwards). All curves
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The parameters are given in Table I and the corresponding curves are presented in
Figure 4(b). The residual variance decreases to 2 = 0-00441. This model allows for
a gradual increase to the final level (middle curve of Figure 4(b)). However, the additional
parameter &, has a relatively large standard error. In addition, we recognize from the
‘ lowest curve of Figure 4(b) that the noise series n, still has an unexplained ‘bump’. This
n suggests the introduction of an additional refinement with a model of order 2.
ed (iii) intervention model of order 2:
lel
his Y= we(l _513—5232)~151+n1-
it The ‘explained’ part of the model U = wo(l —6,B — §,B2)"1¢, may be rewritten:
to

(1-6,B— 5232)% = wo{,

or

Uy — 611, — 03Uy, W&,
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Table I. Summary of intervention models for the series of SYMPTOMS

Model type Estimated parameters (SE) Residual variance
Univariate ¢, =091 (0-:02) 000476

u = 0368 (0-039)
Intervention {order 0) ¢, = 0-87 (0-03) 0-00454

1= 0343 (0:026)
wo = 0-274 (0-058)

Intervention (order 1) ¢ = 087 (0-03) 0-00441
u = 0331 (0:027)
wg = 0239 (0-065)
6, = 046 (0-16)

Intervention (order 2) ¢, = 0-87 (0-03) 0-00420
u = 0-334 (0-026)
wo = 0:203 (0-033)
é, = 121 (0:07)
6, = — 075 (0-07)

0
. N » ‘_‘-“__.-\v - Y Ay o /.“,“‘ .
20 . ’/_‘ . . v ~. o LN ", . S
_40 bt v ~ ~ d
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Figure 5. The final model: Intervention model of order 2. The same arrangement as in Figure 4

or
Uy = Oyl g + Ot 5 + ®o ;.

This second-order difference equation may represent vibrations of discrete systems (in
analogy to the differential equations of order 2 in continuous physical systems). The lowest
part of Table T shows the estimated parameters of this model. The parameters wq, 6, and
8, have small standard errors and the residual variance drops to ¢ = 0-00420. The ‘bump’
in the noise series n, (lowest curve of Figure 4) has disappeared, see Figure 5.

The intermediate curve u, shows the characteristic behaviour of a ‘damped vibration’.
The final increase of the series over the level of the preaccident period is estimated by the
gain g = wy(l — 8, — 8,)~ ! = 0-376, that is, an increase of approximately 0-38 respiratory
symptoms per child per day.
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Table II. Parts of the sequences of MSE(T), ¢2(T’) and p(T) which lie in the neighbourhood of the actual time of the
accident (1 November 1986)

Date T 28.10 29.10 30.10 31.10 111 211 in 411 5.11
MSE(T) (x 10%) 183-2 180-5 178-8 176:6 1732 1743 181-0 189:6 199-8
oa2(T) (x 10*) 493 491 479 468 48 462 482 479 489
p(T) 4x107% 5x107* 3x107% 3x1072 1 33x107! 3x107* 8x107% 6x10712

The introduction of additional parameters into the model (‘overfitting’2!) does not reduce the
residual variance any further. The change of the series may thus be represented adequately and
parsimoniously by an intervention model of order 2.

While the above results were found for the series of SYMPTOMS, no significant change was
detected for the series of ENTRIES.

Identification of a change-point

In the present study, the time of the environmental accident is well known. However, we may
assume that this time is unknown and ask whether the data themselves can tell us something
about such a possible time. In the present context this might reveal a delay of possible effect. The
identification of a ‘change-point’ for an ARIMA-process may be very difficult, both theoretically
and with regard to numerical computation.?? However, it is possible to perform such identifica-
tion, either by using exploratory approaches or by making simplifying assumptions about the
underlying stochastic process.

A simple exploratory method to find this ‘unknown’ time consists in calculating a sequence of
2-sample t-tests (analysis of variance models), one for each possible time. The most likely time of
the accident is the time T which gives the best model, that is, the model with the smallest error
mean square (7 was included in the second part of the series). The second line of Table II shows
the part of the sequence of error mean squares MSE(T') which lies in the neighbourhood of the
actual time of the accident (1 November 1986). The absolute minimum of the sequence is found
with T at 1 November 1986, which coincides with the actual date of the accident.

A more elaborate exploratory method assumes that there is better knowledge about the
response of the system to a step input and about the correlation structure of the series. It makes
use of the Box-Tiao intervention analysis. Instead of keeping the intervention time fixed, the step
intervention function is scanned through all time periods. This method has been used before to
identify the time at which a preventive measure may show an effect.?3

In the present context, we consider the following sequence of models (of order 2):

yo=wg (1 =8B -8B &0 + (1 — B 1af™,

T _ 1 fort>=T
T l0 fort<T,

where T runs through all possible times.

The third line of Table II shows the sequence of residual variances ¢2(T). ‘Box-Tiao scanning’
identifies the same date as the simpler ‘t-test scanning’. However, the value of MSE(T) at
1 November 1986 is quite close to the value of MSE(T) at 2 November 1986. By contrast, the
negative peak of ¢2(T) is clearly isolated.

Finally, line 4 of Table II shows results obtained from a Bayesian approach: p(T) is propor-
tional to the posterior mass function of the change-point. It was calculated under the simplifying
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assumption of a simple shift in mean in a normal sequence of independent random variables with
vague prior information about the parameters. The precise formulation of the assumptions and
the equations necessary for the calculation of the posterior mass function of the change point are
given in Broemeling (pp. 308—312).2 This method identifies the same change-point as above.
However, p(T) decreases faster when moving away from 1 November 1986 than MSE(T) or
o2(T). It is interesting to observe that MSE(T) and p(T) change less one step to the right than
one step to the left of the change-point.

DISCUSSION

Possible health effects from environmental accidents constitute a basic threat to populations. It is
therefore desirable to examine medical, or other available data, before and after an accident, from
different points of view to gain a better understanding of a possible threat. A natural way to assess
a possible change in a time series after an environmental accident is to compare actual data with
a forecast arising from stochastic models which are appropriate before the accident. For the series
of SYMPTOMS, an overall test showed a significant deviation of the actual post-accident series
from the forecast (P < 0-0001).

A more quantitative understanding of the nature of the change is gained by means of
intervention models. The identification of a sequence of models of increasing complexity showed
that the response of the series of SYMPTOMS after the accident at ‘Schweizerhalle’ may be
represented parsimoniously by an intervention model of second order. The model corresponds to
what is known in continuous physical systems as a ‘damped vibration’; after an initial overshoot,
the series settles down to a new equilibrium at a higher level.

Common to these statistical methods is precise knowledge of the time of the accident.
However, we may also assume that this time is unknown and ask if the data themselves tell us
something about such a possible time. In studying the possible effect of preventive programmes it
has been observed that the expected ‘effect” may precede the actual time of ‘intervention’.23 It is
possible as well that the effect shows up only after a certain delay.

Two exploratory methods, ‘t-test-scanning’ and ‘Box-Tiao scanning’ were used to identify
a possible change-point. For the series of SYMPTOMS, both methods found 1 November 1986
to be the most likely date, which coincides with the actual time of the accident.

Finally a possible change-point was identified using a Bayesian approach,?? with the same
results as above. However, it was found that MSE(T') and p(T') change less one step to the right
than one step to the left of the change-point. This is probably due to the fact that the change is
only incompletely characterized by a simple immediate increase in mean. As discussed above it
may be represented adequately by an intervention model of second order.

All results obtained strongly support an increase in the number of symptoms per child after the
accident. Yet, these results should be interpreted with caution. Even though no direct hints of
epidemics exist (from serological investigations performed by paediatricians), the influence of
viral infections cannot be entirely excluded. The identified intervention model states that after an
initial overshoot following the accident the series settles down to a new level (0-38 units higher
than the preaccident mean). Unfortunately, data were not available for a longer period after the
accident; thus, there is a possibility that ‘return to normal’ could have been missed. The question
of whether the accident caused more symptoms to be recorded than were actually present cannot
be answered entirely satisfactorily. However, other studies conducted in this context point toward
an increase in respiratory symptoms in the general population.2*

Another problem concerns the possible presence of seasonal effects. The well known ARIMA
models which allow modelling of random seasonal effects, require data over several years for their

L e e e e o
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identification. If a series containing marked seasonal variation is observed only over one year,
pronounced signs of non-stationarity would be expected. In particular, when fitting an AR(1)
model the corresponding autoregressive coefficient, ¢1, should be approximately equal to one,
indicating the need for differencing. In the present case it was found that ¢, = 091 (SE: 0-02)
(Table 1, first line). In addition, the residual variance of the competing non-stationary random
walk model (ARIMA(O, 1, 0) model) was ¢2 = 0-00496, slightly larger than that of the AR(1)
model (Table I). Thus, it is interesting to note that the ‘1-year’ series of SYMPTOMS may be
considered a stationary series with strong autocorrelation (and fixed mean) rather than a non-
stationary series.

In the present study, the series of ENTRIES did not show an increase after the accident.
A possible explanation might be that symptoms experienced were too mild to warrant consulta-
tion. In addition, the accident occurred on a Saturday and media informed the population that
any symptoms they might experience would soon disappear. This might have prevented people
from visiting a paediatrician or an outpatients’ clinic and partly explain the apparent difference
between the two time series. The finding suggests an examination of population based data, as
well as medical records, in estimating health effects of environmental accidents.

We recommend that readers interested in political aspects of the accident look at the short note
in the Lancet.?®
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