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Abstract

We demonstrate that the process of generating smooth transitions can be viewed as a natural
result of the filtering operations implied in the generation of discrete-time series observations from
the sampling of data from an underlying continuous time process that has undergone a process of
structural change. In order to focus discussion, we utilize the problem of estimating the location
of abrupt shifts in some simple time series models. This approach will permit us to address salient
issues relating to distortions induced by the inherent aggregation associated with discrete-time sam-
pling of continuous time processes experiencing structural change. We also address the issue of how
time irreversible structures may be generated within the smooth transition processes.
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1. Introduction

Macroeconomists have always found it difficult to deal with structural change in their
modeling strategies (see Foster, 2004). For example Hendry (2000) explores the issue of
modeling structural change in more depth than usual and he concludes that it is difficult
to detect structural change in the data generating process except when there is a ‘mean
shift’ in what is presumed to be the ‘long run equilibrium’ part of a vector equilibrium cor-
rection model (VECM). However, there is little discussion of the theoretical aspects of
such structural change processes and little or no concern with some of the statistical prob-
lems that arise when highly aggregated, low frequency data are employed in macroeco-
nomic modeling.

Because of the high level of aggregation, it is difficult to associate macroeconomic mod-
els with microeconomic (or even ‘mesoeconomic’) behavior. Thus, there has been a pref-
erence for uniform agent assumptions that simply remove the problem. However, in so
doing, the fixed representation of economic behavior adopted, by definition, precludes
any real analysis of structural change. Although this is a difficult problem that, more than
likely, will require some integration of macroeconomics and modern evolutionary eco-
nomics, there is no real excuse for ignoring the statistical issues that are presented when
using macroeconomic data.

In the absence of any coherent theorizing about structural change, some modelers have
preferred to use nonlinear econometric methods that allow for the effects of institutional
changes and shifts in behaviour. In particular, structural change and transition have been
the subject of an extensive literature relating to both the statistical investigation of the
properties and ‘regime-shift’ based explanations of the business cycle.3 However, a range
of statistical questions that have a significant bearing upon the nature of structural tran-
sitions have remained unanswered in this literature. It is this gap that we seek to fill in this
article, if not to provide definitive answers to what are often very difficult questions, at
least to provide a coherent research agenda. This has been made possible because of meth-
odological advances in the area of time series analysis that have permitted the construction
of appropriate test statistics concerning the nature and extent of structural change. Also,
the emergence of the view that the economy and its constituent parts are complex systems
that exhibit nonlinear features in their data has helped to advance this kind of research
(Foster, 2005).

A feature of complex adaptive systems is the fact that they are capable of ‘self-organi-
zation’. Such phases in economic evolution are characterized by a growth process that is
logistic in form across the relevant time series data. However, the observation of the logis-
tic curve is not new: it has been observed in a very large number of studies of innovation
and it was Griliches (1957) and Mansfield (1968) who pioneered an econometric modeling
approach to innovation diffusion. This approach was extended to deal more broadly with
economic self-organization in Foster and Wild (1996, 1999a,b). Wild (2002) offers a more
extended treatment of the statistical properties of this class of nonlinear models derived
from complex systems theory and synergetics.
3 Regime shift was a central part of the famous Lucas (1976) critique. Hamilton (1989, 1990) delivered a new
impetus for the study of regime shifts and ‘‘regime-switching’’ in the 1990s. Further references include e.g., Tsay
(1989, 1998), Terasvirta and Anderson (1992), Terasvirta (1994), Potter (1995), Ramsey and Rothman (1996), and
Hinich and Rothman (1998).
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The various complex systems explanations focus on the role of endogenously deter-
mined structural change within the economic system as a naturally occurring phenomena.
Generally, processes of structural change in statistical data defined at high levels of aggre-
gation are determined by underlying processes that involve the interactions between many
smaller sub-systems in an inherently nonlinear manner. These interactions can produce
unanticipated emergent behavior and associated structural instability in a model, as well
as a significant degree of time irreversibility that can lead to asymmetries in the probabi-
listic structure of macroeconomic data (Forrest and Jones, 1994).

In fact the ‘‘symmetry breaking’’ nature of emergent behavior in complex adaptive sys-
tems, resulting in a loss of uniqueness in system trajectories, heuristically underpins the
formulation of recent time series tests for time reversibility, notably, the test proposed
in Hinich and Rothman (1998).4 This particular test rigorously activates a proposal orig-
inally advocated in Brillinger and Rosenblatt (1967). Specifically, the bispectrum test for
time reversibility rests on the null hypothesis that the imaginary part of the bispectral rep-
resentation of a time reversible process is not significantly different from zero. This implies
that the bispectral representation will be real and symmetric, thereby admitting a unique
spectral representation under the null hypothesis. Time irreversible processes have a
bispectral representation that has a statistically significant imaginary part. Thus the spec-
tral representation of a time irreversible process will be complex. Brillinger and Rosenblatt
(1967) demonstrated that such representations do not admit a unique spectral representa-
tion, thereby providing a link between time irreversibility and loss of uniqueness.

In the time series econometrics literature, models encompassing regime shifting behav-
ior seem to most closely approximate the types of behavior commonly associated with
complex economic systems. Specifically if one is willing to view different regimes as sepa-
rate sub-systems, then the commonly cited (smooth) transition paths between regimes
might simply reflect the nonlinear linkages between sub-systems that are so crucial in
the generation of time irreversible probabilistic structure in data concerned with the
behavior of complex economic systems. From the perspective of regression analysis, once
the key structural parameters determining regime identification and selection have been
determined, the types of structural change defining the different regimes (sub-systems)
can typically be interpreted as encompassing two particular forms of structural change.
The first type refers to changes in intercepts and/or slopes of estimated relationships.
The second type refers to the possible emergence of latent structures associated with
particular sub-system specifications.

The broad problem of dealing with the first type of structural change—that is, intercept
and slope shifts, is not a new problem in mathematical statistics. The statistical theory of
detecting and estimating structural change has evolved over at least sixty years beginning
with work on detecting departures from tolerance limits in the theory of statistical quality
control (Shewhart, 1931, Chapters 19 and 20) and with the seminal contributions by Page
(1954, 1955, 1957), Chernoff and Zacks (1964) and Hinich and Farley (1966). These
papers, in turn, motivated further generalizations resulting in the emergence of related
but distinct problems.

First, issues relating to estimation and inference about the change in the mean of a sta-
tionary random process were examined in Farley and Hinich (1970a,b), Hinkley (1970),
4 Also see Lawrance (1991) and Ramsey and Rothman (1996).
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Hawkins (1977), Hsu (1979), Talwar (1983), Worsley (1986), Ritov (1990), Bai (1994) and
Lavielle and Moulines (2000). Second, another related but distinct problem involved esti-
mation and inference about regime shifts associated with intersecting or ‘‘broken line’’
regressions were examined in Hudson (1966), Hinkley (1969, 1971) and Feder (1975a,b).
The major distinguishing feature of this particular problem is that the regression function
is constrained to be continuous at the change point. This means that the change point phe-
nomenon can be characterized as involving a jump in the first derivative of the log-likeli-
hood function of the regression problem, implying a change in the slope instead of the
position of the regression function at the change point. This is in contrast with the first
problem where the change point phenomenon involves a jump in the mean or position
of the regression function, causing a discontinuity at the change point in the log-likelihood
function of the regression problem.

Another issue in the literature on inference about mean and slope shifts discussed above
concerns the peculiar nature of the hypothesis testing problem associated with tests of the
significance of the shift itself at the change-point. This problem is one where inference
must be undertaken in the presence of a nuisance parameter (for example, the new value
of the mean at the change point) that is typically not identified under the null hypothesis
(of no mean shift), e.g., see Davies (1977, 1987), Worsley (1986), Andrews (1993), Andrews
and Ploberger (1994) and Hansen (1996). This problem also extends to inference about
transition in the ‘newer’ time series econometric models, such as Threshold Autoregression
(TAR) models (Potter, 1995, p. 111; Tsay, 1998, p. 1189).

A third related problem is the determination of whether a change in the intercept and/
or slope of a linear statistical model has occurred. The seminal papers by Chow (1960) and
Quandt (1960) were followed by Brown et al. (1975), Farley et al. (1975), Feder (1975a,b),
James et al. (1987), Kim and Siegmund (1989), Andrews (1993), Kim (1994), Bai (1996),
and Yashchin (1995, 1997).

In this article, we demonstrate that the process of generating smooth transitions can be
viewed as a natural artifact of the filtering operations implied in the generation of discrete-
time series observations that result from sampling data that flow from an underlying con-
tinuous time process that has undergone a process of structural change. We also address
the circumstances in which the phenomenon of time irreversibility can occur. To accom-
plish this task, we focus on the problem of estimating the location of abrupt shifts in some
simple time series models. These simple models are chosen in order to allow us to focus
attention on some salient issues relating to distortions induced by the inherent aggregation
associated with discrete-time sampling of continuous time processes that generates the
phenomenon of smooth transition. We also address the issue of the generation of time irre-
versible structures within the smooth transition processes.

This question is also important because it focuses attention on the location of the struc-
tural change itself—that is, when the structural change or regime shift occurred. This
knowledge allows for the possibility of re-initialization of estimation about the actual tran-
sition if the underlying process approximates a piecewise linear process. Our focus, how-
ever, differs somewhat from much of the research in the time series econometric literature
in that we are not directly addressing the mechanics of the smooth transition process itself,
which typically addresses the process of regime selection or identification. For example, we
are not addressing whether the transition process is of a discrete character (i.e. Threshold
Autoregressive (TAR) model), a more gradual process with a regime indicator function
based on a continuous function (for example, the logistic cumulative distribution function
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associated with Smooth Transition Autoregressive (STAR) model), or based on a Markov
Switching process (see Brooks, 2002, p. 561). Instead, we interpret the smooth transition
process associated with regime change broadly, as a phase of structural change with pri-
ority given to identifying the temporal location of this change if we think it has occurred.

The above-mentioned problems all share one common property—the starting point is a
discrete time series model. It was recognized early in the literature that the assumption of
discrete time is one of the key determinants of the discontinuity problem associated with
the log-likelihood function in conventional change point problems (Quandt, 1960, p. 876
and footnote 7; Hinkley, 1970, p. 6; Feder, 1975a, p. 52–53). It is common in time series
analysis to begin with a discrete-time sample of the time series. Whereas, in engineering
and science applications of statistical signal processing methods, it is understood that
any discrete-time series is the result of filtering a continuous time data flow (often termed
a signal) and then decimating the filtered output (discrete-time sampling) to obtain the dis-
crete-time sample. The filtering operation is designed to remove high frequency compo-
nents of the continuous time data flow, whose frequencies are higher than twice the
sampling rate used, in order to avoid aliasing.

Even if the continuous time data flow is not deliberately filtered to remove high fre-
quency components, any measurement system has finite bandwidth and there is a natural
high frequency cutoff in an observed signal. This finite bandwidth property can be viewed,
in a fundamental sense, as being a consequence of the constraints imposed by the second
law of thermodynamics and its analogue in information transmission systems. In such sys-
tems there is no thing such as a ‘‘free lunch’’ or unlimited growth potential.

The science-based approach to obtaining discrete-time observations of an underlying
continuous time data flow process is not a standard topic in most statistical time series
texts. The nth observation tn = ns for the sampling frequency fs = 1/s is either implicitly
or explicitly assumed to be the true value at time tn in the standard statistical time series
literature, e.g., Grenander and Rosenblatt (1957, p. 57), Box and Jenkins (1970, pp. 399–
400), Hannan (1970, Section II3), Brillinger (1975, p. 178), Fuller (1995, Section 1.3) and
Shumway and Stoffer (2000, Section 1.3). This assumption is wrong. Any discrete-time
observation made is the result of some smoothing of the underlying data flow process
and is the average of the continuous time process in a time slice around tn.

In contrast, we formulate the problem as a continuous time process which experiences
one type of structural change during the observation period yielding, heuristically, two
regimes either side of the point of structural change. We then assume an ideal situation
where we either low-pass filter the signal or society low-pass filters it and then samples
it at the Nyquist rate. This filtering produces a discrete time problem where structural
change has been smoothed by a filtering operation, thereby producing a smooth transition
path between the two regimes.

In economic applications, macroeconomists use data that is typically supplied by
national statistical agencies. This data is usually aliased because it is under sampled.
For example, surveys from which quarterly data are generated are often conducted over
a week’s duration either once a month or once a quarter. The results of these surveys con-
tain information that is benchmarked with additional information obtained from annual
surveys (or censuses) which are then used to generate both quarterly and annual national
accounts statistics. This data processing is a complicated, albeit imperfect, filtering process
that smoothes out any abrupt changes in the economy. For example any abrupt change
appearing within a quarter will show up as a change across consecutive quarters. But
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the information content in the resultant quarterly time series data will not be sufficient to
locate and model the change as it appeared within the quarter in which it occurred.
Clearly, there are technical issues concerning sampling and filtering that have to be
addressed before it is possible to assess whether structural change has occurred in such
time series data. It is to such issues that we now turn.

2. Sampling a continuous time process

Most time series can be conceived as a continuous flow of data through time that is
measured by some procedure. The measurement procedure used in engineering and science
applications is deliberative but in the social sciences the filtering and sampling methods
that are used to generate discrete-time samples are rarely discussed explicitly. Each dis-
crete-time observation ~xðtnÞ is treated as if it was the true value at time tn rather than
an average value around tn.

An engineered time series sampling method is as follows. A continuous time process
x(t) is filtered to remove all frequency components above a cutoff frequency f0 and then
the filtered process is sampled at a rate greater than or equal to 2f0 in order to avoid ali-
asing the sampled data (Priestley, 1981, Section 7.1.1). Recall that the nth observation of
the discrete-time process is tn = ns where s = (2f0)

�1 denotes the sampling interval if the
process is sampled at the Nyquist sampling rate 2f0. The sampled value ~x (tn) is an aggre-
gated value of the process x(t) around time tn.

Let us turn to the basic technicalities of linear filtering. Suppose that the filter is linear
and causal. Then the filter is characterized by its impulse response function, denoted h(s)
where h(s) = 0 for s < 0. The output of the filter is the convolution

~xðtÞ ¼
Z 1

s¼0

hðsÞxðt � sÞds ð2:1Þ

The impulse response is the output of the system to a unit impulse occurring at time t = 0.
The output of the filter at time t depends only on past (observed) values of filter input.5

When the sampling method is engineered, the impulse response used is part of the
design. Thus it is a known function. In social sciences the sampling methodology is usually
inexact. The impulse response is an unknown function that is ignored in the quest for a
statistical model of the stochastic process.

The response of the filter is equivalently represented by the filter’s transfer function,
which is the Fourier transform of the filter function h(s), namely

Cðf Þ ¼
Z 1

�1
hðsÞe�i2pfsds ð2:2Þ

This Fourier transform exists if h(s) is absolutely integrable (Priestley, 1981, pp. 264–266).
The transfer function is complex valued and can be expressed heuristically as

Cðf Þ ¼ cðf Þ expðiuðf ÞÞ ð2:3Þ
where c(f) P 0 is called the gain and u(f) is called the phase response of the filter. The gain
function is always symmetric and the phase function is anti-symmetric about zero. When
5 Such filters are clearly non-anticipative because they do not depend on future (non-observed) values of filter
input (Priestley, 1981, p. 265).
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the input is passed through the filter, the amplitude of the input will be multiplied by the
filter gain c(f) and the phase will be shifted by u(f) (see Priestley, 1981, pp. 270–271).

To illustrate the way the gain and phase of a linear filter operate on a cycle we use the

causal filter whose impulse response is hðtnÞ ¼
ffiffiffiffi
2j
p

q
exp � j

2
t2n

� �
. This filter is a half gaussian

density function scaled to have unit area. It is a type of low-pass filter since its gain func-
tion is gaussian. Thus, high frequency terms are reduced in amplitude relative to the low
frequency terms. The cycle we use in our calculations is

sðtnÞ ¼
XK
k¼1

1þ k
K

� �
sin 2p

k
P
tn

� �
þ cos 2p

k
P
tn

� �� �
ð2:4Þ

where P is the fundamental period of the cycle with K harmonics and N is the sample size
used in the simulation. The fundamental frequency of the cycle is f = 1/P. The output of
the filter is shown in Fig. 1 for the bandwidth coefficient j = 1.

The phase response is zero if, and only if, the impulse response is symmetric about zero,
which will only arise in the case of a very special type of non-causal filter called a symmet-

ric filter. Thus, all causal and all but the symmetric filter is a time irreversible operation.
The key implications of this outcome will be examined in more detail in Section 4.

The filter operation in (2.1) smoothes the input since the filter removed frequency com-
ponents of the input for fP f0. Let the impulse response have unit area to simplify nota-
tion. Then, if the continuous time process experiences structural change—for example an
abrupt shift in the mean from l to l + d at an unknown time t0—the shift in the output of
the process is given by dH(t + t0) where HðtÞ ¼

R t
s¼0

hðsÞds. If the filtered signal is sampled
at the Nyquist rate then the mean shift is Hðtn þ t0Þ ¼

Pnþn0
m¼0 hðtmÞ and t0 = n0s. Since the

filtered output is a continuously differentiable function of the shift time parameter t0, a
maximum likelihood estimate of this parameter exists. The properties of the MLE estimate
are given in Hinich and Wild (2003).
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If the form of the structural change involves an abrupt shift in the variance from r2 to
r2 + d at an unknown time t0, the shift in the output of the process is given by

Hðt þ t0Þ ¼ r2

Z 1

s¼0

h2ðsÞdsþ d
Z t�t0

0

h2ðsÞds ð2:5Þ

The first term on the right hand side of (2.5) is the output of the filter, assuming no struc-
tural change in the variance of the input. The second term is the additional output of the
filter assuming the structural change in the variance occurred at time t0.

The view expressed above, that the underlying data flow process is a continuous time
phenomenon can be readily extended to economic and social systems. In the context of
economic systems, for example, the time continuity of the underlying process is related
to the notion of continuity of exchange. Specifically, the structure of both domestic and
international trade and finance, together with the availability of spot and forward markets,
engenders a continuous flow of economic transactions. However, some sort of filtering
operation is still latent in social science applications, even if the investigator believes that
each value of x(tn) is the true value of the process at time tn = ns.

The fundamental uncertainty principle accepted in the natural sciences applies to all
measurements made in the social sciences. In particular, it should be recognized that the
consequences of inherent limitations to coding, transmitting and analyzing information
on institutional and other forms of organizational behavior, in the face of complex real-
world situations, constitutes an important source of finite bandwidth in social systems.
As a consequence it is impossible to obtain a precise measurement of a process at a precise
time. However in this article we are not going to address the inherent error in the time of
measurement. We treat tn as the true time of measurement but x(tn) is really ~xðtnÞ from Eq.
(2.1) for some filtering operation with a usually unknown impulse response.

It should be noted that the assumption of finite bandwidth is also at odds with the con-
ventional requirement of infinite bandwidth (�1,1) underpinning the conception of con-
tinuous white noise typically employed in continuous time econometric and time series
problems (see, for example, Bergstrom, 1976; Priestley, 1981, pp. 234–235). The assump-
tion of infinite bandwidth also ensures that the sampling interval approaches zero, a con-
dition that seems to be necessary and implied in applications of standard stochastic
techniques such as Brownian motion.

It is our contention that the latter situation cannot be viewed as an appropriate approx-
imation in any sense to any meaningful real world problem, irrespective of whether the
problem is in the realm of the natural or social sciences. This is because, even in an ideal
setting, both nature and society will ensure that f0 will have an upper bound that, while
possibly being very large in magnitude, is definitively finite. This value of f0, ‘‘bequeathed’’
to us by nature or society in turn determines the Nyquist sampling rate 2f0 and associated
sampling interval s = (2f0)

�1. This means that the appropriate continuous white noise con-
cept is bandlimited white noise, whose spectral density is constant over the finite pass band
range (�f0, f0) and zero outside this range.
3. Filtered time shifts

We next turn to the issue of the impact of filtering operations on mean shifts and slope
changes in continuous time processes. Our main objective is to demonstrate the distortions
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that the filtering operation can exert on the discrete-time output of a filter process in terms
of its ability to track the true changes occurring in the continuous time process.

Suppose that the slope parameter b of the simple linear time trend model y(t) = bx(t) +
e(t) shifts at time t0. Assume that x(t) is observed with no error and that the joint distri-
bution of the noise process e(t) is independent of x(t). Suppose further that the indepen-
dent variable x(t) and dependent variable y(t) are smoothed by a bandlimited causal filter
whose impulse response is h(t) and then sampled at or above the Nyquist rate. Then the
discrete-time (sampled) observations are of the form ~yðtnÞ ¼ b~xðtnÞ þ ~eðtnÞ, where the tildes
indicate that the process is the output of the causal filter as per Eq. (2.1) as long as b is
constant. If b shifts to b + d at time t0 = n0s, that is

bðtÞ ¼
b if n < n0
bþ d if n P n0

�
ð3:1Þ

then the output of the discrete-time process is now given by

~yðtÞ ¼ b
X1

m¼n�n0

hðtmÞxðtn�mÞ þ ðbþ dÞ
Xn�n0

m¼0

hðtmÞxðtn�mÞ

¼ b
X1
m¼0

hðtmÞxðtn�mÞ þ d
Xn�n0

m¼0

hðtmÞxðtn�mÞ ¼ b~xðtnÞ þ d
Xn�n0

m¼0

hðtmÞxðtn�mÞ ð3:2Þ

The first term in (3.2) gives the output of the filtering operation, assuming no structural
change. The second term gives the additional output of the filtering operation, assuming a
process of structural change associated with the slope change from b to b + d at time t0.

To illustrate how the measurement filter can distort the input when there is a slope shift
we simulate a particular low-pass filter operating on a curvilinear trend plus a cycle. Com-
putation is necessary to show how the filtering operation distorts a slope shift in a curvi-
linear trend with cycles since the output cannot be expressed in any meaningful closed
form. We use the same half gaussian causal filter model as was used to generate Fig. 1.

To illustrate the effect of such a filter on a linear trend with a slope shift, this impulse
response was convolved with a trend plus a cycle of the following form:

xðtnÞ ¼ bðtnÞtn þ c t2n �
T
2

� �
þ asðtnÞ ð3:3Þ

where s(tn) is the cycle defined in (2.4).
The cycle’s amplitude a is zero for the first three examples of a trend with a slope shift.

Fig. 2 shows the true trend and the filtered trend where c = 0 and the slope is b = 0.5 with
a shift of d = 5 in the middle. The filtered trend stays below the true trend after the shift.

Fig. 3 shows the true and filtered trend with a linear slope of b = 1.5, a quadratic coef-
ficient of c = �0.04 and a linear slope shift of d = �2.5.

Once again the filtered trend is biased away from the true trend after the shift. The same
is also true in Fig. 4 where b = 3.5.

Fig. 5 shows the effect of the filtering operation for a true trend plus a cycle with seven
harmonics and an amplitude of a = 30. In this simulation, b = 1.5, the quadratic coeffi-
cient c = �0.04 and a linear slope shift of d = �2.5 is also adopted. The filtered trend is
biased down from the true trend once again and the cycle is time shifted due to the phase
shifts on the causal filter’s complex frequency response.
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All these examples show that the effect of the filter’s operation is to smooth the response
of the system to the abrupt types of structural change envisaged in each respective simu-
lation by attenuating the high frequency components relative to the low frequency compo-
nents. In the cases involving linear trend simulations documented in Figs. 2–4, this effect
shows up in the form of a downward [upward] bias in the sampled output (the estimated
trend) when compared with the true trend. In all three cases, the true extent to the struc-
tural change is understated by the filtering operation.
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In the case of the simulation involving trend plus cycle (Fig. 5), the principal effect of
the filter once again is to smooth (or understate) the extent of periodic behavior of the sam-
pled output (the estimated trend) when compared to the true process. The phase shift aris-
ing from the complex frequency response of the filter operation is also apparent from
inspection of Fig. 5 in terms of the horizontal displacement of the peaks and troughs of
the estimated trend when compared with the peaks and troughs of the true process.
Finally, the inherent aggregation implied by the filter operation is also apparent from
Fig. 5 in terms of the extent of vertical displacement of the estimated trend, which is dimin-
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ished when compared with the true process. This reflects the filter’s attenuation of the high
frequency components relative to the low frequency components.

A curvilinear trend was used to simplify our exposition. Trends in economic data vary
over time and we advocate transforming the levels to growth rates. A time series of growth
rates will have a much flatter spectrum than the spectrum of levels and the growth rate
process will appear to be more stochastic.

4. Filter operations and generation of time irreversible probabilistic structure

Let {x(tn)} denote the discrete-time input to a linear filter whose output is f~xðtnÞg.
Assume that the density of the x(tn) has finite support and thus the cumulants of x(tn)
are bounded. Recall from Section 2 that C(f) = c(f)exp(iu(f)) is the transfer function of
the filter. Then the bispectrum of the filter output f~xðtnÞg is

B~xðf1; f2Þ ¼ Cðf1ÞCðf2ÞCð�f1 � f2ÞBxðf1; f2Þ
¼ cðf1Þcðf2Þcðf1 þ f2Þ exp½iðuðf1Þ þ uðf2Þ � uðf1 þ f2ÞÞ�Bxðf1; f2Þ ð4:1Þ

where Bx(f1, f2) is the bispectrum of the input process which is assumed to be non-zero.6

Within the structure denoted by (4.1), the property of time irreversibility of the filter out-
put f~xðtnÞg can arise, in principle, in the following two ways:

(a) if the filter is causal (or non-causal but non-symmetric), the imaginary part of the
bispectrum of the filter output ðB~xðf1; f2ÞÞ will be non-zero and the output of the filter
will be time irreversible because of the phase function of the filter, irrespective of
whether the input is time reversible or irreversible; and

(b) if the filter is non-causal and symmetric (i.e. a symmetric filter), then the output of
the filter will be time reversible (time irreversible) if the input is time reversible (time

irreversible)—that is, if the bispectrum of the input (Bx(f1, f2)) has a zero (non-zero)
imaginary part. If the input is time irreversible, this outcome will be linked to the
phase function of the input bispectrum, and the bispectrum of the filter output
ðB~xðf1; f2ÞÞ will also consequently have a non-zero imaginary part, thereby confirm-
ing the time irreversibility of the filter output f~xðtnÞg.

In social science applications the measurement filter will be causal but it’s impulse
response will be unknown. If the input is white noise and the filter is invertible then the fil-
ter’s impulse response can be estimated from the covariance function of the output or,
equivalently, its spectrum. If the input is pure white noise, that is the variates are indepen-
dently and identically distributed, then the estimated bispectrum can be used to estimate the
transfer function of a linear filter and thus obtain an estimate of its inverse Fourier trans-
form, the impulse response, e.g., see Lii and Rosenblatt (1982). However, if the input is not
pure white noise, then the gain and phase of the input cannot be disentangled from the gain
and phase of the filter and the estimated bispectrum cannot be used to obtain an estimate of
the impulse response of the linear filter. Most economic processes are unlikely to be white
noise even in growth rates. Thus the measurement filter is an unknown yet important aspect
of the transformation of the continuous time input to a time series.
6 This will require that the input is non-gaussian and non-symmetric.



148 M.J. Hinich et al. / Journal of Macroeconomics 28 (2006) 136–150
Finally, suppose that the output of the measurement process (i.e. the discrete-time series
data obtained from the measurement filter) is used as source time series in econometric
investigations. Suppose further that this discrete-time data is time irreversible, by construc-
tion, from the discrete-time sampling process. Then the output from econometric modeling
exercises using this data as regressor variables will also retain the property of time irrevers-
ibility irrespective of the properties of the econometric model that is used to model the pro-
cess. If the source time series is used as a dependent variable, attempts to model this data
must then also be able to account for the time irreversibility in its probabilistic structure. If
the input entering this modeling process is assumed to be time reversible (such as pure white
noise), then the econometric model itself must be able to account for the observed time irre-
versibility in the probabilistic structure of the dependent variable series.

5. Concluding remarks

We raise some fundamental statistical issues that macroeconomic researchers must con-
front in relation to structural change in the economic systems and associated economic
processes that time series data reflect. The discrete data points that are typically used in
macroeconomic modeling are samples drawn from continuous time processes which gener-
ate continuous flows of data. This must be taken into account in any investigation of struc-
tural change. The next issue that we deal with is the impact of filtering operations on mean
shifts and slope changes in continuous time processes. We demonstrate that the distortions
that such operations exert on discrete-time output can affect our ability to track the actual
changes occurring in the continuous time process. Finally, we discuss the link between time
irreversibility and loss of uniqueness in the spectral representation of a data generation pro-
cess, i.e. what we might expect in the presence of a complex system. Time irreversible pro-
cesses have a bispectral representation that has a statistically significant imaginary part and
thus it is important to test whether this is the case before conventional methods are applied.
For example suppose that the sampling process generating the discrete source time series
data used in econometric investigations produces data that is time irreversible, by construc-
tion. Then if one assumes, in common with econometric theory, that the input process is
time reversible (such as a pure white noise process), then the model used must be able to
account for any observed time irreversibility in the source time series data.

Economic systems are complex adaptive systems. When we are using discrete-time
series data to understand the processes that these systems undergo, we must recognize
the limitations of methods and techniques that are constructed under the presumption that
we are dealing with simplistic representations of complex systems. This is clearly a prob-
lem that is most acute in studies employing macroeconomic time series data, yet it is
mostly ignored in the applied macroeconomics literature where it is unusual for even
the most rudimentary examination of the spectral properties of data series to be under-
taken. This problem is quite a general one but it is likely to be most marked in cases where
it is acknowledged that structural change has occurred.
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