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ABSTRACT. Concavity and sigmoidicity hypotheses are developed as a natural extension of the
simple ordered hypothesis in normal means. Those hypotheses give reasonable shape constraints for
obtaining a smooth response curve in the non-parametric input—output analysis. The slope change
and inflection point models are introduced correspondingly as the corners of the polyhedral cones
defined by those isotonic hypotheses. Then a maximal contrast type test is derived systematically as
the likelihood ratio test for each of those changepoint hypotheses. The test is also justified for the
original isotonic hypothesis by a complete class lemma. The component variables of the resulting
test statistic have second or third order Markov property which, together with an appropriate non-
linear transformation, leads to an exact and very efficient algorithm for the probability calculation.
Some considerations on the power of the test are given showing this to be a very promising way of
approaching to the isotonic inference.
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1. Introduction

The concavity or convexity hypothesis has naturally been introduced for analysing the
age—period—cohort effects model where all those three effects have natural ordering and
yet only the second order differences are estimable for each of them (Hirotsu, 1988). The
concavity is also a shape constraint typically met in economic models such as utility and
production functions. It is often found plausible, for example, to assume that holding
land fixed the output of corn rises with the input of seed but with diminishing returns,
see Matzkin (1994), for example. A dose-response curve is essentially sigmoidal if the
dose range is taken sufficiently large so that we can assume the convexity under the
inflection point if the sigmoidicity hypothesis is supported and the inflection point is
detected. The convexity assumption is useful not only for obtaining the smooth response
curve but also for the low dose extrapolation of the risks in the non-parametric toxicity
analysis. Hirotsu & Srivastava (2000) show, for example, how to improve the
simultaneous upper bound of the risks under the convexity assumption. In this respect
also, the maximal contrast type test statistic is useful since it can point out the inflection
point.

Now, suppose we have data yj,...,yx from the K independent normal populations
N(u,0%), k=1,...,K. Then a relationship has been demonstrated in Hirotsu (1997) between
the simple ordered hypothesis

Hypy < < g
with at least one inequality strict and the changepoint hypothesis

Kiipy=-=pu, <pfigyy=-=pg, forsomer=1,...K—1,



126 C. Hirotsu and K. Marumo Scand T Statist 29

where 7 is an unknown changepoint and the null hypothesis is

Ho:py = -+ = pg

for both cases. It is simply that a set of component hypotheses of K indexed by t forms the
K — 1 corners of the polyhedral cone defined by H;. Assuming ¢ to be known tentatively the
likelihood ratio test for K; is easily obtained as

max 1+ L Y"1 Y k > (1)
- - -— c
=1.k-1\1 K-—1 c\K—-1 1 ’

where Yi=y+ -4y, ¥ =y1+---+y and ¢ is chosen to meet the required
significance level; see Sen & Srivastava (1975) for the derivation of the statistic. The test
statistic is also interpreted as the standardized maximum of the projections of the efficient

score vector onto the K — 1 corners of the polyhedral cone, where an efficient score vector is

defined as the derivative of the log likelihood with respect to the parameter w;, k = 1,...,K,
and evaluated at the null hypothesis. On the other hand a complete class of tests for the
ordered alternative Hj is given by all the tests that are increasing in every element of those
(K — 1) projections and with convex acceptance regions, see Hirotsu (1982) for details. Then
it happens that the likelihood ratio test statistic for K; has been independently proposed and
justified also in the stream of the isotonic inference as a useful test statistic. In this sense it
should be compared with the maximal contrast type test by Williams (1971) and its
modification by Marcus (1976). Actually the test statistic (1) has been called the max ¢ and
shown, as compared with other methods, to have high power in the wide range of the ordered
alternatives specified by H;; see Hirotsu (1979) and Hirotsu et al. (1992) for details. The max ¢
statistic in the unbalanced one-way layout setting is also introduced in Hirotsu et al. (1992).
In this paper we extend the relationship to more general isotonic hypotheses which will be
useful, for example, as shape constraints for a non-parametric dose-response analysis. It is
interesting and useful to find out the corner models to figure out those generalized isotonic
hypotheses.

In section 2 of the present paper we first introduce the concavity hypothesis as one of those
reasonable shape constraints and derive a slope change model as its corner model. Then the
likelihood ratio test statistic for the slope change model is developed as an extension of max ¢
and shown to be an appropriate test statistic also for the concavity hypothesis. Similarly the
sigmoidicity hypothesis and a corresponding inflection point model are demonstrated in
section 3 as well as the extended max ¢ test derived as a likelihood ratio test for the latter
model. Section 4 is devoted to the distribution theory of those extended max ¢ tests and a very
efficient recurrence formula for the level probability and also for the power calculation is
given. It is based on the Markov property of the component variables of the test statistic and
considered as a natural extension of the approach taken by Hawkins (1977) and Worsley
(1986) for the simple changepoint hypothesis. In this case, however, the Markov properties
are second and third order differently from the first order in the previous papers and a non-
linear transformation introduced in section 5 is inevitable for reducing the number of the cut
points for the conditioning variables in the recurrence formula. Some considerations on the
power are given in section 6. It is first argued that the maximal angles of the polyhedral cones
defined by the concavity and sigmoidicity hypotheses are smaller than those defined by the
simple order suggesting the appropriateness of the extended max ¢ as compared with the
classical max . Then the maximin linear test is introduced for comparisons of powers for
each of the concavity and sigmoidicity hypotheses. The comparisons are in favour of those
extended max ¢ tests. All the theories are given for the normal model but they can be applied
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asymptotically also to the rank or the binomial data and have much wider applications. An
application to the binomial data y; is given in section 7. It should be noted that since the
extended max ¢ tests are, like max ¢, based on the weighted sum of the y; the Lindeberg
condition for asymptotic normality is more easily met than that for each y;, see app. 3 of
Hirotsu & Srivastava (2000).

2. The concavity hypothesis and a slope change model

2.1. Mathematical formulation

Suppose we have data from a one-way layout
yi=w+e;, i=1,..,K j=1...,m,

where the ¢; are independently distributed as N(0,0%) and we assume tentatively o> to be
known. Suppose we have an explanatory variable x; at the level i, x; <--- <xg, then a
concavity hypothesis is defined as

Hy: o= 2”3_ﬂ22~-- ZHK_ﬂK—l
X2 — X1 X3 — X2 XK — XK1
with at least one inequality strict. This is an extension of the monotone hypothesis in the first
order differences of means introduced in Hirotsu (1986) and goes back to the previous
situation if we take x;s equally spaced. Now we can give lemma 1 asserting a relationship
between the concavity hypothesis and a slope change model.

Lemma 1
Each component of a slope change model defined by

Mot M T g
X2 — X| Xr4l — X 7
K :
2(7) Pop ZHet MK HRL g (g
Xe2 = Xog ] TR

and indexed by 1 =1,....K —2 forms a set of K —2 corner vectors of the polyhedral cone
defined by H,.

Proof. The concavity hypothesis H, can be written in the matrix notation as

oy
Lp>0 2
with
X1 —X2 X2—X1 + X3—X2 X2—X3 0 O
1
Ly =
1 1 1 1
0 0 XK-2 =XK1 XK—1—XK-2 +XK*XK 1 Xk-1—Xk d K-2xK

Since there are two additional degrees of freedom to define u satisfying (2) the restriction
Bu=0 3)

is imposed, where
I
B:(l 1 - 1).
Xy X2 - XK
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It is easy to verify B'Ly = 0 and we can add restriction (3) without violating (2). Then all the p
satisfying (2) and (3) can be expressed as such u satisfying

(£ (2)

with some & > 0. Then for all those g we have an expression

p = {B(BB)"'B + Li(Ly'Li) " L

* wlpsx\—1
=Ly(Ly'Ly) " h

The first equality holds since ITz = B(B'B)"'B’ and g, = Li(Ly'Ly) 'Ly are the projection
matrices of rank 2 and K — 2 and orthogonal each other. Thus any u satisfying (2) and (3)
can be expressed by the positive linear combination of the columns of L (Li'Li)™" like
n= L}(L;(/L}‘()fl (Ly'w). Conversely it is obvious that every p expressed by
L};(L}’L}()*'h,h > 0 satisfies the restrictions (2) and (3). It implies that K — 2 columns of
L;(L,*{L;;)fl give the corner vectors of the polyhedral cone defined by (2) and (3). Excluding
the restriction (3) we have an expression for u satisfying H, like

p =B, m) +Li(L'Li) "'k, k>0 4
with 5, and n, arbitrary regression coefficients. Now we give an explicit form of L}(L}‘(/L}Q)fl

to complete the proof. First we rewrite the model K»(7) in the linear form like

Mo
Kx(t):p= (B bo)| n | =Blng,m) + ben, (5)
n

with ., = f— " > 0 and
b, = (Il —- 1)(01 e 00X = Xty Xk —Xr+l)/~

Then it is easy to verify L}'b, to be equal to (0---010---0)" with a unit element as its tth
component and this, together with the relation B’h, = 0, implies the equality

Lo(LYLy) ™ = (by,. .. bk 2). (6)

Then by comparing (4) and (5) we see that every model K»(t) indexed by t=1,...,K —2
forms K — 2 corners of H,.

A brief sketch of the cone and its standardized corner vectors are given in Fig. 1 for K =5
and equal spacing case. The direction of second order polynomial p, = (-2 12 1 — 2)" is
shown to be located inside the cone.

2.2. Test statistic
In the expression (5) the generalized least squares estimator of #, is obtained as
St =M'B.Q{1 - B(BQ'B) B}y

!, where y = (y1,.. -,)71(.)/ is the vector of means with dispersion matrix
Q = diag(c?/n;) a diagonal matrix with ¢?/n; as its ith diagonal element and
M, =b.Q'b, —b.Q 'B(B'Q 'B)'B'Q'b,. Then the likelihood ratio test statistic for the
null hypothesis

Hpy: p=B(ng,m;)’

against the one-sided slope change alternative K»(t) with n > 0 at given 7 is obtained as
S; = Mr'/2SI*. Actually S; is the square root of minus twice the log likelihood ratio but it will be

with variance M|
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standardized corner vectors

Wo=(-2210-1) /Vi0
wo=(-4161-4) /7O
= (-1012 -2) /IO

Fig. 1. Polyhedral cone defined by (2) and its corner vectors with K = 5 and equal spacing.

natural to call it the likelihood ratio statistic concerning the one-sided alternative. The
likelihood ratio test statistic for the slope change model is then obtained by taking the

maximum of S; over t =1,... K — 2,

S = max§;,

thus giving a natural extension of max ¢ of (1). By virtue of the relation (6) we have a very

convenient expression of s = (S, ..., Sx_2)" like

s = diag(M ") (Ly'Ly) 'Ly @y — Eo(3)},

™)

where E(y) = B(B'Q 'B)"'B'Q "'} is the maximum likelihood estimator of the mean vector
under the null hypothesis Hz. Thus each component of the statistic s is understood as the
standardized projection of the efficient score vector evaluated at the null hypothesis Hz onto

the corner vector of the polyhedral cone defined by H, and then the likelihood ratio test is
supported by a compete class lemma given in Hirotsu (1982) to be an appropriate test also for
the concavity hypothesis H;. It is shown by power comparisons in section 6 that the test has
some advantage over the Abelson & Tukey (1963) type maximin linear test against the

concavity hypothesis.

It should be noted that the convexity hypothesis can be dealt with just by inverting the sign

of the test statistic.

3. The sigmoidicity hypothesis and an inflection point model

We go one step ahead of H, by considering the ordered hypothesis in the second order

differences,

Hy: 1 (ﬂ3*ﬂz_#z*/¢1) S s 1 (#K*ﬂKfl _ Mk *#1@2)
X3 =X \X3—Xx2 X2—x1/ TOXK —Xg-2 \XK —XK-1  XK-1 —XK-2
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Then we can show each component of the model defined by

K3(T): n= [CCT](”Ov ’717’127’1)/7 n> Oa
and indexed by 7 =1,...,K — 3 with

2
1 X1 X1
C=|: N

2
I xx xg

and
¢ = (HC _I)(O -0 (x1+3 _xr+l)(xz+3 - x1+2) e (XK - xr+l)(xK _Xz+2)),,

. =c(c'c)y'c

forms a set of K — 3 corner vectors of the polyhedral cone defined by Hj, see appendix for a
proof. It should be noted that the model K3(t) is composed of two segments of the second
order polynomials having two common values at x = x,.; and x;,», see Fig. 2. This is in
contrast to the slope change model K;(7) where two segments of the linear equations have only
one common value at x = x,,1. The model K3(t) suggests a change of response curve from
convex to concave between the two points x,;; and x,;, and may be called an inflection point
model and then we call A3 a sigmoidicity hypothesis. It is not exactly the same with
Schmoyer’s (1984) definition of sigmoidicity which is the unimodal hypothesis of the slopes of
the subsequent segments but has a close relationship.

By similar arguments to section 2.2 the likelihood ratio test statistic for the inflection point
model is obtained as the maximal component of

t = diag(N, ') (k' 0%) ' 0K'Q (¥ — Eo(9)},
where N, is M, with b, and B replaced by ¢, and C, respectively, Oy’ a K — 3 x K coefficient
matrix in expressing the inequality (8) like Oy'p > 0 and Ey(5) = C(C/Q’IC)flC/Q’lj) in this
case. The explicit form of Q%' is given in the appendix. The statistic is again appropriate for the
sigmoidicity hypothesis by virtue of the complete class lemma.

qo(5-9 0 4 3 -3)

'}’l4 Us 'us

Fig. 2. Sketch of nC; with K = 6, t = 1 and equal spacing.
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4. Distribution theory of the maximal components of s and ¢

The distribution theory for s and ¢ goes almost parallel and we mainly deal with s here and
only the result is stated briefly for z.

By a simple matrix algebra and as shown generally in Hirotsu (1982) the statistic s of (7) can
be written as

s = diag(M )Ly QL) 'Ly
and then the covariance matrix is obtained simply as
var(s) = diag(M; ')(Ly' QL) ™" diag(M; 7). (9)

By virtue of the form of L}’ and diagonal matrix Q this is an inverse matrix of a penta-
diagonal matrix and it is easy to show that for any partition (s/l,s’z)' of s the conditional
distribution of s; given s, depends only on the first two elements of s, implying the second
order Markov property in the sequence Si,...,Sx_» of the components of s. By this Markov
property we have a simple recurrence formula for the joint probability

Pi(so) = pr{S1 < o, ..., Sk—2 < So},
where the index i takes 0 or 1 according to the null or the alternative distribution. Then the p
value for the observed maximum s, is obtained as
p=pr{maxsS; > s,|Ho} = 1 — Py(s,).
For the recurrence formula define the conditional probability

FET+1(S0|ST7S‘E+1) = pr{Sl < Soy ey Sey1 < So‘SnSrJrl}? t=1,..,K-1,

where for convenience we introduce Sx_; and Sx which are defined to be zero so that
Pi(sy) = Fx_1k(s0|Sk—1,Sk) is an unconditional probability.

Starting from the initial function
1, S| < 80,8 <8,

Falsol$1,52) = {0 otherwise

we can calculate F;., | recursively by a single numerical integration with respect to S;. We state
the formula in lemma 2.

Lemma 2 Recurrence formula for Fy
Fort=1,...,K—2 we have

S,
i F, S:, S dsS;,Sii2 <8,
Fz+lr+2(so|Sr+17S1+2) _ { f,oc t+1 (So‘ 4 r+1)fr\r+l‘r+2 042 < 8o

. (10)
0, otherwise,

where fiei1142 = fejr1,042(Se|Ses1,Sey2) is the conditional probability density function of S:
given Sy and S;.5.

Proof. By the law of total probability we have
E+11+2(SU|S1+1 ) S7:+2) = / pr(Sl < Soyeens S‘L’+2 < So|S17 Sr+17ST+2)fr\r+l,r+2 dst.

If the inequality S;1» < s, is satisfied then we can discard the same inequality in the integrand
and get
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E+lr+2 (SO|S‘E+1 s ST+2) = /Frr+l (So|Sra Sr+l)fr\1+l.r+2 dst

applying the second order Markov property in S.s. If S;4» > s, obviously
Fri1042(80]Se41,8242) = 0.

For the conditional density f;|.41.12 let p;; denote the (i, /) element of (9), then the conditional
distribution of S; given S;;; and S;;, is a normal with mean

—1

1

Hgr + (p‘E‘E+17 prf+2) ( pf+llf+2) (ST+1 — Hert1s S‘f+2 - /-‘S1+2), (1 1)
Prt1r+2

and variance

1 +1t - 22
I (prr+17pn+2)< ’ +11 +2> (p o ) (12)

Prylz42 Pre42

for t=1,...,K —4, where p, is the tth component of E(s). The last two steps of the
recurrence formula need some caution but we can deal with it simply by extending the
definition of (p;) up to 1 <i,j < K by

{pija lglngK_za
Pij =

. (13)
0, otherwise.

Then the formulae (11) and (12) for the conditional density fy:11.+2 can be extended to
1=K —3and K — 2 as it is. It is easy, for example, to see that by the definition (13) we have
unconditional normal density N(u#g 5, 1) for fx_sx_1x. Thus we can obtain F; only by the
use of single integration recursively. Finally the difference between Py and P is only that all the
U, vanish in the calculation of the conditional density for 7.

Similarly we have the third order Markov property for ¢ which brings forth a recurrence
formula for the joint probabilities

Pity) =pr{T\ < typ,...,Tx_3 < t,}, i=0,1
based on the conditional probability

Feopiep2(to] T, Tegr, Ten) = pr{Th < to, ..., Tes2 < t,|T;, Toy1, Tein }.
The recurrence formula starts from the initial function

17 Tl<t07T2<t07T3<[07

Fias ()T, T2, T5) = {O otherwise

and renewed by the formula

Fritor2e3(to| Tert, v, Tei3)

{ ffoc Frr+lr+2(to|Tra Tr+1 ) Tf+2)f1|r+1,r+2,r+3(Tr|Tr+l ) Tr+27 Tr+3) dTn Tr+3 < o, (14)

0, otherwise.

up to t=K —3, where fiyi42.43 is the conditional normal density and we define
Tx_» = Tx_1 = Tx = 0. Again only a single integration is necessary although the conditioning
is now 3-dimensional.

Finally when ¢? is unknown but available its unbiased estimate 6> which is distributed as a
constant times chi-squared variable independently of y the formulae (10) and (14) can be easily
extended. It is only necessary to use the Studentized statistics by replacing ¢ by 62 in
calculating the test statistics s and ¢. Then in calculating Fx_x and Fx_»x_ 1, replace s, and ¢,
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by s,(6/0) and 1,(6/a), respectively, and take the expectation of the results with respect to the
distribution of 6/0, which is a constant times chi variable. For example, denoting the
Studentized statistic by Sf and the chi variable with the degrees of freedom v by y, the formula
(10) can be rewritten as

Soln/VV ;
/ Ef+1 (SOXV/\/‘_)‘SL Sz+1 )f‘f\f+1,r+2 dSI
and then we obtain Fx_x(so%,/ \/§|S,LI,S,T() for each y, similarly to lemma 2. Finally we
obtain the joint probability

Pi(s,) = pr{S! < so,.., 8k 5 <s,}

- /0 F 1 (5o /VAIS) 1S a() dz,

where ¢(y,) is the probability density function of the y-distribution with the degrees of
freedom v. Thus there is no numerical difficulty in dealing with the unknown variance case.

5. An efficient execution of the recurrence formula

In executing the numerical integration of (10) with respect to S; it is not possible to have values
of the integrand Fi.11(u,|S:,S:+1) beforehand at a small number of points (S;,S;+;) most
convenient for the integration, since an efficient distribution of the points for a numerical
integration is usually given only after knowing the shape of the integrand. A naive method
therefore requires to evaluate F;.,; at a large number of points (S;, S;;1) and to interpolate for
the other points. The method should, however, be very inefficient and even infeasible for the
case of the inflection point model where the 3-dimensional conditioning is required. The
method also suffers from the errors induced by the interpolation. In the following we propose
a very efficient algorithm based on the transformation of the variables S;, which will require
the calculation of F;.;; at only 64 ~ 128 equidistant evaluation points for each transformed
variable and in the integration step use only those pre-calculated values of F,. ;| avoiding the
interpolation process.

First in the integration of (10) we replace —oo by a sufficiently large number —C and convert
the range of integration into [0,1] by a linear transformation

S;=(S:+0C)/(so+C)
for each of t =1,...,K — 2. Then we employ a non-linear transformation
Si=e¢;), 0<v, <1, 7=1,...,K-2
with
1 1 ) 3
o(v) :§+(207 1) §+w+3w +3w’ b, w=v(—1)
to obtain the recurrence formula in v,
1
Flyen(Ves1,0e42) = (8o + C)/o F:iH»l(U'UUT+1).}(:\H»I.H»Z(Ufll)ﬁ'l7 Ve12) @' () dvr,

where ¢’ is the derivative of ¢ and

ﬂ*\r+1,1+2(°r|ur+l s Ur42)
= fr\1+1,1+2{(50 + C)p(v:) = C|(s5 4+ C)p(ve11) — C, (55 + C)p(vey2) — C}.
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By this transformation a singularity at the border of the integration resolves and we can
perform the integration by a simple trapezoidal rule with common evaluation points

v.=1/n, I=0,1,..,nforeachv,, t=1,..,K—-2,
see Laurie (1996) for the details of this non-linear transformation.
Now starting from the initial function
. J1, 0 <L, 0<m<T,
Fiy(vr,02) = {0, otherwise,

we proceed recursively by the formula

. 1J (o (H T\, H
F;—+11—+2 (;7;) = (SO + C) Z{F;Prl (;7;>/r\r+l,r+2 (;

1 J) ,(H)l}
=P\ )¢
H=0 nn nj/n

1,J=0,1,....n (15)

until T = K — 2, where F{_,,_, should be calculated for / = 0, ..., n retaining J = 0 and Fy_
should be calculated only once at / = J = 0 with ‘/}72‘,(71?,( an unconditional density function.
It should be noted that we are avoiding the interpolation process. Obviously the function
¢@(H/n)and ¢'(H/n), H=0,1,...,n, are common for each step and should be calculated only
once. Since for usual purposes the number n of evaluation points can be 64 for the second and
128 for the third order cases the formula (15) provides a very simple and efficient algorithm for
evaluating the required joint probability.

It is very easy to write down the formula for the inflection point model based on the third
order Markov property and it is omitted here.

6. Power comparisons

The max¢ test has been verified to keep high powers for the wide range of the restricted
alternative in case of the simple ordered hypothesis. On the other hand it has been pointed out
that those maximal contrast type tests will not be so useful if the maximal angle of the
polyhedral cone is large, sce Robertson er al. (1988, sect. 4.2-4.4). In particular Abelson
& Tukey (1963) type maximin linear test is said to be useful only for the number of levels K
under 5 in the simple ordered hypothesis case. We therefore show in Table 1 that the maximal
angles of the polyhedral cones treated here are much smaller than those of the simple ordered
hypothesis. It is a simple algebra to show that the cosine of the maximum angles are 1/(K — 1)
and 2/(K — 1) respectively for the monotonicity and convexity hypotheses. This suggests that
the maximal contrast type tests introduced here are even more appropriate than the max ¢ test
in the simple ordered hypothesis. It suggests, however, the maximin linear test might do also as
well. For K = 6 and 8 and under equal spacing and equal sample sizes the maximin linear tests
are therefore searched for on the corners, edges and faces of each of the polyhedral cones

Table 1. Comparison of the maximal angles of the three types of polyhedral cones under the equal spacing as
expressed by the value of cosine

K
2 3 4 5 6 7 8 9 10
Monotonicity 1 0.50 0.33 0.25 0.20 0.17 0.14 0.13 0.11
Convexity — 1 0.67 0.50 0.40 0.33 0.29 0.25 0.22
Sigmoidicity — — 1 0.75 0.60 0.50 0.43 0.38 0.33
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Table 2. The coefficients of the two types of linear tests in case of the equal spacing and equal sample size

k
1 2 3 4 5 6 7 8
(a) Maximin linear test
Convexity —-0.5773 0.2829  0.2944 0.2944 0.2829  -0.5773
—-0.6108 0.1673  0.2036 0.2399  0.2399 0.2036  0.1673 -0.6108
Sigmoidicity 2 -3 -1 3 -2
5 -5 -3 - 1 3 5 -5
(b) Polynomial test
Convexity -5 1 4 4 1 -5
(Quadratic) -7 -1 3 5 5 3 -1 -7
Sigmoidicity 5 -7 -4 4 7 -5
(Cubic) 7 -5 -7 -3 3 7 5 -7

Table 3. Power comparisons of the maximal contrast tests and maximin linear test (equal spacing, equal

sample size and 6> known)

Maximal  Maximin  Polynomial
Corner and quadratic or cubic configuration contrast  linear coefficients
(1) Convexity hypothesis
-10 8 5 2 -1 -4 0.698 0.657 0.615
-20 2 24 11 -2 -15 0.721 0.657 0.747
-15 -2 11 24 2 -20 0.721 0.657 0.747
-4 -1 2 5 8 -10 0.698 0.657 0.615
quadratic 0.747 0.751 0.790
-7 4 3 2 1 0 -1 -2 0.674 0.623 0.535
=70 -5 60 41 22 3 -16 =35 0.702 0.626 0.696
-35 -10 15 40 23 6 -11 -28 0.710 0.623 0.755
-28 -11 6 23 40 15 -10 =35 0.710 0.623 0.755
-35 -16 3 22 41 60 -5 =70 0.702 0.626 0.696
-2 -1 0 1 2 3 4 -7 0.674 0.623 0.535
quadratic 0.737 0.726 0.790
(2) Sigmoidicity hypothesis
3 -3 -4 0 9 =5 0.730 0.707 0.697
15 -19 -18 18 19 -15 0.748 0.737 0.774
5 -9 0 4 3 -3 0.730 0.707 0.697
cubic 0.763 0.780 0.790
7 -9 -3 1 3 3 1 -3 0.705 0.665 0.621
21 -17 —24 0 13 15 6 -14 0.730 0.689 0.745
7 -4 -8 ) 5 8 4 -7 0.735 0.690 0.776
14 -6 -15 -13 0 24 17 =21 0.730 0.689 0.745
3 -1 -3 -3 -1 3 9 =7 0.705 0.665 0.621
cubic 0.751 0.748 0.790

according to Abelson & Tukey (1963) and results are shown in Table 2. Then we compare the
powers of the extended max ¢ tests and the maximin linear tests in Table 3 assuming equal
sample sizes and ¢ known. We add in the comparisons the linear tests with coefficients for the
quadratic and cubic patterns, which seem to be useful for the concavity and sigmoidicity
hypotheses, respectively. The upper percentiles of the extended max ¢ tests have been obtained

© Board of the Foundation of the Scandinavian Journal of Statistics 2002.



136 C. Hirotsu and K. Marumo Scand T Statist 29

by solving the equation for the p-value calculation conversely, where the computation is
somewhat hard for K = 8 of the sigmoidicity hypothesis and the recurrence formula based on
the non-linear transformation of variables is essential.

The powers are compared in the directions of the corner vectors and also the quadratic or
cubic configuration, where the noncentrality parameter n > (y; — )’ /a? is fixed at 6 so that
powers are around 0.70. It should be noted that the polynomial type test is the most powerful
test against the corresponding polynomial type configuration and its power gives the upper
bound for all the available tests. The power attained is seen in the last line of each situation.
The extended max ¢ tests are seen to keep relatively high powers in the wide range of the
ordered alternatives as compared with the maximin linear tests. The linear tests with
polynomial type coefficients look very good when the changepoint is located in the middle but
too bad when it is in the end so that they cannot be recommended without any prior
information on the configuration of mean vectors. It is just like the linear trend test in case of
the simple ordered hypothesis. Another advantage of the maximal contrast type tests is that
they can suggest a changepoint.

7. Application: testing sigmoidicity hypothesis

We apply the sigmoidicity test to the data of table 4 in Schmoyer (1984) which are originally
from an experiment performed by Dalbey & Lock (1982). We use the normal approximation
for the vector of proportions of the occurrences at respective dose levels with the dispersion
matrix diag{p;(1 — p;)/n;}, where the p; are replaced reasonably by the maximum likelihood
estimator under the sigmoidicity hypothesis obtained in the paper. Zero estimate of py causes
no problem if we use another expression t = diag(N;l/z)(Q};’QQ}})fl 'y for t in section 3.
The normal approximation will be acceptable since the number of replications at the
respective dose levels are ranged from 10 to 40 and also by the cumulative nature of the
statistics. Now the observed maximum is obtained as ¢, = 2.847 at t =3 and p value is
0.0060 by the algorithm in section 5 suggesting the assumption of sigmoidicity to be
acceptable. The suggested inflection point is between x4 = 28 and x5 = 32 and the convexity
assumption will be acceptable under the point. Hirotsu & Srivastava (2000) have discussed
the simultaneous upper bounds of the risks for the data and obtained those values 0.055 and
0.035 for the lowest dose level under the monotone and convexity assumptions at lower
doses, respectively, improving a naive upper bound 0.095 based on the data at the lowest
dose level only.

8. Discussion

While a parametric model gives a very efficient way of the analysis of the input—output
relationship, there are often cases where those parametric models do not conform well with the
data and cannot be assumed as a basis of the analysis. On the other hand a naive pointwise
estimate generally gives a very irregular and unstable response curve. Therefore those shape
constraints discussed in this paper will be very useful for obtaining smooth and reasonable
response curve, see Schmoyer (1984), Ramgopal ef al. (1993) and Matzkin (1994), for
example. As stated in the example of section 7 the convexity property at low doses is
particularly useful for a low dose extrapolation in the toxicity analysis.

As stated in the text the isotonic regression approach will be too complicated to give an
exact procedure for those extended problems. Instead the extensions of the maximin linear test
(Abelson & Tukey, 1963) or the cumulative chi-squared statistic (Hirotsu, 1979) might be
considered. They are, however, useful as the overall trend test and cannot suggest a
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changepoint. In particular the power comparisons in section 6 has shown that the linear test is
not useful in those extended problems considered here.

An efficient algorithm given in section 5 depends on the simultaneous transformation of the
range of integration of S;,t = 1,...,K — 2, irrespective of the values of conditioning variables
and cannot be applied as it is for the I" sequence (Hsu, 1979), for example, where the range of
integration is a function of the conditioning variables. Only for the exponential distribution
another efficient algorithm is obtained (No¢, 1972).
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Appendix: corner vector of the H;

It is easy to see that the relation (8) can be written in the matrix notation as

>0, (16)
where the tth row Q%/(z,j), j=1,...,K, of O}’ has only four elements not equal to zero,
K (v )) =
1 .
(x‘[ - xr+l)(x‘r - xr+2) - ’
1 1
(vr = X4 1) (0 = Xe2) (0 = Xop2) (Vo1 — Xe42)
1

- ’ J =1+ 17
(xf+l - x‘[+2)(x‘t+| - x‘[+3)

1 1

+
(e = Xep2) (Kerl — Xeq2) (Kot — Xog2) (Kot — Xeg3)
1 .
+ , J=TH,
(xr+l - xr+3)(xf+2 - xr+3)
1
— , Jj=1+3.
(X1 = Xep3) (Xog2 — Xe33) /

Then it is only a tedious but not difficult task to verify C'Qy =0 and we can impose the
restriction

Cu=0 (17)
without violating the relation (8) so that all the u satisfying (16) and (17) can be expressed as
K K * 71
#=C(no,m,m) + Ok (Ok'Ok) h

with & > 0 and #y, 5, n, arbitrary regression coefficients.
Again it is very easy to verify
x|

v (er-ek3) =13

and this, together with the relation C’¢, = 0, implies the equality

Ok ( }ZIQ}})_IZ (€1 ex-3)

showing that every model K3(t) indexed by t forms K — 3 corners of the polyhedral cone
defined by Hj.
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