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The linearity of the U.S. hog–corn cycle has been questioned by Chavas and Holt (1991). Even so,

attempts have not been made to model the potential nonlinear dynamics in the hog–corn cycle by using

regime-switching models. One popular alternative is Teräsvirta’s smooth transition autoregressive

(STAR) model, which assumes regime switching is endogenous and potentially smooth. In this article,

we examine monthly data for the U.S. hog–corn cycle, 1910–2004. A member of the STAR family, the

time-varying STAR, is fitted to the data and its properties examined. We find evidence of nonlinearity,

regime-dependent behavior, and time-varying parameter change.
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In recent years, there has been renewed
interest in empirical business cycle research.
While the motives for this resurgence may vary,
there is little doubt that two fundamentally re-
lated reasons underlie much of this recent re-
naissance. One is that economists have long
observed that contractionary and expansion-
ary phases of the business cycle are qualita-
tively different. Keynes (1936), for example,
provides observations on properties of busi-
ness cycles that are consistent with notions
of asymmetry, suggesting that contractions are
shorter and more turbulent than expansions.
An immediate implication is that the under-
lying process governing business cycle behav-
ior possesses features that cannot be captured
by linear models alone. But not until recently
have economists developed tools, most typi-
cally in the form of regime switching models,
capable of depicting asymmetric behavior in
business cycles (Neftci, 1994; Falk, 1986). This
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is the second reason for renewed interest in
this line of research.

Regime switching models are generally cat-
egorized as being one of two types. First,
there are Markov-switching models wherein
regimes are determined by an unobserved and
exogenous state variable. Alternatively, there
is a class of models for which it is explic-
itly assumed that the regime switch is en-
dogenously determined by an observed state
variable. Models belonging to this later cate-
gory include Tsay’s (1989) self-exciting thresh-
old autoregression (SETAR) and the smooth
transition autoregression (STAR) proposed by
Teräsvirta (1994). The STAR has several ad-
vantages over the SETAR including that sev-
eral standard STAR models nest a SETAR
representation. STAR models have been used
to model nonlinear features of business cycles
for developed countries (Öcal and Osborn,
2000; Skalin and Teräsvirta, 1999; Teräsvirta
and Anderson, 1992; van Dijk and Franses,
1999).

Aside from potential nonlinearity, consid-
erable research has also focused on struc-
tural change and time-varying parameters in
time-series models (Stock and Watson, 1996).
Structural breaks and parameter time varia-
tion may occur because of institutional change,
an evolving policy environment, or techno-
logical innovation. Recently, nonlinear mod-
els have been combined with specifications
that facilitate structural change and parame-
ter time variation. Lundbergh, Teräsvirta, and
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van Dijk (2003); Skalin and Teräsvirta (2002);
and van Dijk, Strikholm, and Teräsvirta (2003)
for example, combine the time-varying autore-
gression (TVAR) of Lin and Teräsvirta with
STAR models to obtain a time-varying STAR
(TV-STAR) model.

In spite of the emerging popularity of non-
linear models in general and STAR models in
particular for depicting aggregate business cy-
cles, comparatively little research has focused
on modeling similar attributes for primary
commodity prices, a surprising result given
that many commodity prices exhibit identi-
fiable cyclical behavior (Labys, Kouassi, and
Terraza, 2000) and, as well, may be associ-
ated with nonlinearity (Davidson, Labys, and
Lesourd, 1998). There is a need then to inves-
tigate the potential of STAR models for cap-
turing essential features of primary commodity
price dynamics. Perhaps the longest and most
widely recognized example of cyclic behavior
in primary commodity prices is the hog–corn
cycle. Beginning with Haas and Ezekiel (1926),
Coase and Fowler (1937), and Ezekiel (1938),
numerous studies have attempted to charac-
terize the hog–corn relationship, typically by
using linear models (Harlow, 1960; Jelavich,
1973; Larson, 1964; Shonkwiler and Spreen,
1986; Hayes and Schmitz, 1987). Alternatively,
Chavas and Holt (1991) used quarterly data,
1910–84, to show that the U.S. hog–corn cycle
might be associated with deterministic chaos.

In this article, we employ for the first time
a STAR framework, and more specifically, a
TV-STAR, to investigate fundamental aspects
of the U.S. hog–corn relationship. Our work-
ing hypothesis is that the hog–corn cycle ex-
hibits nonlinear features and time-varying pa-
rameters (technical change), and that these
features may be adequately characterized by
a smooth transition model. There are several
reasons to believe a priori that a TV-STAR
framework might prove fruitful. First, as al-
ready noted, prior research has found evi-
dence of nonlinearities in the hog–corn cy-
cle (e.g., Chavas and Holt, 1991). Second, due
to the inherent biological nature of hog pro-
duction, it is far easier to sell breeding stock
when expected profits are low than it is to
rebuild breeding herds when expected prof-
its are large. Third, even if all agents in the
pork market are fully rational, it is still possi-
ble to observe periodic behavior (Rosen, 1987;
Rosen, Murphy, and Scheinkman, 1994), and
perhaps even highly complex behavior (Brock
and Hommes, 1997). Fourth, and aside from
any price expectation issues, natural animal

population dynamics are capable of giving rise
to complex (i.e., nonlinear) behavior in live-
stock markets (Chavas and Holt, 1993). Fi-
nally, in the postwar period, there has been
considerable technological innovation in hog
production, including movement to total con-
finement operations, the advent of nearly con-
tinuous breeding-farrowing rotations, the now
widespread use of antibiotics and growth hor-
mones, and enhanced feed conversion and
carcass quality through genetic improvements
and dietary refinement. In the empirical analy-
sis, we employ a dataset consisting of monthly
observations for hog and corn prices, 1910–
2004. Among other things, the large sample
affords sufficient observations to isolate any
potential nonlinear effects and, as well, to ex-
plore possibilities for structural change and pa-
rameter time variation.

The remainder of the article is organized as
follows. In the next section, we provide a brief
overview of the history of the U.S. hog–corn
cycle. We then discuss the data and describe
the STAR testing-modeling-evaluation cycle.
Following this, we summarize model estimates
when the STAR framework is applied to the
hog–corn data and evaluate the results. In the
penultimate section, the dynamics of the esti-
mated nonlinear model are explored by using
various techniques including sliced spectra and
generalized impulse response function analy-
sis. The final section concludes.1

Corn, Hogs, and the Emergence
of the Hog–Corn Cycle2

In the economics literature, the expression
“hog cycle” refers to the correlated—possibly
lagged—component of the swings over time in
the hog–corn price ratio. The combination of
swine physiology, with its affinity for corn, and
the inherent logic of supply and demand in-
sured that, as long as markets existed for both
corn and hogs beyond the farm gate, there
would inevitably be hog cycles, and indeed,
such cycles were recognized in American agri-
culture, albeit initially at the local level, as early
as 1818 (Buley, 1980). The subsequent histori-
ography of American agriculture owes much to
the hog–corn nexus, and can be summarized by
the observations of nineteenth-century British

1 In the article, a number of intermediate results have been omit-
ted for space reasons; they are, however, in a technical appendix
by Holt and Craig available at http://agecon.lib.umn.edu.

2 This section is an abbreviated version of the history of the
hog–corn cycle found in Craig and Holt (2005).
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journalist traveling in the United States: “The
hog is regarded as the most compact form
in which the Indian corn crop of the States
can be transported to market,” as quoted in
Cronon (1991) (pp. 208–09). By the end of
the nineteenth century, the combination of the
transportation revolution and the economic
relationship between corn and hogs had gen-
erated something like a national hog cycle.
Economists began to analyze the cycle in the
twentieth century, and two classic articles were
dedicated to the topic (Coase and Fowler, 1937;
Ezekiel, 1938). Economists continue to ana-
lyze the cycle’s causes and consequence (see,
most recently, the review in Chavas and Holt,
1991). The existence and importance of the
hog cycle in American economic history stems
from at least three related factors: the capacity
of swine to convert corn into meat, the impor-
tance of swine in American agriculture, and
the sheer size of the U.S. market.

Despite shortcomings as a staple in hu-
man diets—corn is low in glutenin and
niacin (Collins, 1993; Brinkley, 1994)—corn
has proved to be an ideal device for delivering
carbohydrates to livestock, and hogs proved
to be particularly efficient in converting car-
bohydrates into meat. With the rise of a na-
tional market in the United States, countless
travelers and foreign observers noted the hog
became corn incarnate (Craig and Holt, 2005).
In addition to their ability to convert corn into
meat, hogs possessed several biological charac-
teristics that contributed to their importance in
the early farm economy relative to, say, cattle.
These included early onset of breeding (within
one year of birth), short gestation periods (four
months), and large litter size.

Once a sufficient combination of urban-
ization and transportation development oc-
curred, farmers began producing pork for the
market as opposed to on-farm consumption.
Originally valued for its ability to forage, the
hog’s subsequent lofty economic status re-
quired an off-farm market and transportation
“revolution.” Urban consumers provided the
ultimate demand for farm-produced fat and
protein, but they could be supplied from the
hinterland only so long as the cost of trans-
porting the products did not itself consume
their value. As the frontier moved west and the
country urbanized back east, improvements in
graded roads, followed by the emergence of
canals and later railroads, farmers further out
in the hinterlands not only had relatively low-
cost access to urban consumers and world mar-
kets, but they also increasingly specialized in

a relatively few products and increased their
scale of production in those lines (Craig and
Weiss, 1993).

Without low-cost transportation, early hog
cycles were typically quite local in nature, usu-
ally centered on a nearby market town, which
depending on its location, might occasionally
be tied to a broader market, which itself re-
flected a trans-village cycle (Buley, 1980). Al-
though Cincinnati was the original “Porkopo-
lis,” the railroad helped shift the center of
the trade to Chicago, where, by the early
1870s, packers slaughtered more than a mil-
lion hogs annually (Cronon, 1991, pp. 230–31).
Chicago’s rise marked the rise of a national
and international market in meat. It was only
with this transregional integration of commod-
ity markets that the multitudinous local cycles
became singular in the late nineteenth cen-
tury. Integration itself resulted from an array
of long-run economic changes that included,
among other things, the railroad, urbanization,
and, importantly, refrigeration. The national
rail grid was in place at the end of the nine-
teenth century, and it was at that time that me-
chanical refrigeration came to play an impor-
tant role in the process (Goodwin, Grennes,
and Craig, 2002). This combination of eco-
nomic changes, many components of which in-
volved enormous fixed costs, was itself sup-
ported by improvements in U.S. financial mar-
kets, and these improvements also directly
impacted farm production, facilitating expan-
sion among other things (Craig, Goodwin, and
Grennes, 2004; Craig and Holt, 2005).

Taken together, by the first decade of the
twentieth century, these changes manifested
themselves in a national hog–corn cycle that
fundamentally differed from the older local
and regional cycles. In particular, the adoption
of mechanical refrigeration allowed farmers to
expand or smooth production across the year.
For meat and dairy products, in particular, re-
frigeration broke the tyranny of the seasons.
In turn, processors of those agricultural prod-
ucts, themselves located in the urban areas to
which the raw materials were initially shipped,
could exploit economies of scale and scope and
become relatively big businesses in their own
right. The hog–corn nexus proved to be a cru-
cial link in this chain.

Following the integration of the prairie with
the east coast and from there the rest of the
world, the hog farmer faced what he perceived
to be an iron law of hog–corn economics, and
it was this law that ultimately manifested itself
in the hog cycle. The law was that a hog was
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nothing more than “fifteen or twenty bushels
of corn,” or that a bushel of corn could be
converted into ten pounds (net) of hog. Thus,
twenty bushels of corn spread over a year or
so, depending on the breed, might reasonably
yield 200 pounds of pork of various cuts—
roughly the average for hogs slaughtered dur-
ing the postbellum era (Cuff, 1992). The rule
on the farm thus became that as long as the
price of corn in bushels was less than ten times
the price of hogs in pounds, it was profitable to
feed corn to hogs.

This relationship created the hog–corn cycle.
If the supply and demand for hogs were such
that the price of corn was less than (roughly)
ten times that of pork, farmers would feed all of
their corn to, and if possible purchase more to
be fed to, their maturing hogs, and breed more.
In the absence of any other factors—such as
weather shocks, that might improve or worsen
the next corn crop—this behavior tended to
put upward pressure on the price of corn, and
productive resources that might have gone to
other farm products went in search of more
corn. In addition, as the number of hogs on the
market increased, the price of hogs would de-
crease. As the price ratio fell below the magic
number, farmers would cut back on hog pro-
duction; corn inventories would begin to accu-
mulate; and the cycle would begin again.

At this level of analysis, the hog–corn re-
lationship appears to be a simple exercise in
comparative statics: a decrease in the price
of an input (corn) leads to a decrease in the
marginal cost of production, and hence the av-
erage variable cost, of an output (hogs), and in
a competitive (i.e., price-taking) market, firms
increase production. And as each does so, mar-
ket supply increases and the result is a decrease
in market price. But with respect to the hog–
corn relationship in particular and agricultural
commodities more generally, especially in the
past before technology divorced production
from the antediluvian rhythm of the seasons,
the decision to supply a product months into
the future was made today based on yester-
day’s price (and expectations about the fu-
ture, of course). The result was not necessarily
a new set of (assumed to be) stable equilib-
ria, but rather a series of potentially unstable
disequilibria.

To see how this might occur, consider that
farmers necessarily had to make a decision
about corn acreage in the spring. If this year’s
crop proved to be in relatively short supply as a
result of planting decisions which were made in
response to last year’s price before hog produc-

ers began to bid it up, then that would tend to
put more upward pressure on this year’s corn
price. As the increase in hog production, which
itself began before the run up in corn prices, si-
multaneously began to put downward pressure
on hog prices, the hog–corn price ratio would
fall below the crucial ten-to-one ratio. At that
point, farmers would begin to slaughter in-
creasingly younger hogs—even those well be-
low the age of maturity—because the marginal
cost of continuing to feed them would exceed
the expected price. This step, however, only
exacerbated the downward swing in the cycle,
and so on it went. Graphing this behavior in
price and quantity space yielded the famous
diagram of a series of disequilibria, and be-
cause of the diagram’s shape the underlying
theory came to be called the “cobweb theo-
rem.” Depending on the behavior of the other
factors influencing the hog and corn markets,
the path of this divergence might be arrested
as quickly as one or two years or it might con-
tinue for four or five years. Eyeballing the hog
and corn price data, Shannon (1945) (p. 167)
observed that as the national cycle emerged at
the end of the nineteenth-century, the peak-to-
peak duration typically lasted four to six years.
It soon captured the attention of economists.

Early studies of the hog–corn cycle in the
twentieth century were implicitly based on a
linear model of the relationship between the
two markets (Coase and Fowler, 1937; Ezekiel,
1938); however, statistical techniques at the
time prohibited an explicit test of the markets’
dynamics. With the evolution of econometrics,
it followed that subsequent efforts to do so em-
ployed linear models (Harlow, 1960; Jelavich,
1973; Larson, 1964). The fundamental problem
associated with the use of such models in the
hog–corn cycle pervades models of population
dynamics more generally. Specifically, animals
(porcine or otherwise) may be slaughtered, in
response to market signals, literally over night;
but producing them, again in response to mar-
ket signals, takes considerably longer. There-
fore, one might logically expect this inherent
asymmetry to be better represented by some
nonlinear form.

Furthermore, the very nature of these
relationships, linear or otherwise, which them-
selves are manifestations of the underly-
ing structure of the corn and hog markets,
would be expected to change through time.
In addition, transportation improvements and
refrigeration, public policies, and a host of
organizational and technological innovations
specific to corn and hog markets, have all been
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observed over time. There is also a reason to
suspect that structural change has been, at sev-
eral junctures, a key feature of the hog–corn
relationship, and as change has not been uni-
form in the two markets over time, one might
expect the “magic ratio” to have changed as
well. To obtain a better idea of the relation-
ship between hog and corn prices over time, it
is useful to examine in more detail the basic
data, the topic of the next section.

Data Description

The data used in the empirical analysis con-
sist of monthly prices of hogs relative to
corn for the 1910—2004 period. Average
prices received by farmers, U.S., for hogs
(all grades) in dollars per hundredweight
are available on a monthly basis, season-
ally unadjusted, from the U.S. Department
of Agriculture’s (USDA) National Agricul-
tural Statistical Service (NASS) for the 1910–
2004 period. Likewise, the average price of
corn, in dollars per bushel, received by farm-
ers, U.S. (all grades), is also available on a
monthly basis, seasonally unadjusted, from
NASS for the same period. Data through
1992 were obtained from the USDA-NASS
data archive at Cornell University’s Mann
library (http://usda.mannlib.cornell.edu/data-
sets/crops/92152/). Prices for 1993–2004 were

Figure 1. Observed data and stochastic extrapolations of the TV-STAR and linear AR models
of the U.S. hog–corn ratio (horizon thirty-six years)

obtained from NASS monthly prices received
bulletins.

The hog–corn price ratio data, in log-levels
form, are plotted in the left-hand panel figure 1.
The plot is suggestive—there appears to be
a substantial cyclical feature to these data.
Indeed, it was exactly this observation that
captured the attention of Coase and Fowler
(1937), and Ezekiel (1938) in the 1930s. As ob-
served from figure 1, there has been an up-
ward trend in the ratio since the mid to late
1940s, and the ratio also appears to have be-
come more variable since the early 1970s. Fi-
nally, although difficult to discern from the
graph, there is a substantial seasonal compo-
nent to the series. In the empirical application,
the hog–corn ratio is converted to natural log-
arithms in an attempt to mitigate some of the
observed heteroskedasticity in each model’s
residuals.

Based on the plot in figure 1, there is some
question as to whether the hog–corn series pos-
sesses a unit root. To further investigate this
issue, several tests were performed. First, non-
parametric bootstrap versions of augmented
Dickey–Fuller tests were employed by using
twelve lags of the hog–corn ratio. Results show
that, with or without trend, the null hypothe-
sis of a unit root is rejected at the 0.001 level.
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Of course standard unit root tests are of ques-
tionable value when nonlinear STAR-type
models are considered (Skalin and Teräsvirta,
2002). Therefore, bootstrap-based tests similar
to those developed by Eklund (2003) were im-
plemented, wherein the null is a linear model
containing a unit root and the alternative is
a first-order approximation of a STAR model
specified in the levels. Again, using twelve lags
both with and without a trend, the null hypoth-
esis of a unit root is rejected at the 0.001 level
in all instances. Additional results are avail-
able at the website. It is therefore reasonable
to specify any statistical model of the hog–corn
data, including a STAR model, in levels form,
an issue to which we now turn.

STAR Models and the STAR Modeling Cycle

The Basic STAR Model

In this section, we describe the basic model-
ing framework used to examine the hog–corn
cycle as might be applied to a time series of
monthly observations. The STAR model of
Teräsvirta (1994) is used throughout. Accord-
ingly, a STAR model of order p and augmented
with (monthly) seasonal dummies is specified
as

�yt = � ′
1xt (1 − G(�12 yt−d ; �, c))

+ � ′
2xt G(�12 yt−d ; �, c) + εt

(1a)

or, alternatively,

�yt = �′
1xt + �′

2xt G(�12 yt−d ; �, c) + εt(1b)

where yt is the log-level of the hog–
corn price ratio; � is a first difference
operator; xt = (1, x̃′

t , D′
t )

′, where x̃t =
(�yt−1, . . . , �yt−p, yt−1)′; Dt = (D∗

1t, D∗
2t, . . . ,

D∗
11t)

′ = (D1t − D12t, D2t − D12t, . . . , D11t −
D12t)

′, where D�t, � = 1, . . . , 12 are seasonal
dummy variables with D�t = 1 when time t
corresponds to month � and zero otherwise;
� i = (�i0, �i1, . . . , �ip)′, i = 1, 2 are parameter
vectors, and �1 = �1, �2 = (�2 − �1); and εt is
a white noise process, εt ∼IID(0, �2). Based on
the unit root tests reported above, we follow
Skalin and Teräsvirta (2002) by including
the lagged level term yt−1 as an additional
explanatory variable, and thereby allow for
the possibility of a moving equilibrium (i.e.,
a reparameterized model in levels form). In
(1) G(�12yt−d; � , c) is the so-called transition
function; by construction it is bounded be-
tween zero and one, and therefore allows the
structure of the model to change, in a possibly
smooth manner, with the value of �12yt−d, that

is, lagged annual differences of the hog–corn
ratio. In other words, the model’s structure
will vary depending on whether the hog–corn
cycle is in approaching a peak (i.e., �12yt−d >
c) or a trough (i.e., �12yt−d < c) regime.

In what follows, we specify transition func-
tion G(�12yt−d; � , c) to be a logistic function
of �12yt−d = yt−d − yt−12−d of the form3

G(�12 yt−d ; �, c)

= [1 + exp{−�(�12 yt−d − c)/

�(�12 yt−d)}]−1, � > 0

(2)

where �(�12yt−d) is the sample standard de-
viation of �12yt−d. Here d is referred to as
the delay parameter. The combination of (1)
and (2) leads to a logistic STAR (LSTAR)
model. In (2), �12yt−d is the transition vari-
able and � and c are, respectively, slope and
location parameters. For the LSTAR, c is inter-
preted as the threshold between two regimes
in that G(c; � , c) = 0.5, with G(·) chang-
ing smoothly from zero to one (i.e., from
one regime to another) as �12yt−dt increases.
Here � is called the smoothness parameter. As
� → ∞, G(�12yt−d; � , c) approaches a Heavi-
side indicator function It = | (�12yt−d > c), de-
fined as It = | (A) = 1 if A is true and It = | (A) =
0 otherwise. In other words, as � → ∞, the
regime switch becomes instantaneous. There-
fore, when � is very large, the LSTAR given by
(1) and (2) becomes a SETAR. Also, as � →
0, the LSTAR converges to an autoregression
(AR) model of order p, or AR(p). Finally, in
specifying (2) another possibility is to assume,
as in Lin and Teräsvirta (1994), that, in lieu of
�12yt−d, t, t = 1, . . . , T is the transition variable.
Replacing �12yt−d with t in (2) results in an
AR model with parameters that time vary in a
potentially smooth manner, that is, the TVAR
model.

Testing Linearity and Parameter Constancy

As the foregoing discussion makes clear, lin-
ear AR models are nested within the LSTAR
framework. It is therefore desirable to test the
LSTAR against an AR specification. A fun-
damental problem with using the LSTAR to

3 Seasonal first differences are used here as the transition vari-
able as we are primarily interested in nonlinearities associated
with the hog–corn cycle—the transition variable should reflect
sustained periods of expansion or contraction. We therefore omit
monthly first differences as potential transition variables in that
they are normally too noisy to provide a consistent signal about
the cycle’s regime. See, for example, Skalin and Teräsvirta (1999)
and van Dijk, Strikholm, and Teräsvirta (2003). For this reason, we
specify the transition variable as �12yt−d.
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test linearity is that an AR model may be
achieved in one of two ways: an AR model ob-
tains if � = 0 or, alternatively, if the restrictions
� ′

1 = � ′
2 are imposed on (1) (Teräsvirta, 1994).

The problem, therefore, is that testing H0 : � =
0 against H1 : � �= 0 within the LSTAR results
in a nonstandard test, that is, a test with uniden-
tified nuisance parameters under the null (i.e.,
the autoregressive coefficients and the location
parameter). One approach to dealing with this
problem, proposed by Luukkonen, Saikkonen,
and Teräsvirta (1988), is to replace transition
function G(�12yt−d; � , c) in (1) with a suitable
Taylor series approximation. The reparameter-
ized model is no longer associated with an iden-
tification problem, and linearity testing pro-
ceeds by using standard Lagrange multiplier
(LM) tests.

Let st denote either �12yt−d or t in (2), that
is, let G(st; � , c) denote the transition function.
Then, assuming delay parameter d is known,
one linearity test is obtained by replacing G(st;
� , c) in (1b) by a first-order Taylor series ap-
proximation, which yields the following artifi-
cial regression

�yt = �′
0xt + �′

1xt st + vt(3)

where parameters �i, i = 0, 1 are functions
of original parameters in (1b) such that when
� = 0, �0 �= 0 and �1 = 0. In this case, a linear-
ity test involves testing H01 : �1 = 0 against the
alternative that H01 is not true. This nonlinear-
ity test, called the LM1 test, may be conducted
by using either an asymptotic � 2 test with (p +
2 + 11) degrees of freedom or an appropriate
F version of the test.4

As Luukkonen, Saikkonen, and Teräsvirta
(1988) note, the LM1 statistic has low power
in cases where only the intercept varies across
regimes. A test that apparently does have
power in this situation involves a third-order
Taylor series approximation for G(st; � , c) in
(1b). The following artificial regression obtains

�yt = �′
0xt + �′

1xt st + �′
2xt s

2
t + �′

3xt s
3
t + vt .

(4)

Now a test of linearity involves testing H03 :
�1 = �2 = �3 = 0 against the alternative that

4 The F version of the LM1 test statistic is obtained as follows.
Estimate (3) by imposing the restrictions associated with H01.
Denote the resulting sum of squared residuals by SSR0. Then,
estimate (3) unrestricted and compute SSR1. The test statistic
is then LM1 = [(SSR0 − SSR1)/(p + 2 + 11)]/[SSR1/(T − 2(p +
2 + 11))]. Under H01, the test statistic is distributed asymptotically
as an F distribution with (p + 2 + 11) and T − 2(p + 2 + 11) degrees
of freedom. In the empirical analysis, we rely on the F version of
the LM test in question, as it typically has better size properties
than its � 2 counterpart.

H03 is not true. This test, denoted the LM3 test,
may be conducted by using either an asymp-
totic � 2 test with 3(p + 2 + 11) degrees of free-
dom or its F test counterpart. An “economy”
version of the LM3 statistic is derived by in-
cluding only s2

t and s3
t as additional regressors

in (3). The artificial regression in this case is

�yt = �′
0xt + �′

1xt st + �2s2
t + �3s3

t + vt .(5)

A test of the null hypothesis He
03 : �1 = 0, and

�2 = �3 = 0 yields the LMe
3 test.

In practice, when st is taken to be �12yt−d (as
opposed to t), delay parameter d is unknown,
and therefore must also be determined as
part of the testing procedure. As in Teräsvirta
(1994), d is determined by repeating the LM1

and LM3 tests for all values of d such that
1 ≤ d ≤ Dmax, Dmax being the maximal lag
length considered. If H01 (H03) is rejected for

more than one value of d, then d̂ may be
determined by choosing the value associated
with the smallest overall p-value. On the other
hand, if none of the p-values for LM1 (LM3)
indicate rejection of H01 (H03), then the linear
AR model is not rejected.

Model Diagnostics—Autocorrelation

Once a candidate LSTAR model is cho-
sen, parameter estimates are obtained by us-
ing standard nonlinear estimation techniques.5

And once the model has been estimated, its
ability to adequately characterize the data
should be evaluated by employing a battery
of diagnostic tests. Of particular interest are
tests of the hypothesis of no remaining auto-
correlation in the model’s residuals and tests
of hypotheses of no remaining nonlinearity or
of no parameter nonconstancy.

To illustrate, consider a test of the hypothesis
of no remaining autocorrelation. As such, let

F(xt ; �) = � ′
1xt (1 − G(st ; �, c))

+ � ′
2xt G(st ; �, c)

denote the skeleton of the model, where � =
(� ′

1, � ′
2, � , c)′. Eitrheim and Teräsvirta (1996)

5 While estimation of an LSTAR model involves, in principle,
a straight-forward application of nonlinear least squares, certain
issues do require additional consideration. For example, reason-
able estimates of starting values may be obtained by doing a two-
dimensional grid search over the � and c parameters. As well,
estimates may be obtained by concentrating the sum of squares
function. Finally, the � parameter is generally not estimated with
precision, especially when the true value of � is large. Of course
such a result does not necessarily militate against nonlinearity, as
the asymptotic distribution of the speed of adjustment parameter
� is, in any event, nonstandard under the hypothesis that � = 0.
Regarding these issues and more, see van Dijk, Teräsvirta, and
Franses (2002) (pp. 19–21).
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propose testing the hypothesis of no remaining
autocorrelation up to and including order q by
estimating the auxiliary regression

ε̂t = �′
1∇F(xt ; �̂)′ +

q∑
i=1

�i ε̂t−i + 	t(6)

where ∇F(xt ; �̂) = (∂ F(xt ; �̂)/∂�).6 The LM
test statistic is computed in the usual fashion
as TR2, where R2 is the r-squared coefficient
from the auxiliary regression in (6). Under the
null hypothesis of no remaining autocorrela-
tion, that is, under H0 : �1 = · · · = �q = 0,
the resulting test statistic has an asymptotic
� 2 distribution with q degrees of freedom. An
F-version of the test may also be constructed.

TV-STAR, MRSTAR, and Additive
STAR Models

As already suggested, there may be occasions
where the LSTAR’s parameters are not con-
stant through time, due perhaps to institutional
or technological change, a possibility that is
plausible for the hog–corn ratio. In this case,
it may be better to specify a model for �yt that
includes both regime switching and noncon-
stant parameters, a TV-STAR model.

The TV-STAR is expressed as

�yt = [� ′
1xt (1 − G1(�12 yt−d ; �1, c1))

+ � ′
2xt G1(�12 yt−d ; �1, c1)]

× (1 − G2(t ; �2, c2))

+ [� ′
3xt (1 − G1(�12 yt−d ; �1, c1))

+ � ′
4xt G1(�12 yt−d ; �1, c1)]

× G2(t ; �2, c2) + εt

(7a)

where G1(·) and G2(·) are logistic functions
as in (2). Clearly if � 2 = 0, or if �1 = �3

and �2 = �4, the two-regime LSTAR ob-
tains. If t in transition function G2(·) in (7)
is replaced by a second endogenous transition
variable, �12yt−d, the Multiple Regime STAR,
or MRSTAR model of van Dijk and Franses
(1999) obtains.

6 In practice, the estimated residuals, the ε̂t , may not be exactly
orthogonal to the gradient vector ∇F(xt ; 
̂). This could happen due
to numerical inaccuracy if the STAR model in question is difficult
to estimate. As a result the empirical size of the test could increase.
To address this potential problem, Eitrheim and Teräsvirta (1996)
propose first regressing ε̂t on ∇F(xt ; 
̂), and then using the resid-
uals from this regression in (6) for all subsequent tests of remain-
ing nonlinearity, parameter nonconstancy, autocorrelation, etc. In-
deed, this is the procedure used in implementing all diagnostic tests
reported subsequently in the analysis of the hog–corn data.

Several strategies may be used to test an
LSTAR versus a TV-STAR. First, once a can-
didate STAR model has been estimated, G2(t;
� 2, c2) in (7) may be replaced by a suitable Tay-
lor series expansion. For example, if a third-
order Taylor series is used the approximation
to (7) is

�yt = �′
1xt + �′

2xt G1(�12 yt−d ; �1, c1)

+ �′
1xt t + �′

2xt t
2 + �′

3xt t
3

+ (
�′

4xt t + �′
5xt t

2 + �′
6xt t

3
)

× G1(�12 yt−d ; �1, c1) + �t .

(8)

The null hypothesis of no time variation is
H0 : �1 = · · · = �6 = 0, with the LM test con-
structed by running a regression similar to that
in (6) wherein the residuals from the estimated
LSTAR (TVAR) are regressed on the gradient

vector ∇F(xt ; 
̂) and additional regressors

xt t, xt t2, xt t3, xt t Ĝ1, xt t2Ĝ1, xt t3Ĝ1, Ĝ1 =
G1(�12 yt−d ; �̂1, ĉ1) (van Dijk and Franses,
1999). The LM test statistic is then constructed
either as an asymptotic � 2 test with 6(p +
2 + 11) degrees of freedom or as a comparably
defined F test. This testing strategy is the
“Specific-to-General” procedure outlined by
Lundbergh, Teräsvirta, and van Dijk (2003).

An alternative approach, also suggested by
Lundbergh, Teräsvirta, and van Dijk (2003),
is to test a TV-STAR directly against a linear
model, the “Specific-to-General-to-Specific”
approach. In this case, the transition func-
tions in (7) are approximated directly by, say,
a first-order Taylor series expansion. Doing so
gives

�yt = �′
0xt + �′

1xt�12 yt−d

+ �′
2xt t + �′

3xt�12 yt−d t + vt

(9)

and testing the null hypothesis HTV−STAR
0 :

�1 = �2 = �3 = 0 yields the LMTV−STAR test,
which may be conducted by using either an
asymptotic � 2 test with 3(p + 2 + 11) degrees
of freedom or an F test.

Lundbergh, Teräsvirta, and van Dijk (2003)
describe several additional tests of interest
nested within (9) when HTV−STAR

0 is rejected.

Specifically, in this case test HSTAR
0 : �1 = �3 =

0, the LMSTAR test, in which case (9) reduces
to a TVAR under HSTAR

0 . Also, test HTVAR
0 :

�2 = �3 = 0, the LMTVAR test, wherein (9)
reduces to a STAR model under HTVAR

0 . If

both HSTAR
0 and HTVAR

0 are rejected, then
the TV-STAR model is retained. Alterna-
tively, if HSTAR

0 is rejected but HTVAR
0 is not,
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then a STAR model is indicated. The op-
posite conclusion obtains (i.e., a TVAR is
selected) if HTVAR

0 is rejected but HSTAR
0

is not. Lundbergh, Teräsvirta, and van Dijk
(2003) report simulation evidence assessing
the relative merits of the two testing strate-
gies (i.e., Specific-to-General versus Specific-
to-General-to-Specific), and suggest that it
may be desirable to employ both in the model
selection stage.

Finally, Eitrheim and Teräsvirta propose an
alternative to the TV-STAR (or MRSTAR):
the additive STAR. In this case, (1b) is mod-
ified by appending a second additive STAR
component. That is,

�yt = �′
1xt + �′

2xt G1(�12 yt−d ; �1, c1)

+ �′
3xt G2(s2t ; �2, c2) + εt

(10)

is an additive STAR model where either
s2t = �12yt−d or s2t = t. The foregoing
tests for remaining nonlinearity of the TV-
STAR/MRSTAR type may be modified to test
additive STAR effects by simply excluding re-
gressors in artificial regression (5) involving

Ĝ1.7

Heteroskedasticity Robust Tests

When performing LM tests of remaining resid-
ual autocorrelation, unspecified heteroskedas-
ticity may result in spurious rejection of the
null hypothesis. Ignored heteroskedasticity in
LM tests of linearity, parameter constancy,
and model misspecification may have simi-
lar effects. It is therefore desirable to have
test statistics that are robust in the presence
of heteroskedasticity. Wooldridge (1990) has
developed a simple set of procedures for ob-
taining heteroskedasticity robust LM tests in
a general setting. Details on implementing
heteroskedasticity robust tests in a STAR-
type framework are provided in van Dijk,
Teräsvirta, and Franses (2002).

While it seems advantageous to compute
robust LM tests if there is evidence of het-
eroskedasticity, a note of caution is in order.
Lundbergh and Teräsvirta (1998) provide sim-
ulation evidence showing that in certain in-
stances robustification reduces the power of
linearity tests. In other words, robustification

7 In fact, the additive STAR model need not be viewed as a
simple alternative to the TV-STAR (MRSTAR). As van Dijk,
Strikholm, and Teräsvirta (2003) illustrate, it is possible to com-
bine additional additive components with a TV-STAR. This later
option may be especially useful if, say, observed seasonality has
undergone several changes during the sample period.

may make it difficult to detect nonlinearity
when in fact it truly exists. Here we simply
present both standard and robustified versions
of LM linearity tests. Final model specifications
are then determined through careful evalu-
ation of each candidate model’s properties
at the estimation and misspecification testing
stages.

Modeling the Hog–Corn Ratio

In this section, we present results on the es-
timation of a provisional linear model fitted
to the hog–corn ratio data. We then present
results of linearity tests, estimates of a candi-
date TVAR model, results of additional model
misspecification tests, and finally estimates of
a TV-STAR model. To conserve space, param-
eter estimates for the various models are not
presented; they are, however, available in Holt
and Craig (2005).

Linear Model Results

A linear AR model is first fitted to the data.
To account for seasonality, we include eleven
monthly dummy variables, as previously de-
fined. The Akaike information criterion (AIC)
is used to choose the lag length. Allowing up to
48 lags, the AIC is minimized at lag 11, imply-
ing a total of 1,103 usable observations. Sev-
eral diagnostics for the best-fitting linear AR
model are reported in the left-most column of
table 1. LM test results show that even with
11 lags, the linear model apparently does not
capture all of the residual autocorrelation. LM
tests also reveal substantial evidence of ARCH
effects. Based on the Lomnicki–Jarque–Bera
(LJB) test (Lomnicki, 1961; Jarque and Bera,
1980), the residuals associated with the AR
model fail to satisfy normality. As indicated by
the excess kurtosis measure reported in table 1,
the error distribution for the linear model has
thicker tails than that implied by normality.

Linearity, Parameter Constancy,
and TV-STAR Test Results

In testing nonlinearity, we use various lags of
seasonal first differences of the hog–corn ratio,
�12yt−d, d = 1, . . . , Dmax, where Dmax = 6.8 Of
course to test parameter constancy, we use a
linear trend.

8 Tests were performed initially by using Dmax = 12, but all results
following d = 6 were found to be statistically insignificant and are
therefore not reported.
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Table 1. Diagnostic Tests for Estimated Models for the U.S. Hog–Corn Ratio

Measure AR TVAR TV-STAR

T 1,103 1,103 1,103
No. of Parameters 24 50 100
R2 0.144 0.263 0.345
�̂ε 0.082 0.076 0.072
�̂ε,NL/�̂ε,L — 0.927 0.878
AIC −4.961 −5.063 −5.091
SIC −4.700 −4.519 −4.001
SK 0.113 (0.125) 0.074 (0.318) 0.018 (0.803)
EK 3.566 (0.000) 3.566 (0.000) 2.068 (0.000)
LJB 605.081 (0.000) 597.924 (0.000) 199.950 (0.000)
ARCH(4) 17.348 (0.000) 23.765 (0.000) 19.582 (0.000)
ARCH(6) 11.674 (0.000) 16.074 (0.000) 13.107 (0.000)
LMSC(6) S 3.502 (0.002) 1.044 (0.395) 0.940 (0.466)
LMSC(6) R 2.800 (0.010) 0.759 (0.602) 0.803 (0.567)
LMSC(12) S 2.020 (0.020) 1.348 (0.185) 1.519 (0.111)
LMSC(12) R 1.694 (0.063) 1.168 (0.301) 1.267 (0.232)
LMSC(18) S 2.215 (0.002) 1.382 (0.131) 1.282 (0.191)
LMSC(18) R 2.176 (0.003) 1.205 (0.249) 1.058 (0.391)
LMSC(24) S 2.510 (0.000) 1.237 (0.199) 1.079 (0.361)
LMSC(24) R 2.253 (0.001) 1.047 (0.401) 0.900 (0.603)

Note: T denotes sample size, R2 the unadjusted R2, and �̂ε the residual standard error. �̂ε,NL/�̂ε,L is the ratio of the residual

standard error from the respective nonlinear (STAR) model relative to the linear (AR) model. SK is skewness, EK is excess kurtosis,

and LJB is the Lomnicki–Jarque–Bera test of normality of the residuals. ARCH is the LM test of no autoregressive conditional

heteroskedasticity (ARCH), and LMSC(�) denotes the F variant of standard (S) and heteroskedasticity robust (R) versions of the LM test

of no remaining autocorrelation in the residuals up to and including lag � . Numbers in parentheses after values of the test statistics are p-values.

Results for the LM3 and LM1 “Specific-to-
General” linearity tests applied to the AR
model, both standard and robustified, are pre-
sented in table 2, along with comparable results
for parameter constancy. Tests were performed
by using 11 lags of the hog–corn ratio along
with eleven monthly dummy variables. As well,
linearity (parameter constancy) tests are per-
formed using only monthly dummy variables
and only lagged dependent variables. While
there is some evidence in favor of STAR-type
nonlinearity for several values of delay param-
eter d, the most striking test results in table 2
are those for parameter constancy. Regardless
of the test used, the null hypothesis of param-
eter constancy is soundly rejected when all re-
gressors are included. An essentially identical
result is obtained when only seasonal dummy
variables or only lagged dependent variables
are included.

The overall picture that emerges from
table 2 then is that of some support for STAR-
type nonlinearity, but overwhelming support
for the notion that the model’s parameters
have not remained constant through time. For
many of the reasons mentioned in earlier sec-
tions, including institutional and technological
change, this result is not surprising. For ex-
ample, technological change has occurred in
hog production (i.e., multiple farrowings per

year, total confinement operations, improved
genetics, etc.) that has caused seasonality in
prices (production) to be less pronounced over
time. Similarly, corn yields have risen dramat-
ically over the century along with the ability
to dry and store large quantities of grain. As
well, since the 1930s various government pro-
grams have, at times, substantially impacted
corn prices and production. All of these fac-
tors, and more, have likely contributed to the
observed parameter instability in the linear
model of the hog–corn ratio.

Results for the “Specific-to-General-to-
Specific” testing sequence are presented in
table 3. In this case results for the LMTV−STAR

test indicate that linearity is overwhelmingly
rejected for all values of d considered, with the
minimum p value occurring at d = 1. Further-
more, there is clear evidence for d = 1 and
6 that both the LMSTAR and LMTVAR statis-
tics may be rejected at conventional levels for
both the standard and robustified tests; in other
words, for these values of d a TV-STAR model
is retained.

A Provisional TVAR Model

Based on the combined results in tables 2 and
3, we first fit a TVAR model to the data by us-
ing nonlinear least squares. Details of various



Holt and Craig Nonlinearity and Structural Change in the Hog–Corn Cycle 225

Ta
bl

e
2.

R
es

ul
ts

of
St

an
da

rd
an

d
H

et
er

os
ke

da
st

ic
it

y
R

ob
us

t
L

M
Te

st
s

fo
r

N
on

lin
ea

ri
ty

,S
pe

ci
fic

-t
o-

G
en

er
al

P
ro

ce
du

re
,f

or
M

on
th

ly
H

og
–C

or
n

R
at

io

A
ll

R
e

g
re

ss
o

rs
M

o
n

th
ly

D
u

m
m

ie
s

L
a

g
g

e
d

D
e

p
e

n
d

e
n

t
V

a
ri

a
b

le
s

S
ta

n
d

a
rd

T
e

st
s

R
o

b
u

st
T

e
st

s
S

ta
n

d
a

rd
T

e
st

s
R

o
b

u
st

T
e

st
s

S
ta

n
d

a
rd

T
e

st
s

R
o

b
u

st
T

e
st

s
T

ra
n

si
ti

o
n

V
a

ri
a

b
le

,
s t

L
M

3
L

M
1

L
M

3
L

M
1

L
M

3
L

M
1

L
M

3
L

M
1

L
M

3
L

M
1

L
M

3
L

M
1

�
1

2
y t

−1
5

.4
8

E
−0

6
0

.0
0

3
0

.3
8

5
0

.5
4

5
0

.0
7

7
0

.2
1

2
0

.3
3

4
0

.4
5

4
3

.0
9

E
−0

6
0

.0
0

5
0

.8
6

9
0

.7
4

8
�

1
2
y t

−2
2

.5
9

E
−0

5
0

.0
1

1
0

.4
3

5
0

.7
3

0
0

.0
0

3
0

.0
8

8
0

.0
4

9
0

.3
1

5
0

.0
0

2
0

.0
0

7
0

.7
5

3
0

.6
5

1
�

1
2
y t

−3
0

.0
0

3
0

.0
0

9
0

.2
7

6
0

.3
6

5
0

.0
0

4
0

.0
3

0
0

.0
2

6
0

.1
1

6
0

.0
1

4
0

.0
1

5
0

.5
0

9
0

.3
1

0
�

1
2
y t

−4
0

.0
3

0
0

.0
2

4
0

.4
0

7
0

.4
8

5
0

.0
2

1
0

.0
0

9
0

.1
1

6
0

.0
8

6
0

.0
3

1
0

.0
4

4
0

.6
2

6
0

.4
2

0
�

1
2
y t

−5
0

.0
0

4
0

.0
0

2
0

.2
9

1
0

.2
5

9
0

.0
1

1
2

.7
6

E
−0

4
0

.0
7

6
0

.0
2

4
0

.0
5

8
0

.0
1

3
0

.3
4

6
0

.1
8

8
�

1
2
y t

−6
3

.5
6

E
−0

4
3

.1
2

E
−0

5
0

.0
8

4
0

.0
7

2
6

.4
4

E
−0

4
1

.0
2

E
−0

5
0

.0
2

2
0

.0
0

5
0

.0
0

7
3

.0
1

E
−0

4
0

.2
5

7
0

.0
8

0
t∗

3
.9

0
E

−1
5

2
.4

3
E

−1
9

4
.4

6
E

−0
9

2
.3

5
E

−1
5

3
.4

8
E

−1
9

1
.9

7
E

−2
3

5
.4

7
E

−1
2

2
.8

2
E

−1
6

2
.6

5
E

−0
6

5
.8

8
E

−0
9

5
.0

2
E

−0
5

9
.6

3
E

−0
7

N
o

te
:

N
u

m
b

e
rs

a
re

p-
v

a
lu

e
s

o
f

F
v

a
ri

a
n

ts
th

e
L

M
-t

y
p

e
te

st
s

fo
r

sp
e

ci
fi

ca
ti

o
n

o
f

S
T

A
R

-t
y

p
e

m
o

d
e

ls
d

e
sc

ri
b

e
d

b
y

T
e

rä
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residual diagnostic tests applied to this model
are recorded in the middle column of table
1. Results show there is an improvement in
fit for the TVAR model relative to the linear
AR specification: the standard deviation of the
residuals from the TVAR is over 7% smaller
than that of the AR model. Moreover, unlike
for the AR model, the residuals of the TVAR
model show no evidence of remaining serial
correlation. Overall, the TVAR model fits the
data better than does the constant parameter
AR.

Diagnostic tests for remaining nonlinearity
(d = 1, . . . , 6) and for parameter constancy for
the TVAR, notably the LMe

3 and LM1 tests,
were obtained for the TVAR. While these re-
sults are not reported to save space (they are
available in Holt and Craig), they indicate that
the TVAR is rejected against the TV-STAR for
d = 1 and 6, a result consistent with Specific-to-
General-to-Specific testing results presented
in table 3. The results also show that there is
no evidence of remaining parameter noncon-
stancy. Based on these additional tests and the
evidence in table 3, we next fit a TV-STAR to
the hog–corn data.

A TV-STAR Model

Results in table 3 and those just discussed for
the TVAR suggest several possibilities for the
delay parameter in a TV-STAR, most notably
d = 1 or 6. To this end TV-STAR models
with both d = 1 and 6 were fitted. Preliminary
evidence, including model fit and diagnostic
statistics and a post-sample forecasting exer-
cise, indicated that the TV-STAR with d = 1
was preferred. We therefore focus our remain-
ing attention on results for the TV-STAR with
transition variable �12yt−1. Consequently, the
TV-STAR model fitted to the hog–corn data is
specified as

�yt = [� ′
1xt

(
1 − G1(�12 yt−1; �1, c1))

+ � ′
2xt G1(�12 yt−1; �1, c1)]

× (1 − G2(t∗; �2, c2

))
+ [� ′

3x(1 − G1(�12 yt−1; �1, c1))

+ � ′
4xt G1(�12 yt−1; �1, c1)]

× G2

(
t∗; �2, c2

) + εt

(11)

where xt = (1, x̃′
t , D′

t )
′, x̃t = (�yt−1, . . . ,

�yt−12, yt−1)′, Dt is a vector of seasonal dum-
mies, and t∗ = t/T , t = 1, . . . , T . Results of
several misspecification tests for the estimated
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Table 3. Results of Standard and Heteroskedasticity Robust LM Tests for Nonlinearity, Specific-
to-General-to-Specific Procedure, for Monthly Hog–Corn Ratio

Standard Tests Robust Tests
Transition
Variable, st LMTV−STAR LMSTAR LMTV−AR LMTV−STAR LMSTAR LMTV−AR

�12yt−1 8.19E−22 1.26E−06 4.90E−21 2.76E−10 0.046 1.33E−12
�12yt−2 1.02E−21 1.51E−06 1.07E−21 3.88E−10 0.096 4.68E−13
�12yt−3 5.87E−21 6.05E−06 9.35E−21 3.54E−09 0.056 1.45E−12
�12yt−4 1.90E−18 4.48E−04 1.01E−18 1.11E−07 0.217 3.57E−10
�12yt−5 2.61E−18 5.58E−04 3.46E−17 1.25E−07 0.113 1.23E−09
�12yt−6 7.23E−21 7.11E−06 1.13E−17 1.03E−08 0.030 3.70E−10

Note: Numbers are p-values of F variants the LM-type tests for specification of TV-STAR-type models described by Lundbergh, Teräsvirta, and van Dijk

(2003) applied to the U.S. hog–corn ratio, 1913:02–2004:12. The tests are applied to an AR model with 11 lags of first differences and seasonal dummies, and

are based on the auxiliary regression in (10).

TV-STAR are recorded in table 1. Based on the
relative standard error and the AIC, the TV-
STAR represents an improvement over both
the AR and TVAR specifications.9 The LJB
statistic implies that this model also fails the
normality assumption; however, excess kurto-
sis has now been reduced substantially relative
to the other models. Evidence of significant
ARCH effects remains. As well, the TV-STAR
is associated with no significant autocorrela-
tion at any lag considered. Diagnostic tests for
remaining additive nonlinearity and parame-
ter constancy, although not presented to con-
serve space (they are available in Holt and
Craig), indicate there is no evidence of remain-
ing nonlinearity of the additive type. The esti-
mated TV-STAR model therefore appears to
do an adequate job of capturing the nonlinear-
ity and time variation in the hog–corn series.

The estimated transition functions for the
TV-STAR are

G1(�12 yt−1; �̂1, ĉ1)

=
[

1 + exp

{
− 500.0

(
�12 yt−1 + 0.081

(0.003)

) /
�̂�12 yt−1

}]−1

(12)

and

9 This relative ranking was also maintained in a post-sample fore-
cast evaluation. Specifically, the models were estimated initially by
using data through 1989 and then reestimated recursively on a
rolling window of data for each month through June, 2004. For
each window, 1-step-ahead to 18-step-ahead forecasts for the level
of the series were obtained, resulting in a total of 163 forecasts at
each forecast horizon. At one and two month horizons, all mod-
els perform equally well in terms of root mean square forecast
error. Beyond this horizon, however, the AR model exhibits infe-
rior forecasting performance. And beginning with the nine-month
horizon the TV-STAR model consistently outperforms the TVAR.
Additional details are provided in Holt and Craig.

G2

(
t∗; �̂2, ĉ2

)
=

[
1 + exp

{
− 2.364

(1.342)

(
t∗ − 0.449

(0.069)

) /
�̂t

}]−1

(13)

where heteroskedasticity consistent standard
errors are reported in parentheses. The esti-
mated location parameter c1 in (12) is reason-
ably close to zero, implying that regimes where
G1(�12yt−1) = 1 and G1(�12yt−1) = 0 are as-
sociated with positive and negative changes
in the hog–corn ratio over the past twelve
months. As illustrated in the upper panel of
figure 2, where each circle denotes at least one
observation, the transition between the two
regimes is rather abrupt, as would be suggested
by the large estimate of � 1 in (12). Because
G1(�12yt−1) is simply a monotonic transfor-
mation of �12yt−1, it follows that periods for
which G1(�12yt−1) = (1) 0 are roughly asso-
ciated with peaks (troughs) in the hog cycle.
In what follows, we refer to the G1(�12yt−1 >
c) regime as the “peak” regime and the
G1(�12yt−1 < c) regime as the “trough” regime.

As depicted in the lower panel of figure 2,
the structural change implied by the TV-STAR
model is rather smooth. The estimate of lo-
cation parameter c2 suggests that structural
change is centered on t∗ = 0.45, which corre-
sponds with May, 1954. This result corresponds
with the long-run transformation of U.S. agri-
culture, as described above, which greatly ac-
celerated in the postwar period.

To further explore the implications of
the TV-STAR model, the time-varying and
regime-dependent intercept terms are plotted
in the top panel of figure 3, along with the
observed data. As expected, intercept terms
are higher for the peak regime (approximately
0.51 at t∗ = 0) than for the trough regime
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Figure 2. G1(Δ12 yt−1), as a function of the transition variable, Δ12 yt−1 (top panel) and G2(t∗)
over time (bottom panel)

(approximately 0.28 at t∗ = 0). The variation
from high-to-low intercept terms in the top
panel of figure 3 therefore provides a graph-
ical depiction of the hog–corn cycle over time.
Because the transition variable is �12yt−1, high
(low) values of the ratio are immediately fol-
lowed by peak (trough) periods in the hog–
corn cycle. This result suggests, for example,
that periods of relative scarcity in the corn
market are followed by sell-offs in the hog
market—a response to higher feed prices—
which in turn induces a shift to a contractionary
regime. The implied long-run (deterministic)
equilibrium for the TV-STAR model is plot-
ted in the lower panel of figure 3. The grad-
ual increase in the long-run equilibrium values
for regimes mirrors the perceptible increase
in the hog–corn ratio over time, and therefore
the slow departure from the historical “ten-to-

one rule” for profitability in raising hogs, which
characterized the market before the 1930s.10

The results indicate that, with the exception
of early-to-mid 1930s (when the cycles where
brief) and the late 1980s and early 1990s (when
they were longer), there has been roughly a
three-to-five year hog–corn cycle, a result con-
sistent with previous research (e.g., Jelavich,
1973). There is also some evidence that the du-
ration of the cycle, and especially troughs, has
decreased since the late 1960s.

10 In part this result likely reflects the somewhat diminished im-
portance of corn, a carbohydrate, as a dominant variable factor
of production in raising hogs during the postwar period. Specifi-
cally, protein sources such as soybean meal have gained in relative
import over this period.
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Figure 3. Observed data and moving intercept (top panel) and observed data and moving
long-run equilibrium (bottom panel)

Model Dynamics

As the foregoing makes clear, there are fea-
tures of the hog market consistent with both
nonlinear dynamics and structural change. It
is therefore desirable to characterize the dy-
namic behavior of the estimated TV-STAR
model in some consistent and reasonably
transparent ways, the focus of this section.

Deterministic Extrapolation

We consider first a deterministic extrapolation
of the model to obtain insights into its im-
plied behavior. This is done by iterating the
skeleton of the model, that is, the deterministic
part of the model, ahead without introducing
stochastic shocks. We start the extrapolation by
using the final values of the sample data as ini-
tial values. Iterating the model ahead for thirty-
six years, we find that the realizations converge
to a unique seasonal pattern associated with
the seasonal dummy variables. The results are
plotted in the right-hand panel of figure 1. The

long-run seasonal peak occurs in August, with
a ratio of 23.2-to-1, and the long-run seasonal
low occurs for April, with a ratio of 19.3-to-1.

Table 4. Roots of Characteristic Polynomi-
als for Select Values of Transition Functions
G1(Δ12 yt−1) = 0 and G2(t∗) = 0

Root Modulus (Half-Life) Period

Regime: G1(�12yt−1) = 0, G2 (t∗) = 0
0.95 ± 0.15 0.96 (16.57) 38.82

−0.92 ± 0.15 0.93 (9.70) 2.11

Regime: G1(�12yt−1) = 1, G2 (t∗) = 0
0.99 ± 0.13 1.00 (2330.78) 49.58
0.76 ± 0.52 0.92 (8.55) 10.57

−0.16 ± 0.88 0.90 (6.27) 3.59

Regime: G1(�12yt−1) = 0, G2 (t∗) = 1
−0.67 ± 0.59 0.90 (6.05) 2.59

Regime: G1(�12yt−1) = 1, G2 (t∗) = 1
0.91 ± 0.12 0.92 (7.88) 48.26

Note: Only roots with modulus ≥ 0.90 are reported. Period is denoted in

months.
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Figure 4. Sliced spectra, G1(Δ12 yt−1) = 0 (solid line) and G1(Δ12 yt−1) = 1 (dashed line), for
select periods: (a) G2(t∗) = 0, (b) G2(t∗) = 0.5, and (c) G2(t∗) = 1

Characteristic Roots and Sliced Spectra

It is possible at each point in the sample period
and for various values of the transition func-
tions G1(�12yt−1) and G2(t∗), to compute the
roots of the characteristic polynomial of the
model (Teräsvirta, 1994). Roots of the char-
acteristic polynomial (with modulus ≥ 0.90),
along with period lengths and half-lives, are
reported in table 4 for G1(�12yt−1) = 0 and
G1(�12yt−1) = 1 for G2(t∗) = 0, and likewise
for G2(t∗) = 1. Of interest is that, early in the
period, the dominant root is associated with a
complex pair and a modulus near one when
G1(�12yt−1) = 1. Late in the sample data (i.e.,

G2(t∗) = 1), both the dominant roots are repre-
sented by complex pairs, with moduli less than
one and with relatively short half-lives. There-
fore, late in the sample, there is a tendency for
the model to return rather quickly to its long-
run equilibrium level, as illustrated by the de-
terministic extrapolation in figure 1. This find-
ing is consistent with accelerated information
flows (i.e., market coordination), which in part
have been induced by the rapid rise of verti-
cal integration in the hog market (i.e., grower
contracts).

A similar related picture emerges by consid-
ering the sliced spectra for the model at several
different time periods (Skalin and Teräsvirta,
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Figure 5. Mean paths for generalized impulse response functions of the TV-STAR model. (a)
G2(t∗) = 0, (b) G2(t∗) = 0.5, and (c) G2(t∗) = 1

1999). Specifically, the spectra are determined
at G1(�12yt−1) = 0 and G1(�12yt−1) = 1 for
G2(t∗) = 0, G2(t∗) = 0.5, and G2(t∗) = 1. The
results are presented in figure 4. For G2(t∗) = 0
the spectrum has an initial peak at a frequency
corresponding to 48 months for peaks and at
a frequency corresponding to 36.8 months for
troughs, results similar to those reported in
table 4. These values correspond closely to
what might be called a “hog cycle frequency.”
For G2(t∗) = 0.5, which corresponds to Jan-
uary, 1959 in the sample, the initial peak in the
spectrum occurs at 42.4 months for peaks and
at 22.51 months for troughs. Finally, forG2(t∗)
= 1, the initial peak occurs at 34.5 months
for peaks and at 19.35 months for troughs
(figure 4).

Of interest is that the periodicity of the
cycle in both peak and trough regimes has
shortened throughout the sample period, and
especially for troughs. This in part must re-
flect the fact that building livestock inven-
tories is more readily accomplished later
in the sample period than earlier, a result
of the adoption of nearly continuous farrowing
schedules and total confinement operations. In
addition, increased spatial integration of com-
modity markets has facilitated greater mar-
ket coordination, which has also reinforced a
shortening of the periodicity of the cycle. In
short, the flow of slaughtered hogs and infor-
mation pertaining to them is more nearly in-
stantaneous later in the sample period. Also
of interest is that the contribution of the hog
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cycle frequency becomes less prominent and
the seasonal effect more prominent through
time for peak regimes. Taken together, these
results confirm the ability of the estimated TV-
STAR model to capture fundamental aspects
of the hog–corn series through time, and espe-
cially the asymmetric adjustments during peak
and trough periods that are apparently a fea-
ture of the data.

Generalized Impulse Response Functions

To obtain additional information about the
dynamic properties of the model, shock
propagation is examined by computing gen-
eralized impulse response functions (GIs)
proposed by Koop, Pesaran, and Potter (1996).
Details on GI computation are available in
Holt and Craig. Here we compute GIs for three
STAR models: the one observed prior to the
structural change [G2(t∗) = 0]; the one ob-
served when structural change is at the mid-
way point [G2(t∗) = 0.5], and the one obtained
when structural change is complete [G2(t∗) =
1]. Mean paths for the GIs, conditional on his-
tories for G1(�12yt−1) > 0.5 (peaks) and for
G1(�12yt−1) ≤ 0.5 (troughs), and conditional
on positive and negative shocks, are presented
in figure 5.

Several features of interest are revealed in
these plots. First, comparing panels (a) and (c),
it is clear that shocks have a somewhat big-
ger effect at the end of the structural change
than at the beginning. For example, follow-
ing the structural change the largest effect of
a positive shock in a peak period occurs at
month 2, with an oscillatory decline toward
zero thereafter. But before structural change
takes place, the largest response occurs instan-
taneously. As well, the persistence seems more
highly amplified toward the middle and the end
of structural change (figures 5(b) and (c)) then
at the beginning (figure 5(a)). While there are
potentially many reasons why hog–corn mar-
kets are now more responsive to shocks than
in previous periods, in part this must be re-
lated to (1) the quantity and speed with which
information is now disseminated, processed,
and acted upon; and (2) the fact that hog pro-
duction in particular has become a more highly
integrated process, implying that a smaller
number of agents is coordinating production
and marketing decisions. By the end of the
structural change the responses are relatively
symmetric to positive and negative shocks in
both regimes, although this is not the case prior
to the structural change being completed, and

especially so for troughs. Finally, and most im-
portantly, there is a distinct difference in shock
transmission between the two regimes. Shocks
during peaks are larger in magnitude and have
more persistence, at least initially, than do
shocks during troughs, a feature that remains
even after the structural change. This effect
is especially noticeable for negative shocks
(figure 5), where there are distinct differences
in the mean paths even at horizons of up to
thirty months. Of course this result is expected
because, as noted previously, it is easier to liq-
uidate herds than it is to build them in response
to changes in expected profits.

Conclusions

In this article, we have explicitly modeled po-
tential nonlinear features of the U.S. hog–corn
cycle in combination with structural change.
While previous research has found evidence of
nonlinearity in the hog–corn cycle, no prior at-
tempts have been made to explicitly model the
implied nonlinearity. We do so here by using a
class of endogenous regime switching models
belonging to the family of STARs. The time
series of monthly observations on the hog–
corn ratio used in the empirical analysis spans
the 1910–2004 period. Not only does this pe-
riod include a number of complete cycles, but
also it encompasses many historical and in-
stitutional changes that might lead to struc-
tural instability. At the beginning of the sample
period, a national cycle was just emerging as
local and regional markets became more inte-
grated. Moreover, breeding cycles were such
that a new crop of pigs would typically be pro-
duced only once or at most twice a year. This
situation began to change rather rapidly in the
postwar period as producers switched to total
confinement operations and to nearly continu-
ous breeding-production cycles. Consolidation
of this sort was especially prevalent from the
1950s onward. We might therefore suspect that
these effects would have a substantial impact
on seasonal production patterns, and therefore
on seasonal price patterns.

In modeling the data, we followed the basic
testing, estimation, and evaluation cycle pro-
posed initially by Teräsvirta (1994). The re-
sults of various linearity tests suggested that a
TV-STAR model is appropriate for modeling
the hog–corn cycle. A TV-STAR model that
uses �12yt−1 as a transition variable was subse-
quently fitted to the data, and found—based
on comparisons with linear AR and TVAR
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models and, as well, model diagnostics—to be
a suitable specification in nearly every respect.
We proceeded to analyze various features of
this model.

A careful examination of the TV-STAR’s
properties yielded several interesting features
of the hog–corn cycle. First, the cycle ap-
pears to have occurred with a somewhat reg-
ular three-to-five year frequency during the
sample period. The early 1930s emerged as
a time of high activity, with cycles occurring
much more frequently. Moreover, structural
change has apparently occurred rapidly since
the 1950s. As well, the role of the cycle it-
self seems to have diminished somewhat by
the end of the sample period. Finally, calcula-
tion of generalized impulse response functions
showed that the response of the model to a
shock is quantitatively and qualitatively differ-
ent in the two regimes. In the end, our research
suggests that the hog–corn cycle itself is not a
stationary process, but rather a feature of these
markets that has, itself, evolved through time
as dictated by institutional and technological
change.

[Received December 2004;
accepted May 2005.]
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