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We consider the regression model y; = f(x;) + & in which the function f or its pth derivative f ) may have a
discontinuity at some unknown point 7. By fitting local polynomials from the left and right, we test the null that
f @ is continuous against the alternative that f ?)(t—) # £ ") (t4). We obtain Darling-Erdés type limit theorems
for the test statistics under the null hypothesis of no change, as well as their limits in probability under the
alternative. Consistency of the related change-point estimators is also established.
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1 INTRODUCTION AND RESULTS
We consider the regression model
yvi=f(x)+e, 1=<izn,

where x; = i/n, 1 <i <n, and f(¢) is an unknown function. Let 0 < p < co be a given
integer. We wish to test the null-hypothesis

Hy : f Pexists and is continuous on [0, 1]
against the alternative
H, : there is T € (0, 1) such that f ?(t—) % f P (t+).

The testing procedure proposed in this paper consists in fitting local polynomials from left
and right and checking if the difference between appropriate coefficients of the two polyno-
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10 L. HORVATH AND P. KOKOSZKA

mials is significantly different from zero at at least one point. This paper develops the asymp-
totic theory which is presented in Sections 1 and 2. Proofs are given in Sections 3 and 4.

Testing for the smoothness of f* covers some very important examples in change-point
analysis.

Example 1.1 Assume that f'(¢) is constant under Hy. Under H, there is 7 € (0, 1) such that
f(@&)=£(0),if0 <z <7, f(¢t) =f(1),ift <t < 1andf(0) # f(1). In this special case, we
test the null hypothesis of constant mean against the alternative that the mean changed at an
unknown time. For surveys on detection of changes in the mean we refer to Brodsky and
Darkhovsky (1993) and Cs6rg6 and Horvath (1997).

Example 1.2 We assume again that /" is constant under Hy. Under the alternative the mean
remains constant until y},] and after that it starts to increase linearly. This means that there
are constants ¢; and ¢, # 0 such that f(f) = c¢i + ¢2(t — 7)I{r < ¢ < 1}. For testing and
estimating the time of the increase in the mean we refer to Jaruskova (1998) and Huskova
(1999).

Example 1.3 An epidemic (square wave) alternative to a constant f is defined by
f()=cr+cl{t1 <t<1}, ¢ #0, 0 <1 <713 <1. For a discussion of epidemic al-
ternatives we refer to Yao (1993a) and Yao (1993b).

Our tests are based on a method proposed by Loader (1996). First we fit a local polynomial
to (U, Xn) from the left using only (y;, x;), | <i < m — 1. The coefficients of the fitted poly-
nomial minimize the weighted sums of squares

2
Z <ymi - Z o‘j(xmfi _xm)j) K(Cepm—i — xm)/h), (1.1)

0<i<nhC 0<j<p

where K is a weight function satisfying the following conditions:

Ku)=0 if |ul>C (1.2)
K(u) = K(—u) forall —oo <u < o0 (1.3)

and
K@ exists and is continuous on (—C, C). (1.4)

Throughout this paper we also assume

h>0 and h=h(n)— 0 asn— oo. (1.5)
The weighted least-squares estimators &(m) = (do(m), ..., &p(m))T of (1.1) are given by
a(m) = (XL (m)Q_(m)X_(m))~' X" (m)Q_(m)Y_(m) (1.6)

(cf. Fan and Gijbels (1996)), where

X_(m) = {(xm-i — xm)j}lfifnhC,ijgpa
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Y_(m) = Wmets Y2y -+ s Ymmnc)’ and O_(m) = {g_(i, j)} is a diagonal matrix with
q-(i, 1) = K((Xm—i —xm)/h), 1 < i < nhC.

Next we fit a local polynomial to (y,,, x,,) from the right using (y;, x;), m + 1 <i < n. The
coefficients of the polynomial minimize

2
Z (ym+i - Z ﬁj(xm—H' - xm)j> K((xm—H' _xm)/h) (17)

0<i<nhC 0<j<p

Similarly to (1.6), the coefficients ﬁ(m) = (ﬁo(m), ce, ﬁp(m))r satisfy
Bim) = (XL (m)Q4 (m)X, (m))™ X (m)Q- (m)Y..(m), (1.8)

where Xy (m) = {(xXp4i — xn1)J}1§i§nhC,0§j§pv Yi(m) = Vmt1s Ymt2s - - vmernhC)T and Q1 (m) =
{g+(, j)} is a diagonal matrix with g (i, i) = K((Xm+i — Xm)/h).

We compare the coefficient vectors &(m) and B(m) and if they are statistically different
for at least one m, nhC < m < n — nhC, then we reject Hy in favour of H,. For this we
consider the asymptotic distribution of

. = > _ A' i<
Zl(n) nhCSrrlr’tlgzl(fnhc |OC,(m) ﬁl(m)|’ 0 s=1=p.

We wish to point out that if p = 0, then &(m) and Z?(m) are the usual (one-sided) kernel esti-
mators of Priestley and Chao (1972) for regression functions. For further results on kernel
and related nonparametric estimators we refer to Clark (1977), Gasser and Miiller (1979),
Cheng and Lin (1981) and Stadtmiiller (1986). In general, kernel estimators can be used
to estimate one-sided (left and right) higher order derivatives of regression functions and
thus, using analogues of Z;(n), to test for discontinuity in the derivatives of regression func-
tions. This idea was developed by Miiller (1992). However, Hastie and Loader (1993) pointed
out the superiority of local polynomial smoothing to kernel regression estimators.

We assume that ¢, ¢, ..., ¢, are independent, identically distributed random variables
with

Ee=0, 0<o’ :Esf <oo and Elgl' <oo for some v > 2. (1.9)

To formulate our main result we need some further notation. Let

A_ = {(—1)i+j Jooxi*/K(x)dx}
0

0<i,j<p

and

Al = {J xH'fK(x)dx} .
0 0<i,j<p

We also assume that

A" =B_={b_(i,j)} and A7' =By = {bi(, j)} exist. (1.10)
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Next we define

00
Poli ) = (=1 J XK (x)dy, if0<ij<p
0

—%KZ(O), ifi=j=0

- 2](—1)Hrj_1 J ¥ 2(x)dx  otherwise
0

—LK(0)K'(0) — %JZO(K’(x))Z dx, ifi=;j=0

o0
— (=1 J XK (x))* dx,
0. )) = ’
72t if 0 <4, j <1 and max(i, j) > 0

9 _ ) __ 5 [o© L
_%(_l)i-&-_/'{J“OOO xi+j(K/(x))2 dx — %‘L xH—j—ZKZ (x)d}

otherwise

So(i, j) = J XVK (x)dy, 0<i,j<oo
0

—1K%(0), ifi=j=0

O N=1i—=j(® ..
% J X¥7IK2(x)dx  otherwise
0

N|—

o0
(K'(x)dx, ifi=;j=0
0

N |—

(oo 1
X (K (x))? dx +ZK2(O), ifi=0,j=1
0

52(i7 ]) =

N |—

o0
L, 1
X (K (x))? dx — ZKZ(O), ifi=1,j=0
0

N|—

00 ] 2 _ifoo
J K () dx — %J 2K (x) dx}
0 0

otherwise

T0(, j) =0, if0<ij<oo
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. K?(0), ifi=;j=0
71(1, j) =
16.7) {0 otherwise
—1K20), ifi=0,/=1
(. )= -1K%0), ifi=1,/=0

0 otherwise

Forany 0 <i<pand £ =0, 1,2 we define
Ae(i) = Z {b-(i, Db—(i, k)l k) + b1(i, j)b (i, k)e(, k)

0<j.k<p
— by (i, Hb_(i, k)te(, k)}.

THEOREM 1.1  Let 0 < i < p. We assume that (1.2)—(1.5), (1.9), (1.10) hold, Ay(i) > 0,

[V exists and is Lipschitz 1 on [0, 1], (1.11)
lim sup(log (1/h))"/2n®=V/CIp=172 < oo, (1.12)
n—0oQ
and
lim (log 1/h)"*n'/2p+3/2 = 0. (1.13)

(1) If —oo < A4(i) <0, then

lim P{(2log(1/A)'?n' 2012 Z(n) /o < t + 21log (1/h).
n— 00

+%log log(1/h) + log (# (— j(‘)gg)) } = exp (—2e")(1.14)

forall —oo < t < o0.

(i) IfA1(i) =0 and —oo < Ay(i) < 0, then

lim P{(2 log(1/h))' 22 *12 Z,(n)Jo < t + 2log(1/h).
L 40\"?\]| _ »
+ log <m (— Ao(i)) ) } = exp(—2e7")(1.15)

It is known that for every fixed 0 < 1 < 1, a,([nt]) andﬁp([nt]) are asymptotically normal
(c.f. Fan and Gijbels (1996, p. 116)). However, less is known about the global properties of

forall —oo <t < o0.
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local polynomial smoothing. For example, the asymptotic distributions of the Kolmogorov—
Smirnov and related sup statistics are unknown. The proof of Theorem 1.1 indicates that
these statistics must have double exponential (extreme value) limit distributions. Local poly-
nomial smoothing is related to kernel-type estimators, c.f. Fan and Gijbels (1996, p. 63), and
therefore it is not surprising that Theorem 1.1 resembles analogous limit theorems for the
supremum of kernel-type estimators for densities and regression functions. As in the case
of all kernel-type estimators, the rate of convergence can be slow, especially for large p.

Theorem 1.1 will be proven in Section 3. Here we consider two special cases. First we
assume that p = 0, that is we fit constants to the observations.

COROLLARY 1.1 Let p=0. We assume that (1.2)—(1.5), (1.9)—(1.13) hold and
Jo T K(x)dx # 0.

(i) IfK?*(0) > 0, then

lim Py (2log(1 JIN)2(nh)'\ 2 Zy(n) /o < t + 21og (1/h).

+ l1og log(1/h) — l1og m+ log (KZ(O)/ Joo K2(x) dx) }
2 2 0

= exp(—2e™") (1.16)

for all —oo <t < o0.

(i) IfK(0) =0, then

Jim P{(2 log(1/h))"*(nh)"?Zy(n)/o < t 4 21log (1/h)

— log(2'?m) +%log (J:O(K’(x))2 dx / Jio K2(x) dx)}

= exp(—2e7) (1.17)

Jor all —oo < t < oo.

If p = 0, then &y(m) and [§O(m) are kernel estimators of the regression function at m/n.
In this case an analogue of Corollary 1.1 was adapted by Wu and Chu (1993) from
Stadtmiiller (1986). Wu and Chu (1993) considered the limit distribution of
MaX,s5<m<(1—s) |&o(m) —Po(m)| with some 0 < d < 1/2, and thus essentially assumed that
no change can occur on the intervals [0, 0] and [1 — J, 1], so their test does not have
power against changes on these intervals.

Now we assume that p = 1, that is we fit lines to the observations.

COROLLARY 1.2 Let p = 1. We assume that (1.2)—(1.5), (1.9)—(1.13) hold,

OoK(x)dx oosz(x)dx;é OoxK(x)dx 2 (1.18)
J, K] (J, =)

0 0
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and
o] 2 poo 00 2
wy = (J XK (x) dx> J K*(x)dx + (J xK (x) dx)
0 o 0 . (1.19)
X J XK (x)dx — 2J sz(x)de xK(x)de xK2(x) dx > 0.
0 0 0 0
@ I
00 2
o) :KZ(O)(J XK (x) dx) >0, (1.20)
0
then
lim P[(z log (1702 ()2 Zo(n) o < t + 2 1og (1/h)
+ 3loglog(1/h) — Jlog 7 + log(wl/wo)} =exp(—2e7)
(1.21)
SJor all —oo < t < oo.
(i) IfK(0) =0 and
_1 oo 2 2 ! 2
W, —E<JO X K(x)dx> Jo (K (x))" dx
1 * o 2 ! 2
+5(J0 xK(x)dx) Jo x°(K (x))" dx
—J xK(x)de XZK(x)de x(K'(x))? dx > 0, (1.22)
0 0 0
then
lim P{(z log(1/h))"*(nh)'?Zy(n) /o < t + 21og(1/h)
—log(2"?m) + Llog(wa/wo)} = exp(—2e™) (1.23)

for all —oo <t < o0.
i) If

o0

00 2 poo
(J K(x)dx)J x2(1<’(x))2dx—%1<(0)1<’(0)J xK(x) dx
0

0

- ro xK(x) dx Jw K(x) dx Joo x(K ' (x))?dx > 0, (1.24)
0 0 0
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then

lim P{(z log(1/m) 0?1327, (n) /o < t + 21og(1/h)
n— 00

—log(2'%n) + %10g(c03/a)0)} = exp(—2e™") (1.25)

forall —oo <t < o0.

Remark 1.1 If h(n) =an", then (1.12) and (1.13) are satisfied for any 1/(2p + 3)
<b<1-=2/v.

2 TESTS AND ESTIMATORS UNDER THE ALTERNATIVE

We discuss briefly the consistency of the tests described in Section 1 and point out that local
polynomial smoothing can also be used to estimate the time of change. Let 0 < 7 < 1 and
define

fH@), ifo<t<rt

F@= H@), ifr<t=<.

We assume that f(¢) and f,(¢) are smooth functions. Namely,

f Ep) exists and is Lipschitz 1 on [0, 7] 2.1)
and

f gp ) exists and is Lipschitz 1 on [z, 1]. 2.2)
The two parts of f(f) connect smoothly up to the order p — 1 and

1?1 exists and is bounded on [0, 1]. 2.3)

However,

[P # D). 24

THEOREM 2.1  We assume that (1.2)—(1.5), (1.9), (1.10), (1.12), (2.1)—(2.4) are satisfied.
o I

lim 2P+ 2(log 1/h)'/* = 0, (2.5)

n—00

then the results of Theorem 1.1 hold for 0 <i<p— 1.
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(i) Moreover,

b)) —B, () > £ Pie=) — f D). (2.6)
Next we consider an estimator for T proposed by Loader (1996). Let
t=min{r: h <1< 1—hand &,(n7]) —B,(n7])| = Z,(n)}.
Loader (1996) obtained the asymptotic distribution of n(7 — 7) assuming that the errors are

normally distributed. However, his model, and consequently the assumptions on f, are
different from ours. Here we show that the estimator 7 is weakly consistent.

THEOREM 2.2 We assume that (1.2)—(1.5), (1.9), (1.10), (1.12) and (2.1)~(2.4) hold. Then

1t — 1] = Op(h). 2.7)

In the case of p = 0, which corresponds to kernel regression estimators, Miiller (1992) and
Wu and Chu (1993) obtained several limit results for

o = min {t 25 <1< 1—0and |o(nt]) —Bo((nd))]

= max._lia(lnsD) ~Au(lnDi].

where 0 < d < 1/2. By choosing ¢ in the definition of ¥, it is implicitely assumed that we
know that no change occured on [0, d] and [1 — &, 1]. Miiller (1992) also considered kernel-
type estimators for the location of the discontinuity of higher order derivatives of the regres-
sion function. Hastie and Loader (1993) argued that local polynomial smoothing is preferable
to kernel estimators in the context of change-point (or discontinuity) detection.

Theorems 2.1 and 2.2 are proven in Section 4.

3 PROOFS OF THEOREM 1.1 AND COROLLARIES 1.1 AND 1.2

Let H = {h(i, j)}Ogi,jSp be a diagonal matrix with A(i, i) = il 0 < <p. Let
E,(m) = (Smfls ey gmfnhC)Tv Yi(m) = (f(xmfl)v cees f(xmfnhC))T and

a(m) = (f(xm>, O, 5 P }%f(”)(xm))

Elementary algebra shows that

H™(&(m) — a(m))
= A= (m)HX (m)Q—(m)E_(m) + AZ" (m)HXL (m)Q(m)
X {YZ(m) — X_(m)a(m)}, (€R))
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where
A_(m) = HX"(m)Q_(m)X_(m)H.

In (3.1) we decomposed &(m) — a(m) into stochastic and numerical terms. Putting together
Lemmas 3.1 and 3.2 we get the exact order of the numerical term. In Lemmas 3.3-3.5 we
consider the stochastic term.

Throughout this paper | - | denotes the maximum norm of vectors and matrices.

LEMMA 3.1 If (1.2)—(1.5) and (1.10) hold, then

1 1
4 4= - 2
,,hc;,f?ii‘fnhcn (m) ‘ 0("h> G2
and
max A~ (m) — lB =0 L (3.3)
nhC<m<n—nhC| no | n’h) .

Proof Tt is easy to see that A_(m) = {u; ;},<; ;<,, Where

ui,j = h_(H_j_H) Z (xm—k - xm)i-HK((xm—k - xm)/h)-
0<k<nhC

Since x; = i/n we get

o K\ (K
o= (=1 — - -
iy = (=) nh Z (nh) K(nh) '

0<k<nhC

By (1.4) we have that

L > <i)[+jz<<5) - ro XK (x)dx| = 0<i) (3.4)
nh 0<EzhC nh nh 0 nh)’ ’

which completes the proof of (3.2). The result in (3.3) follows immediately from (3.2).

LEMMA 3.2 If (1.2)~(1.5) and (1.11) hold, then

o max. hC|HX_T(m)Q_(m){Yj(m) — X_(m)a(m)}| = O(nh*/?). (3.5)
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Proof First we note that

HXL(m)Q—(m){Y*(m) — X_(m)a(m)}

= <h1/2 Z |:f(xm—k) - Z %f(i)(xm)(xm—k _xm)i]

0<k<nhC O<i<p ™’

X K(Cp—ie — Xm)/H), - . .,

h_p_l/2 Z |:f(xmk) - Z l-l'f(i)(xm)(xmfk _xm)i:|

0<k<nhC 0<i<p ™

T
X (Xm_k - xm)pK((xm—k - xm)/h)) .

Taylor expansion yields

= o).

S Gom—i) — Z lfl'f(i)(xm)(xm—k — X))

0<i<p ™’

max
0<k<nhC

By (3.4) we have

1 .
pYAEY D ok — 5 K (g — X0)/B)
M 0 <ke=nhe

max
nhC<m<n—nhC
N 1
- (—1)/J X K(x)dx| = O()
0 nh

and therefore the proof of Lemma 3.2 is complete.
We introduce the notation

TO(m)=h""" " ek — %) Kot — Xm)/),
0<k<nhC

0 <i < p, and therefore we have
HXT(m)O_(m)E_(m) = (TO(m), ..., TP (m))".

It is easy to see that

TOm)=h=""7 3 emk(—’g)lK(—%)

0<k<nhC

_ p—i—1/2 'j—min—m
) ) ( ) (nh .

m—nhC<j<m

19

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)
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Introducing S(x) = Y, & Wwe can write
00 i
70 () — 71/21 X o_m\ (X _mym L X m .
= (m) =4 _Oo(nh nh) (nh nh) {nh C= nh = nh}dS(x)

In Komlos et al. (1975, 1976) a Wiener process { W (x), —0o < x < oo} was constructed such
that

ISx) — W (x)| = o(x"") as. (3.11)

as x — 0o, assuming that (1.9) holds. The continuous Gaussian counterpart of 7 is defined
as

%) =hn? JOO

—00

X i /X X
(n71 — t) K(ﬁ_ t)[it —C< s < t}dW(x).
LEMMA 3.3 If (1.2)—(1.5) and (1.9) hold, then

max )Tf)(m) — al“@(%)‘ =op(h™ 20!, 0<i <p.
n

nhC<m<n—nhC

Proof Integration by parts gives

G =3 % G = 3)

o]

max
nhC<m=n—nhC ] _,

X m

m

x [{E —Cc=l< nh}d(S(x) — oW (x)
<2C" sup |S(x) —aW(x)| sup |K(u)]

0<x<n —C<u<0
" i rx  m\i-!
e e L,,,,,JS(X) - “W(x”{m G =)
x m 1 /x m\i . /x m
K ) * i G~ i) & (nh_nh)}dx‘

= ap,1 +ap2.
It follows immediately from (3.11) that
an1 = op(n').
Using (1.3), (1.4) and (3.11) we obtain that

a2 = OP(nl/v)'
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LEMMA 3.4 If (1.2)~(1.5) and (1.13) hold, then

o))

= Op(h™"?(log 1/h)"*), 0<i<p.

max sup
nhC<m<n—nhC Is|<1/(nh)

Proof By the scale transformation of the Wiener process we have that for each » and 4

T9(), —00 < t < 00} 2 (n2T0(r), —00 < t < 00}, (3.12)
where
A 0 A e
') = J KO — H)dW (x)
—0oQ
with

k(i)(u) = u'Ku)I{—C < u < 0}.
Using (1.4) we can find a constant ¢; such that
ECO@D) - TOs))'? < erlr =512, (3.13)

By (3.13), we can apply Fernique’s (1975) inequality and obtain

P{ sup f(l) (ﬂ) - f(j) (ﬁ + s)
S| <1/ nh nh
with some constants ¢, and c¢3. Now (3.14) yields

EORIER

> ¢2(nh) " (log n)l/z} < % (3.14)

P max sup
nhC<m<n—nhC Is|<1/(nh)

3

> c2(nh)~"?(log n)l/Z} = (3.15)

Lemma 3.4 follows immediately from (3.12), (3.15) and condition (1.13).

LEMMA 3.5 If (1.2)~(1.5) and (1.9)~(1.13) hold, then

sup  |TY([nht]) — oTO(0)| = op(n" " h=1?)+0p(h~"*(log 1/h)"/?).
C<t<1/h—C

Proof 1t follows immediately from Lemmas 3.2-3.4.
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Similarly to (3.1) we have

H™'(B(m) — a(m))

= A7 (m)HX (m)Q4 (m)E . (m) + AL (m)HX L (m)Q+(m)

x Y} (m) — Xo(m)a(m)}, (3.16)
where
A (m) = HX{(m)O+(m)X (mH,
E (M) = Emtts s Empnnc) and YE(m) = (f(omp1)s - - - o f Gominnc))” . The following five

lemmas can be proven with minor modifications of Lemmas 3.1-3.5.

LEMMA 3.6 If (1.2)—(1.5) and (1.10) hold, then

1
—A(m) — A4
n

max
nhC<m<n—nhC

1
=o(;;)
and

_ 1
A7 (m) — ;B+

()

max
nhC<m<n—nhC
LEMMA 3.7 If (1.2)~(1.5) and (1.11) hold, then

max
nhC<m<n—nhC

HX [ (m)Q (m){Y}(m) — X+(m)a(m)}‘ = O(nh"+3/%),

Next we introduce

T.(q.l)(m) = pi12 Z Emak (myk — xm)iK((xm-&-k — Xm)/h)
0<k<nhC

and

(:—h—t)iK<i—t>1{t <X < t+C}dW(x),

F(i)([) — h71/2 Joo
+ nh nh

—0Q0

where {W(x), —oo < x < oo} is the Wiener process of (3.11). Similarly to (3.10) we have

HXL(m)Q+ (m)E+(m) = (T (m), ..., T (m))". (3.17)



CHANGE-POINT DETECTION 23

LEMMA 3.8 If (1.2)~(1.5) and (1.9) hold, then

i i (M _ v .
Ti)(m) - GFQ(&)‘ =op(h™'*n'"), 0<i<p.

nhC<m<n—nhC

LEMMA 3.9 If (1.2)~(1.5) and (1.13) hold, then
max sup

o) -ro(3)
nhC<m<n—nhC Is|<1/(nh) nh nh

= Op(h™*(log 1/W)'?), 0 <i<p.

LEMMA 3.10  If (1.2)~(1.5) and (1.9)~(1.13) hold, then

) s%)h ) \TV([nht]) — e T V()] = 0p(n'"h="/2)+0p(h™*(log 1/h)"/?).
<t< -

Proof of Theorem 1.1. First we note that 1"@,1"9(0 < i <p) are stationary Gaussian
processes and therefore using Pickands (1969) we get

sup  |ITO(0)| = Op((nh)'*(log 1/m)'?), 0<i<p (3.18)
C<t<l/h
and
LS ITO(0)] = Op((nh)*(log 1/m)'/%), 0 <i<p. (3.19)
<t<

Putting together (3.1), Lemmas 3.1, 3.2, 3.5-3.7, 3.10, (3.16), (3.18) and (3.19) we get

1/27i+1/2 2 o
n'°h max a;(m) —f.(m
nhCSmSn_nhCI i(m) —p;(m)|

=ng sup

C<t<l/h—C

Y b HTO@ = b, HTY D)

0=j=p
+ OP(h—l/zn(z—v)/(zv)) + OP(n1/2hp+3/2)

+ Op((nh)™"(log 1/h)"/?). (3.20)

Let

AY(f) = ro x—D)Kx—0DI{-C<x—t<0}dW(x), 0<i<p

—00
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and

AV = ro x—O'Kx—0I{0 <x—t<C}dW(x), 0<i<p.

—00

By the scale transformation of the Wiener process we have

2T, 72T, 0 <i<p —0o <1< oo}

Z(A%0), AY(r), 0 <i<p, —oco<t< o0}
It is easy to see that

A0 = 37 b DAY — by DALY, 0 <i<p.

0<j=p
is a stationary Gaussian process with EA?”(r) = 0(0 < i < p). Next we show that
EAOOAD (¢ + h) = 30(i. J) + 71 DA+ 720 DR + o(h),
EAYOAD(t + h) = So(i, j) + 01(i. h + 82(i, j)i* + o(h?),

EADOAY (e + 1) = to(i, ) + 710, )b+ wa(i, )R + o)
as i | 0 and

EAY(OAY(t+h) =0 for all h > 0,

(3.21)

(3.22)
(3.23)
(3.24)

(3.25)

0 < i, j < p. First we note that (3.25) follows from the fact that ' has independent incre-
ments. Since the proofs of (3.22)—(3.24) are similar, we prove only (3.22) when i = = 0.

It is easy to see that

EAQ0AY (¢ + h)
= Kx—0)K(x—t—hI{—-C<x—t—h < —h}dx

—h
= KWw)K(u + h)du
c

= ' K(u)K(u—i—h)du—J0 KW)K(u + h) du.
c —h

A two-term Taylor expansion gives

0

0 0
J Ku)K(u+ h)du :J Kz(u)du—i—hj KWK (u)du
-C -C

—C

0
i J K@K (u) du + o(H?).
2 )¢
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Note that
JO . 1, ) 1,
KWK (u)du = E(K 0) —K*(-C)) = EK (0),
-C

and, using integration by parts,

0 0 0
J KWK (u)du = J K(u)dK (1) = K(0)K (0) — J (K (u))* du.
—-C C -C

Using again Taylor expansion we obtain that

JO K@K (u + h)du ' (K(0) + K (0)u + O(h?))
—h J—h

x (K(0) + K (0)(u + h) + O(h*)) du

0
= | (K%0)+2K(0)K (0)u + K(0)K (0)h) du
—h

+ O(h*) = K2(0)h + O(h%).

and therefore we have
0 1
EAO DAVt + h) = J K200 du— 3 K*(O)h
-C

' (K ' (u))? du)h2 + O(h).
C

1 )
+ 3 (K(O)K 0) — J
Putting together (3.21)—(3.25) we have immediately that
EAYOAD (1 4 h) = Ao(i) + A1()|A] + AR + o(h?), 0 <i<p.
Also, EAY()AP(t+h) = 0, if t > C,0 < i < p. By the stationarity of A”(¢) we have

i D i
sup A= sup A (3.26)
C<t<1/h—C 0<t<1/h—2C

Thus we use Pickands (1969) (cf also Chapter 12 of Leadbetter ef al. (1983)) and obtain the
following limit theorems:

(i) If—00 < A,(i)/Ao(i) < 0, then

lim P{(Z log(1/h)"?  sup  |AD(#)| < x + 2log(1/h)
n—00 C<t<1/h—C
(3.27)

1 1 Ai(i
+§log log(1/h) + log<nl/2 <_A(1)8>>} = exp(—2e™).
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(i) If 4;(f) = 0 and —oo < A,(i)/Ao(i) < 0, then

lim P{(Z log(1/m)'?  sup  |AP(#)] < x + 2log(1/h)
n—>00 C<t<1/h—C

N 172
+l°g(zl/lzn (—ﬁiﬁii) )}=eXp<—2e"), (3.28)

THEOREM 1.1 now follows from (3.20), (3.21) and (3.26)—(3.28).

Proof of Corollary 1.1 First we note that

oo}

b_(0,0) = b.,(0,0) = 1/J K(x) dx
0

and therefore

00 00 2

Ap(0) = J, K?(x)dx / <J0 K(x)dX) ,
00 2
A4,(0) = —2K2(0) / (L K(x) dx)

and if K(0) = 0, then

9 ) 00 2
A4,(0) = —L (K (x))* dx / <L K(x) dx) .

Now Theorem 1.1 implies immediately Corollary 1.1.

Proof of Corollary 1.2 First we observe that

b_(0,0) = b,(0, 0) =% :osz(x)dx

b_(1,1)=b,(1,1) =% :OK(x)dx

b_(0,1)=b_(1,0) :é ooxK(x)dx
Jo

and

00

1
bo(0,1) = bo(1,0) = _BL XK (x) dx,
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where
00 00 00 2
D= (L K(x) dx) (L XK (x) dx) — (L xK(x) dx) )
Hence
2 2
Ao(0) = =73 {( sz(x) dx> K2(x) dx
2 poo
(J xK (x) dx) J ¥ K2 (x) dx
0
—ZJ sz(x)de xK(x)de sz(x)dx}
and

109) 2
A1(0) = —2KDZZ(O) (L XK (x) dx> )

If K(0) = 0, then
oo 2 roo
A5(0) = —1;2{<L PK(x) dx) JO (K ' (x))* dx
00 2 poo )
+ (JO xK(x) dx> L (K (x))* dx
-2 *

J:O sz(x)de xK(x)de x(K'(x))* dx }

Similarly,
00 2 oo
Ao(1) = 1% { (JO xK(x)dx) L K2(x)dx
00 2 roo
+ (J K(x)dx) J ¥*K2(x)dx
0 0
-2 JOO K(x)dx Joo xK(x)dx Joo x(K’(x))zdx> ,
0 0 0
A(1)=0
and

1 00 2 poo
A(1) = —EKL K(x)dx) L ¥ (K'(x))*dx

— K(0)K'(0) J XK (x)dx

o0

—2 J:O xK(x)de K(x)de X(K'(x)) dx}
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Using these formulas we can compute the constants in Theorem 1.1 and the proof of Corol-
lary 1.2 is complete.

4 PROOFS OF THEOREMS 2.1-2

We assume for the sake of simplicity that m* =nt is an integer. Let A =

[P =P+,

Uf(n = U0, ... UL o), 0<i<C,

with
1< .
Uit,(t):—'J SPTK (s)ds
’ P
and
U (0) = Uy, 0, ... U @), 0<t=C,
with
_1 +i C )
Ui’p(t):( Y Js“‘K(s)ds.
’ p! t

LEMMA 4.1 If the conditions of Theorem 2.1 are satisfied, then

H'E(&(m) —B — O(WPH312), 4.1
e X HE@(m) —Bm)] = O 1)

max

H™ E(&(m) —f(m)) — W+'2AB_U; (u) ‘

m* <m<m*+nhC nh
= o(W’+1/?) (4.2)
and
max [ EGO0—fm) — a0 () <ot )
m*—nhC<m<m* n

Proof Since the change-point does not have any effect on (4.1), the result in (4.1) follows
immediately from Lemmas 3.2 and 3.7. Let

1
»— 1)

T
B (m) = (f(xm),f(l)(xm), . f(pl)(xm),;f(")(xm)> :



CHANGE-POINT DETECTION 29

Lemma 3.7 yields

max  |[H Y{E&(m) — B*(m)| = O(W*3/?). (4.4)

m*<m<m*+nhC
Following the proof of Lemma 3.2 we obtain that

HXT(m)Q-(m)[Y* (m) — X_(m)Eé&(m)]

= <h_1/2 Z |:f1(xmk) - Z %f(i)(xm)(xmfk _xm)i

m—m*<k<nhC 0<i<p—1""

- ]}!f%”(xmxxm_k - xmy'}K«xm_k —xn)/B)

+ h1? Z |:ﬁ(xmk) - Z l.l_'f(i)(xm)(xmfk - xm)i

0<k<m—m* 0<i<p—1""

X Z |:f1 (xm—k) - Z %f(i)(xm)(xm—k _xm)i

m—m* <k<nhC 0<i<p—1""

_ﬁfgp)(xm)(xm_k - x’”)pi| (om—k — xm)pK((xm—k - xm)/h)

+hPTR Y [fz(xmk)— > l.l,f(")(xm)(xmfk—xmy

0<k<m—m* 0<i<p—-17~"

T
- %f(zp)(xm)(xm—k - xm)pj| (om—r — xm)pK((xm—k - xm)/h)> .

Taylor expansion gives

max |HXT (m)Q—(m){Y*(m) — X_(m)E&(m)} — L(m)|

m*<m<m*+n

= o(nhP*1/?), 4.5)

where L(m) = (Lo(m), ..., L,(m))" with
Lim) = h2 2 (1P = AP )
p!

XY Conk = X) PR (ke — Xm) /D).

m—m*<k<nhC
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Elementary verifications show that

max |Lim) — k"2 (£ P ,) — £ 9 YU, ((m — m*)(nh))]

m* <m<m*+nhC

= o(nh"*1/?), (4.6)

and therefore (4.2) follows from Lemma 3.1.
The proof of (4.3) is similar to that of (4.2) and is therefore omitted.

Proof of Theorem 2.1 (i) Using Lemma 4.1 and (2.5) we obtain that the same numerical
term is negligible in n'/2h**1/2Z;(n), if 0 < i < p — 1. Hence Lemmas 3.3-3.5 and 3.8-3.10
imply the first part of Theorem 2.1.

(i) By Lemmas 3.3-3.5, 3.8-3.10 and Lemma 4.1 we get that the random term is smaller
in &(nt) —P(nt) than the numerical term. The last element of B_U , (0) (and BLU ;’ (0))is 1,
so (2.7) follows from (4.2).

Proof of Theorem 2.2 1t follows from the proof of Theorem 2.1 that

sup  3,(m) —,(m)] = 0p(1)

nhC<m<m*—nhC

and

sup |6, (m) —B,(m)| = op(1).
m*+nhC<m<n—nhC

Hence using (2.6) we get

lim P{m* — nhC < nt <m* +nhC} =1,

n—oo

which gives (2.7).
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