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Chaos and Nonlinear Dynamics: 
Application to Financial Markets 

DAVID A. HSIEH* 

ABSTRACT 

After the stock market crash of October 19, 1987, interest in nonlinear dynamics, 
especially deterministic chaotic dynamics, has increased in both the financial press 
and the academic literature. This has come about because the frequency of large 
moves in stock markets is greater than would be expected under a normal distribu-
tion. There are a number of possible explanations. A popular one is that the stock 
market is governed by chaotic dynamics. What exactly is chaos and how is it 
related to nonlinear dynamics? How does one detect chaos? Is there chaos in 
financial markets? Are there other explanations of the movements of financial 
prices other than chaos? The purpose of this paper is to explore these issues. 

CHAOSIIAS CAPTURED THE fancy of many macroeconomists and financial 
economists. The attractiveness of chaotic dynamics is its ability to generate 
large movements which appear to be random, with greater frequency than 
linear models. As a result, there has been an  explosion of papers searching 
for chaotic behavior in macroeconomic and financial time series. The purpose 
of this paper is to discuss some of the methodological issues in detecting 
chaotic and nonlinear behavior. 

Section I provides a description of the key features of deterministic chaotic 
systems via a number of examples. Section I1 shows how deterministic chaos 
can, in principle, be detected using the method of correlation dimension 
proposed by Grassberger and Procaccia (1983). Section I11 deals with some 
limitations of this method. The Grassberger/Procaccia method requires a 
substantial number of data points, which is difficult to obtain in standard 
economic and financial time series. It also lacks a statistical theory for 
hypothesis testing. A different but related method has been proposed by 
Brock, Dechert, and Scheinkman (1987). Under the null hypothesis of inde-
pendence and identical distribution (IID), the Brock, Dechert, and 
Scheinkman statistic has been shown to have good finite sample properties 
and good power against departures from IID. Some Monte Carlo evidence is 
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provided. When applied to stock returns, this statistic rejects the null hypoth- 
esis of IID very strongly. The remainder of the paper investigates some of the 
causes of the rejection of IID: Section IV checks for nonstationarity; Section 
V, nonlinear conditional mean changes; and Section VI, conditional het- 
eroskedasticity. Some concluding remarks are offered in Section VII. 

I. What Is Chaos? 

Chaos is a nonlinear deterministic process which "looks" random. There is 
a very good description of chaos and its origins in the popular book by James 
Gleick (1987), entitled Chaos: Making a New Science. Also, Baumol and 
Benhabib (1989) gives a good survey of economic models which produce 
chaotic behavior. Brock (1986) provides the exact mathematical definitions 
and formulations. 

Chaos is interesting for several reasons. In the business cycle literature, 
there are two ways to generate output fluctuations. In the Box-Jenkins 
times-series models, the economy has a stable equilibrium, but is constantly 
being perturbed by external shocks (e.g., wars, weather). The dynamic 
behavior of the economy comes about as a result of these external shocks. In 
the chaotic growth models, the economy follows nonlinear dynamics, which 
are self-generating and never die down. The fact that economic fluctuations 
can be internally generated has a certain intuitive appeal. 

I t  so happens that chaotic dynamics is necessarily nonlinear, which gives it 
a second appeal. I t  is well known that linear models can only generate four 
types of behavior: oscillatory and stable, oscillatory and explosive, nonoscilla- 
tory and stable, and nonoscillatory and explosive. On the other hand, nonlin- 
ear models can generate much richer types of behavior. For example, the 
system can have sudden bursts of volatility and occasional large movements. 
This has caught the attention of the financial press. Stock market analysts 
are always looking for explanations of large movements in asset prices, such 
as the October 19, 1987 stock market crash. 

To get some ideas about the behavior of chaotic processes, we can consider 
several examples. 

A. Tent Map 

The simplest chaotic process is the tent map. Pick a number x, between 0 
and 1.Then generate the sequence of numbers x, using the following rule: 

The tent map is so named because the graph of x, versus x,_,is shaped like 
a "tent", as shown in Figure 1.Note that x, is a nonlinear function of xt-,. 

Intuitively, the tent map takes the interval [O, 11,stretches it to twice the 
length, and folds it in half, as illustrated in Figure 2. Repeated application of 
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X Axis 
Figure 1. The tent map. The tent map is the graph of the function y = 2 2  if x < 0.5 and 

y = 2(1 - x) if x 0.5, where x is the horizontal axis and y is the vertical axis. 

Figure 2. Stretch and fold action of the tent map. The tent map takes the unit interval 
[0,11, stretches it twice as long, and folds it back onto itself. 
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stretching and folding pulls apart points close to each other. This type of 
stretching and folding is characteristic of chaotic maps. I t  makes prediction 
difficult, thus creating the illusion of randomness. 

There are four important properties of the tent map. One, {x,} fills up the 
unit interval [O, 11 uniformly as t + m. Technically, this means that the 
fraction of points in {x,)  falling into an interval [a, b] is (b - a) for any 
0 < a < b < 1. Two, any small error in measuring the initial x, will be 
compounded in forecasts of x, exponentially fast. Three, x, appears stochas- 
tic even though it is a deterministic process, in the sense that the empirical 
autocovariance function pxx(k)= E[x, x,-,I = lim,,, C;=, x, x,-, / T = 0, 
which is the same as that of white noise. Four, x, can have a series of small 
increases, and then it suddenly declines ("crashes?") sharply. 

B. Pseudo Random Number Generators 

A more "random" chaotic system can be obtained using the ideas of the 
tent map. Here is an example of a pseudo random number generator, which 
is very frequently used in computer programs. Take a number A (say 75)and 
a large prime number P (say 232- 1).Pick any integer z,, called a "seed," 
between 0 and P. Generate new seeds using the following rule: 

zt = Az,-, (mod P),  PI 
where the notation "x (mod y)" means "the remainder of x when divided by 
y." Generate the sequence: 

X t  = z t / P .  (3) 

Then x, is "uniformly distributed" on the interval [O, 11, in the same way as 
is the tent map. 

It turns out that this method creates pseudo random numbers which are 
much more "random-looking" than the tent map. This pseudo random num- 
ber can be related to the tent map as follows. First, we modify the 
"tent" pattern in Figure 1to the "diadic map" in Figure 3. This changes the 
"stretch and fold" action of the tent map to "stretch, cut, and stack," as 
illustrated in Figure 4. Second, we increase the number of teeth from two to 
75. By this time, the graph of this map appears to "fill up" the space in the 
unit square, and is the reason why it appears to be much more random. 

C. Logistic Map 

Other chaotic maps are frequently mentioned. The logistic map is slightly 
more complex than the tent map. Again, select x, between 0 and 1, and 
generate the sequence of xt according to: 

x, = Ax,-,(l - xtPl) ,  (4) 

where A is between 0 and 4. For small values of A, the system is stable and 
well behaved. But as the value of A approaches 4, the system becomes 
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X Axis 
Figure 3. The diadic map. The diadic map is the graph of the function y = 2 x if x < 0.5, 

and y = 2(x - 0.5) if x 2 0.5, where x is the horizontal axis and y is the vertical axis. 

chaotic. The logistic map adds a fifth property to chaotic behavior, that the 
dynamics of a system depends on a parameter (A  in this case). For some 
values of the parameter, the dynamics may be simple, while for other values, 
the dynamics may be chaotic. 

D. Hinon Map 

Both the tent map and the logistic map are univariate chaotic systems. The 
HQnon (1976) map is a bivariate chaotic system, described by a pair of 
difference equations: 
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Figure 4. Stretch, cut, and stack action of the diadice map. The diadic map takes the unit 
interval [0,11, stretches it twice as long, cuts it in the middle, and stacks one piece on top of the 
other. 

E. Lorenz Map 

The Lorenz (1963) map is a trivariate chaotic system. Notice that it is a 
system of differential equations, rather than difference equations. 

x = a (y  - x),  a = 10, 

y =  - y - x z - b x ,  b = 2 8 ,  

i = xy - CZ, c = 813. (6) 

F. Mackey-Glass Equation 

The above chaotic maps generate "low dimensional" chaos, which means 
that the nonlinear structure is easily detected, as we shall show later. There 
are, however, "high dimensional" chaotic systems which are much harder to 
detect, such as that in Mackey and Glass (1977). The Mackey-Glass equation 
is a delayed differential equation, given by: 

G. General Chaotic Maps 

There are many more examples of chaotic maps. In general, chaotic maps 
are obtained by a deterministic rule: 

Here, xt can either be a scalar or a vector. In order to generate chaotic 
behavior, f ( )  must be a nonlinear function. Note, however, that nonlinearity 
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alone is not sufficient to generate chaotic behavior. For example, f(x) = x3 is 
a nonlinear map, but it is not chaotic. 

11. Detecting Chaos 

An important reason for the interest in chaotic behavior is that it can 
potentially explain fluctuations in the economy and financial markets which 
appear to be random. So there is need to test for the presence of chaos. We 
should, however, state clearly at the outset that we are interested only in low 
complexity chaotic behavior. If the world is truly governed by a highly 
complex chaotic process (e. g., an extremely good pseudo random number 
generator), we may never detect it using finite amounts of data. In this case, 
there is no practical difference between deterministic chaos and randomness. 
But if the world is governed by a not-too-complex chaotic process, it should 
have short-term predictability. However, traditional linear forecasting meth- 
ods would not work; nonlinear models must be used. 

How then can one test for low complexity chaos? Suppose we have a string 
of data, x,, x,,. . ., x,,. . ., xT. One method is to observe that chaotic maps 
do not "fill up" enough space in high dimension. To make this concrete, 
consider two sets of data: a, is generated by the tent map, and b, is a random 
variable which is uniform on the interval [O, 11. If we plot a, in one 
dimension, it is uniform over [O, 11, and so it fills up as much space as does b,. 
However, consider the 2-vectors (a,-,, a,) and (b,-,, b,). If we plot them in 
two dimensions, the data from the tent map will fall on the tent, while the 
data from the uniform random variable will fall uniformly in the unit square 
[O, 11x [O, 11. In other words, data from the tent map leave large "holes" in 
two dimensional space, while the random data do not. 

When the chaotic process becomes more complex, we need to look at the 
data in higher dimensions. A chaotic process can fill up the first n dimen-
sions, but leave large "holes" in the ( n  + 1)st dimension. Clearly it is not 
practical to do this type of graphical exercise in higher dimensions. Grass- 
berger and Procaccia (1983) therefore developed the notion of correlation 
dimension. This is done in four steps. 

Step 1: Remove autocorrelation, if present. Autocorrelation can affect some 
tests for chaos, so that we must remove it from the data. This is typically 
done by filtering the raw data using an autoregression, where the lag length 
is selected based on either the Akaike (1974) or Schwarz (1978) information 
criterion. 

Step 2: From n-histories of the filtered data. These are denoted as follows: 

1-history: xi = x,. 

2-history: x: = (x,-,, x,). 

n-history: xf = (x,- ,+, , . .  ., x,). 
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An n-history is a point in n-dimensional space; n is called the "imbedding 
dimension." 

Step 3: Calculate the correlation integral: 

where 11 11 is the sup- or max- norm. In words, the correlation integral,C,(c), 
is defined as the fraction of pairs, (x,", x;), which are "close" to each other, in 
the sense that: 

Step 4: Calculate the slope of the graph of logC,(c) versus loge for small 
values of E. More precisely, we want to calculate the following quantity: 

un = lim,, ,log log 6. (11) 

If vn does not increase with n, the data are consistent with chaotic behavior. 
In fact, the Grassberger-Procaccia correlation dimension is defined as: 

The meaning of the correlation dimension becomes clear when we consider 
the tent map. Since the tent map is uniformly distributed on the interval [O, 
11, C1(e) doubles if doubles. Thus, for small values of E, 

U1 = log Cl(€)/log € = 1. (13) 

But the 2-histories do not fill up the unit square [O, 11 x [O, 11. In fact, all the 
points fall on the tent. For small values ~f E, C,(E) doubles if E doubles, and so 

v, = log C,(e)/log E = 1. (14) 

This continues to be true for any n, i.e., 

un = log Cn(E) /log € = 1. (15) 

So, for the tent map, the correlation dimension, v ,  is 1. 
Next, apply this to data generated from the random variable uniformly 

distributed on the interval LO, 11. Again, we would find that C1(e) doubles if E 

doubles, so 

v, = log Cl(E)/log E = 1.  (16) 

However, since the 2-histories will uniformly fill up the unit square [O, 
11x LO, 11, CZ(e) quadruples if doubles, and so 

U z  = log C,  (E) /log E = 2 .  

In fact, 

vn = log lo^ = n. 

For the random process, the correlation dimension, v, is 03. 
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Using this method, Grassberger and Procaccia (1983) determine the corre- 
lation dimensions for the following chaotic systems: the logistic map, 1.00 k 

0.02, the HQnon map, 1.22 + 0.01, the Lorenz map, 2.05 k 0.01, and the 
Mackey-Glass equation, 7.50 k 0.15. This shows that the chaotic maps do not 
fill up enough space at  a sufficiently high imbedding dimension, which is a 
generic property of chaotic processes.' 

It is important to remember that the correlation dimension is a measure of 
how much space is "filled up" by a string of data. That is why correlation 
dimensions need not be whole integers. We also need to point out that the 
correlation dimension is in no way related to the number of "independent 
factors" driving a system. To appreciate this point, note that the Mackey- 
Glass is a univariate process which has a correlation dimension around 7. 

In principle, the four-step procedure to estimate correlation dimension 
sounds straightforward, and has been applied by scientists in many prob- 
lems. In practice, however, a number of issues surface when dealing with 
economic and financial data. We shall discuss them in the context of the 
stock market. 

111. What Do We Find in the Stock Market? 

Scheinkman and LeBaron (1989) used the Grassberger-Procaccia plots and 
calculated the correlation dimension of weekly stock returns. They found 
that the slope of logC,(e) versus loge appears to be around 6, even for 
dimensions as high as 25. They, however, noted that this is not sufficient 
evidence of chaos in stock returns, because there are a number of problems 
with this graphical procedure. 

First, Scheinkman and LeBaron (1989) pointed out that some nonlinear 
stochastic model, such as Engle's (1982) autoregressive conditional het-
eroskedasticity (ARCH) model, exhibit "dependence" similar to that of chaotic 
maps. Using data from the ARCH model, they showed that the slopes of the 
graphs of log,C(e) versus loge increase a t  a rate slower than n. 

Second, there is no way to verify that a process has an infinite correlation 
dimension using a finite amount of data. Scientists typically use 100,000 or 
more data points to detect low dimensional chaotic system. Financial 
economists have substantially fewer points. The largest data sets generally 
have 2,000 observations. If we use the imbedding dimension of 10, we have 
only 200 nonoverlapping 10-histories. It is very hard to say whether 200 
10-histories "fill up" a 10-dimensional space. 

Third, we have to worry about biases in small data sets. Ramsey and Yuan 
(1989) show that the slope of the graph of logC,(e) versus loge is biased 
downward in small data sets (even with as many as 2,000 observations). This 
biases the results in favor of finding chaos, even if there is none. 

Fourth, the graphical procedure is not a statistical test. Ideally, we want a 
way to quantify the accuracy of the correlation dimension. This is not readily 

See the discussion in Brock (1986) and the proof in Takens (1980) 
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available for the correlation dimension plots, so we adopt a different method 
proposed by Brock, Dechert, and Scheinkman (1987).2 

Before proceeding further, we digress here to deal with the naive view that 
there is no data limitation in finance since data are available at  the tick by 
tick frequency. But this is merely an illusion. Tick by tick data capture 
bid-ask bounces and other dependencies which are caused by the micromar- 
ket structure, such as the sequential execution of limit orders on the books of 
the specialist as the market moves through those limit prices. These "artifi- 
cial" dependencies will be picked up by any good test of nonlinear dynamics. 
The financial economist must increase the sampling interval in order to 
average out these "artificial" dependencies. Now, in order to obtain more 
observations, the researcher must look at longer histories, which runs into an 
entirely different problem. As one extends a data-set further and further 
back in time, nonstationarity (e.g., an unpredictable regime change) becomes 
increasingly more likely. As we shall see below, tests of nonlinear dynamics 
will detect nonstationarity. Thus, the requirements of long sampling inter- 
vals (to avoid micromarket structure dependencies) and short histories (to 
avoid nonstationarity) impose severe data limitations in finance. We now 
return from this digression to the Brock, Dechert, and Scheinkman (1987) 
statistic. 

A. Statistical Test: The BDS Statistic 

To deal with the problems of using the Grassberger-Procaccia plots, Brock, 
Dechert, and Scheinkman (1987) devised a statistical test. If { x,: t = 1,.. . ,T }  
is a random sample of independent and identically distributed (IID) observa- 
tions, then: 

One can estimate C1(€) and C,(E) by the usual sample versions C1,T(~) and 
C,,T(E), and show that: 

has a limiting standard normal distribution. Here, u,,,(E) is an estimate of 
the asymptotic standard error of [Cn,T(~)  - We shall refer to Wn,T(~) Cl,T(~)n]. 
as the BDS statistic. 

Note that the statement C,(E) = C l ( ~ ) ndoes not imply IID. Dechert (1988) 
has several counter examples. 

Since the BDS statistic is a relatively new procedure, it is useful to study 
its finite sample distribution using Monte Carlo simulations. Some of them 

Denker and Keller (1986) and Brock and Baek (1991) provide ways to do this 
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were reported in Hsieh and LeBaron (1988). The first set of results measure 
how well the asymptotic distribution approximates the finite sample distribu- 
tion of the BDS statistic. We generate 1,000 IID observations (using a good 
pseudo random number generator), apply the BDS test, and repeat this 2,000 
times. If we use a 5% significance level, we should reject 5% of the replica- 
tions. Table I shows that the asymptotic distribution of the BDS test a t  
dimension two is a reasonable approximation for IID data from four distribu- 
tions (standard normal, Student t with 3 degrees of freedom, chi-square with 
4 degrees of freedom, and Cauchy), when E is set between one half to two 
standard deviations of the data. These distributions were selected for the 
following reasons: the standard normal is the base case; the Student t and 
the Cauchy have very fat tails; and the chi-square is strongly skewed. We 
also added two unusual distributions: the uniform and the bimodal, for which 
the asymptotic distribution of the BDS does not seem to fit the finite sample 
distribution. Fortunately, very little financial data look like these two distri- 
butions. Similar results are obtained for dimension five in Table 11. We 
conclude that  the BDS test avoids the biases of the correlation dimension 
estimates. 

In the second set of simulations, we measure the ability of the BDS 
statistic to detect departures from IID. Given that there are uncountable 
ways to generate non-IID data, we select models which are interesting 
alternatives, and report the results in Table 111. 

The first two models represent time-series data with linear dependence. 
The AR1 is the first order autoregressive model, given by: 

x,= P X , - ,  + u,. (21) 

The MA1 is the first order moving average model, given by: 

In the simulations, u, is IID standard normal, p = 0.5, and 0 = 0.5. The 
point we wish to make here is that the BDS test can detect linear dependence 
easily. To employ BDS as a test for nonlinearity (whether chaotic or stochas- 
tic), we must remove any linear dependence in the data.3 

The next two models represent data which violate the assumptions of strict 
stationarity and ergodicity. In the "2-mean" model, the data are independent 
and normally distributed, where the first 500 observations have mean -1 
and variance 1,and the second 500 observations have mean +1and variance 

It is not surprising to find that the BDS test has low power against the AR1 when p is small, 
say less than 0.2. If one is concerned about detecting linear dependence, it is best to use a test 
optimized for that alternative, such as the Durbin-Watson test, along with the BDS test. Since 
we are interested primarily in nonlinear dependence, we will just use a linear filter to remove 
any serial correlation. 
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Table I 


Simulated Size of the BDS Statistic for Dimension 2 

This table provides the percentage of BDS statistics (at dimension 2, e equaling 0.25, 0.5, 1, 1.5, 
and 2 times the standard deviation of the data) rejecting the IID null hypothesis when it is true. 
The Monte Carlo simulation uses 2000 replications, each having 1000 observations, for six 
distributions: the standard normal, the Student t with 3 degrees of freedom, the chi-square with 
4 degrees of freedom, the Cauchy, the uniform, and the bimodal distribution. N(0, 1) denotes the 
percentage for a standard normal distribution. 

Standard normal 

% < -2.33 

% < -1.96 

% > 1.96 

% > 2.33 


t(3) 
% <  -2.33 

% < -1.96 

% > 1.96 

% > 2.33 


x (4) 

% < -2.33 

% < -1.96 

% > 1.96 

% > 2.33 


Cauchy 

% < -2.33 

% < -1.96 

% >  1.96 

% > 2.33 


Uniform 

% < -2.33 

% < -1.96 

% > 1.96 

% > 2.33 


Bimodal 

% <  -2.33 

% < -1.96 

% > 1.96 

% > 2.33 


Note: Approximate standard error is 1.12 for these probabilities. 

1. In the "2-variance" model, the data are also independent and normally 
distributed, where the first 500 observations have mean 0 and variance 1, 
and the second 500 observations have mean 0 and variance 2. These models 
are examples of "structural changes" or "regime changes." Table I11 shows 
that BDS also has no trouble in detecting them. 
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Table I1 


Simulated Size of the BDS Statistic for Dimension 5 

This table provides the percentage of BDS statistics (at dimension 5, E equaling 0.25, 0.5, 1,1.5, 
and 2 times the standard deviation of the data) rejecting the IID null hypothesis when it is true. 
The Monte Carlo simulation uses 2000 replications, each having 1000 observations, for six 
distributions: the standard normal, the Student t with 3 degrees of freedom, the chi-square with 
4 degrees of freedom, the Cauchy, the uniform, and the bimodal distribution. N(0, 1) denotes the 
percentage for a standard normal distribution. 

Standard normal 

% < -2.33 29.85 3.60 0.55 0.80 

% < -1.96 32.75 7.40 2.35 2.35 

% > 1.96 29.65 8.15 2.90 2.40 

% > 2.33 26.95 5.30 1.40 1.10 


t(3) 

% < -2.33 6.05 0.70 0.70 0.85 

% < -1.96 9.55 2.25 2.30 2.55 

% > 1.96 11.00 4.20 3.10 3.50 

% > 2.33 7.55 2.25 1.95 1.70 


x2(4) 

% <  -2.33 16.15 0.95 0.85 0.85 

% <  -1.96 20.65 3.45 2.30 2.25 

% > 1.96 19.20 5.30 3.45 3.30 

% > 2.33 15.40 2.95 1.75 1.25 


Cauchy 

% < -2.33 0.70 0.55 0.90 0.85 

% < -1.96 2.00 1.70 1.90 1.45 

% >  1.96 3.50 3.80 4.40 4.75 

% > 2.33 1.35 1.90 3.10 3.30 


Uniform 

% <  -2.33 49.20 35.50 4.05 1.50 

% <  -1.96 49.60 37.40 7.55 3.00 

% > 1.96 48.05 38.50 6.85 3.75 

% > 2.33 47.90 36.85 4.30 1.55 


Bimodal 

% <  -2.33 15.45 7.25 46.00 2.50 

% <  -1.96 20.00 10.80 47.20 5.70 

% >  1.96 17.85 10.25 41.05 5.30 

% > 2.33 13.65 6.85 39.95 2.80 


Note: Approximate standard error is 1.12 for these probabilities. 

We consider two nonlinear time-series models which have no autocorrela- 
tion but non-zero conditional means. Robinson (1977) proposed the nonlinear 
moving average (NMA) model: 
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Table I11 

Simulated Power of the BDS Statistic 
This table provides the percentage of BDS statistics (at dimensions 2 through 5, 6 equaling 0.5, 
1,1.5, and 2 times the standard deviation of the data) rejecting the IID null hypothesis when it 
is false. The Monte Carlo simulation uses 2000 replications, each having 1000 observations, for 
11 non-IID alternatives: the first order autoregression (ARl), the first order moving average 
(MAl), the '2-mean' model (the first 500 observations have mean -1 and variance 1, the second 
500 observations have mean 1and variance I), the '2-variance' model (the first 500 observations 
have mean 0 and variance 1, the second 500 observations have mean 0 and variance 2), the 
nonlinear moving average (NMA), the threshold autoregression (TAR), the autoregressive 
conditional heteroskedasticity (ARCH) model, the generalized autoregressive conditional het- 
eroskedasticity (GARCH) model, the exponential generalized autoregressive conditional het- 
eroskedasticity (EGARCH) model, the Mackey-Glass data filtered by an autoregression of order 
3, and the "Sine" model. 

2-variance 	 2 

3 

4 

5 


NMA 	 2 

3 

4 

5 


TAR 	 2 

3 

4 

5 


ARCH 	 2 

3 

4 

5 


GARCH 	 2 

3 

4 

5 
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Table 111- Continued 

EGARCH 2 
3 
4 
5 

Mackey-
Glass 

2 
3 
4 
5 

Sine 2 
3 
4 
5 

where u ,  is IID standard n ~ r m a l . ~  cu = 0.5. The other In the simulations, 
nonlinear time-series model is the threshold autoregressive (TAR) model in 
Tong and Lim (1980): 

where u, is IID standard normal. In the simulations, CY = -0.4 and /3 = 0.5. 
Table I11 shows that BDS can detect the nonlinearity in both the NMA and 
the TAR. 

Next, we examine nonlinear time-series models, with no autocorrelation 
and zero conditional means, that exhibit conditional heteroskedasticity. As 
discussed earlier, Engle (1982) presented the autoregressive conditional het- 
eroskedasticity (ARCH) model: 

In our simulations, 4, = 1and 4, = 0.5. Bollerslev (1986) turned ARCH into 
Generalized ARCH (GARCH) by making a, a function of its own past: 

In our simulations, 4, = 1and 4 = 0.1, and $ = 0.8. Nelson (1991) changed 
GARCH into exponential GARCH (EGARCH) by using log a: instead of a:. 

The nonlinear moving average is very similar to the bilinear model in Granger and Andersen 
(1978). 
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In our simulations, 4, = 1 and 4 = . l ,  $ = .8, and y = 0.1. Unlike simple 
ARCH and GARCH, EGARCH is able to capture asymmetric response of the 
variance to the direction of x,, e.g., a higher variance when x, is negative, 
and a lower variance when x, is positive, a phenomenon noted by Black 
(1976). We refer to all three as "ARCH-type" models. These models have 
enjoyed a great deal of attention in the econometric literature, particularly in 
applications to financial time s e r i e ~ . ~  Table I11 shows that BDS can easily 
detect the simple ARCH and GARCH models, but has trouble detecting 
EGARCH. 

For a chaotic (i.e., nonlinear deterministic) process, we use the Mackey- 
Glass equation. The results for the tent map, logistic map, and HQnon maps 
are similar, and available upon request. The Mackey-Glass is chosen, because 
i t  has the highest correlation dimension (7.5) among this group of chaotic 
processes, making it the most difficult to detect. In addition, its correlation 
dimension is similar to that of weekly stock returns as measured by 
Scheinkman and LeBaron (1989). To remove any evidence of linear depend- 
ence, we filter the data using an  autoregression with three lags. Table I11 
shows that  BDS has no trouble in picking up the nonlinear dependence in the 
(filtered) Mackey-Glass data. (We will discuss the "sine" model later.) 

The third set of simulation addresses the issue of "nuisance" parameters. 
We have already pointed out that we must remove any linear dependence 
from our data before applying the BDS test for nonlinearity. The question is: 
will linear filtering change either the asymptotic or the finite sample distri- 
bution of the test statistic? Brock (1987) proves that  the asymptotic distribu- 
tion of the BDS test is not altered by using residuals instead of raw data in 
linear models. In fact, Brock's theorem can be extended to residuals of some 
nonlinear models (such as the nonlinear moving average), but not to ARCH 
models. This is confirmed by the simulations in Table IV. The results show 
that the asymptotic distribution still approximates the finite sample distribu- 
tion with the same degree of accuracy even when replacing raw data with 
residuals of the AR1, the MA1, and the NMA. The results also show that  the 
BDS test may reject too infrequently in the case of standardized residuals 
from GARCH and EGARCH models. 

B. Application to Stock Returns 

We now apply the BDS test of IID to stock market returns. Our data are 
weekly stock returns provided by Peter Rossi using the data from the Center 
for Research in Securities Prices (CRSP) a t  the University of Chicago, 
beginning in 1963 and ending in 1987. These data have been carefully 
constructed to include dividends as  well as capital gains, and they have also 
been made into different portfolios. We examine a value-weighted index 
(VW) and an  equally weighted index (EW).6 In addition, we use ten value- 

See the survey article by Bollerslev et al. (1990). 
We also examined the value and equally weighted indices in excess of a Treasury bill return. 

The results did not differ from the raw indices, and so were not reported. 
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Table IV 


Simulated Size of the BDS Statistics for.Residuals 

This table provides the percentage of BDS statistics (at dimensions 2, t equaling 0.5, 1.0, 1.5, 
and 2 times the standard deviation of the data) rejecting the IID null hypothesis when applied to 
residuals. The Monte Carlo simulation uses 2000 replications, each having 1000 observations, 
for data generated by 5 non-IID models: the first order autoregression (ARl), the first order 
moving average (MAl), the nonlinear moving average (NMA), the generalized autoregressive 
conditional heteroskedasticity (GARCH) model, and the exponential generalized autoregressive 
conditional heteroskedasticity (EGARCH) model. N(0, 1) denotes the percentage for a standard 
normal distribution. 

AR1 residuals ( p  = 0.5) 
% < -2.33 1.20 1.10 1.15 1.20 1.00 
% < -1.96 3.25 2.90 2.60 2.65 2.50 
% > 1.96 4.50 3.25 3.25 3.70 2.50 
% > 2.33 1.90 1.65 1.20 1.50 1.00 

MA1 residuals (8  = 0.5) 
% < -2.33 1.30 1.00 1.25 1.20 1.00 
% <  -1.96 3.10 2.65 2.60 3.05 2.50 
% >  1.96 4.40 3.20 3.30 3.75 2.50 
% > 2.33 1.90 1.70 1.30 1.50 1.00 

NMA residuals ( a  = 0.05) 
% < -2.33 1.60 1.10 1.25 1.00 1.00 
% <  -1.96 3.75 2.70 2.90 3.00 2.50 
% >  1.96 4.40 3.25 3.50 3.75 2.50 
% > 2.33 2.05 1.70 1.65 1.95 1.00 

GARCH standardized residuals ( 4  = 0.1, $ = 0.8) 
% <  -2.33 0.40 0.30 0.20 0.25 1.00 
% < -1.96 1.55 0.95 0.80 0.95 2.50 
% > 1.96 1.80 1.15 0.80 0.45 2.50 
9% > 2.33 0.90 0.20 0.10 0.05 1.00 

EGARCH standardized residuals ( 4  = 0.1, $ = 0.8) 
% < -2.33 0.20 0.00 0.00 0.05 1.00 
% < 1 . 9 6  0.80 0.40 0.25 0.40 2.50 
% > 1.96 3.35 2.50 1.85 1.95 2.50 
% > 2.33 1.75 0.90 0.85 0.55 1.00 

weighted decile portfolios in which firms are ranked by size every quarter. 
Results are reported for the first (smallest), fifth, and tenth (largest) decile 
portfolios, called DEC1, DEC5, and DEc10.~All  data were first filtered by an 
autoregression whose lag length was determined by the Akaike (1974) infor-
mation ~ r i t e r i o n . ~  

The results are the same using equally weighted decile portfolios. 
The Schwarz (1978) information criterion was also used. The lags identified by the Akaike 

(Schwarz) information criterion are: VW 1 (I),  EW 2 (I), DECl 7 (I),  DEC5 2 (I), DEClO 1 (0). 
Since there are large numbers of degress of freedom in our data, we used the longer lags 
identified by the Akaike information criterion. 
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Table V contains some descriptive statistics of these filtered series. The 
filtering procedure removes any nonzero mean from the data. (The means in 
the raw data are small to begin with.) The main point to note in this table is 
that all series are leptokurtic-with the coefficients of kurtosis much larger 
than 3-a fact which is well known. 

Table VI gives the results of the BDS tests. They strongly reject the 
hypothesis that stock returns are IID. This is true for the market as a whole, 
as well as the decile portfolios. 

What are the implications of the finding that stock returns are not IID? 
First, it does not contradict market efficiency. Market efficiency implies that 
forecast errors of returns are not predictable. The fact that returns them- 
selves are not IID (and therefore potentially predictable) says nothing about 
the predictability of forecast errors. 

Second, when returns are not IID, it is difficult to interpret unconditional 
density estimation. A number of studies have fit leptokurtic distributions to 
stock returns. For example, Blattberg and Gonedes (1974) found that the 
Student t distribution provides a better fit to stock returns than the symmet- 
ric stable paretian distribution of Mandelbrot (1963). Since both the stable 
paretian and the Student t are leptokurtic, the probability of observing large 
returns (in absolute values) is much higher than that from the normal 
distribution. One may therefore be tempted to "explain" crashes, such as 
that on October 19, 1987, as small but nonzero probability event^.^ The fact 
that returns are not IID,1° however, makes this explanation for stock market 
crashes less plausible, because unconditional distributions will always have 
fatter tails than conditional distributions when the data have some type of 
conditional dependence. 

Third, the rejection of IID does not provide direct evidence of chaos in the 
stock market. Our simulations in Table I11 show that BDS has good power to 
detect at  least four types of non-IID behavior: linear dependence, nonstation- 
arity, chaos, and nonlinear stochastic processes. We can rule out linear 
dependence, since there is little of it in the raw returns, and since we have 
removed whatever correlation there is by filtering the return series. We 
therefore concentrate on the remaining three causes. 

The rejection of IID is consistent with the view that stock returns are 
nonstationary. Over a long time period, it is difficult to make a case that the 
behavior of stock returns remains unchanged. Changes in economic funda- 
mentals, e.g., wars, can shift the mean return (represented by the "2-mean" 
model). Changes in the operating procedure of the Federal Reserve, e.g., 

Table 1in Fama and Roll (1968) shows that the probability of observing an outcome in excess 
of 6 standardized units is 5.36% for the Cauchy distribution, compared to almost 0% for the 
normal distribution. In fact, the probability of an outcome in excess of 20 standardized units is 
1.59% for the Cauchy distribution! 

loNote that the Cauchy distribution is a member of the stable paretian family. The simula- 
tions in Table I show that the asymptotic distribution of the BDS statistic can still approximate 
the finite distribution well, even though the Cauchy distribution has no moments. 
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Table V 

Selective Statistics for Filtered Stock Returns 
This table presents the mean, standard deviation, skewness, kurtosis, maximum, minimum, and 
the number of observations for 11 stock returns: the weekly value weighted portfolio (VW), the 
weekly equally weighted portfolio (EW), the weekly smallest decile portfolio (DECl), the weekly 
fifth decile portfolio (DEC5), the weekly largest decile portfolio (DEClO), the weekly S&P500 
index (SPW), the daily S&P500 index (SPD), and the 15-minute S&P500 indices for the first, 
second, third, and fourth quarter of 1988 (SPMl, SPM2, SPM3, and SPM4, respectively). 

Std No. of 
Mean Dev Skewness Kurtosis Maximum Minimum Observations 

VW 
EW 
DECl 
DEC5 
DEClO 
SPW 
SPD 
SPMl 
SPM2 
SPM3 
SPM4 

switching from an interest rate to a money supply target during 1979-1982, 
can shift the volatility of financial markets (represented by the "2-variance" 
model). 

The rejection of IID is also consistent with the view that returns are 
generated by nonlinear stochastic systems, e.g., NMA, TAR, and ARCH-type 
models. While there are few models in economics and finance which lead to 
nonlinear stochastic systems of these specific types, this observation does not 
imply that nonlinear stochastic models are not useful. The nonlinear moving 
average model can be regarded as a second order approximation of the 
Volterra representation, which all stationary (linear or nonlinear) time series 
possess. The threshold autoregressive process can result from an endogenous 
regime switching model.'' The ARCH-type model can be thought of as 
approximating conditional variance changes. l2 

Finally the rejection of IID is also consistent with the presence of low 
complexity chaotic behavior in stock returns. Regardless of whether deter- 
minism is aesthetically appealing or not, there are many ways to gener- 
ate economic models with chaotic dynamics, summarized by Baumol and 
Benhabib (1989). If a system is both chaotic and stochastic, we shall classify 
it (arbitrarily) as a stochastic system. What remains for us to do is to try to 
eliminate two of the three explanations for non-IID behavior of stock returns. 

11 See Hsieh (1990). 

12 See Nelson (1990) for a discussion. 
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Table VI 


BDS Statistics for Filtered Stock Returns 

This table presents the BDS statistics (at dimensions 2 through 5 and t equaling 0.5, 1, 1.5, and 
2 standard deviations of the data) for 11 stock returns: the weekly value-weighted portfolio 
(VW), the weekly equally weighted portfolio (EW), the weekly smallest decile portfolio (DECl), 
the weekly fifth decile portfolio (DECB), the weekly largest decile portfolio (DEClO), the weekly 
S&P500 index (SPW), the daily S&P500 index (SPD), and the 15-minute S&P500 indices for the 
first, second, third, and fourth quarter of 1988 (SPM1, SPM2, SPM3, and SPM4 respectively). 

VW 	 2 

3 

4 

5 


EW 	 2 

3 

4 

5 


DECl 	 2 

3 

4 

5 


DEC5 	 2 

3 

4 

5 


DEClO 	 2 

3 

4 

5 


SPW 	 2 

3 

4 

5 


SPD 	 2 

3 

4 

5 


SPMl 	 2 

3 

4 

5 


SPM2 	 2 

3 

4 

5 


SPM3 	 2 

3 

4 

5 
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Table VI-Continued 

IV. Is Nonstationarity Responsible for the Rejection of IID? 

For financial economists, nonstationarity is synonymous with structural 
change. There may be many reasons for structural changes: technological 
and financial innovations, policy changes, etc. It would be difficult to argue 
that the structure of the economic and financial system has remained con- 
stant from 1963 to 1987. We must allow for the possibility that structural 
changes caused BDS to reject IID during this period. 

In order to check this explanation, we look at the returns of the Standard & 
Poors 500 stock index (without dividends) for the following time periods: 
weekly returns from 1962 to 1989 (SPW), daily returns from 1983 to 1989 
(SPD), and 15-minute returns during 1988 divided into 4 approximately 
equal subsamples (SPM1, SPM2, SPM3, SPM4).13 Implicitly, we are assum- 
ing that structural changes occur infrequently. By going to higher and 
higher frequency data in shorter and shorter time periods, we should remove 
the effects of structural changes. But we stop well short of using tick by tick 
data to avoid picking up micromarket structure dependencies discussed in 
Section 111. 

Table VI indicates that the weekly S&P returns is not IID, the same as the 
value-weighted index over the same period. What is more interesting, how- 
ever, is that the daily returns in 1982-1989 and the 15-minute returns in 
1988 are also not IID.14 This makes it unlikely that infrequent structural 
changes are causing the rejection of IID in weekly returns. It is, of course, 
possible that structural changes happen so frequently that they cause BDS to 
reject IID in the 15-minute returns over the course of 3 months. If this is the 
true, then econometric work on economic and financial data is virtually 
impossible. 

l3These are logarithmic differences of price changes. They are filtered by an  autoregression 
whose lags are chosen by the Akaike (Schwarz) criterion to be: weekly returns, 6 (O), daily 
returns, 5(0), and 15-minute returns, 4 (1). Since we have a large number of degrees of freedom, 
we use the longer lag lengths. 

l4 It is possible that the 15-minute return is capturing some nonlinear dynamics from the 
micromarket structure. This will have to be studied in the future. We checked that day-of-the- 
week and time-of-day effects are not responsible for the rejection of IID in the daily and 
15-minute data. 
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V. 	Is Chaotic Dynamics Responsible for the Rejection of IID? 

The rejection of IID is certainly consistent with the hypothesis that the 
stock market is governed by low complexity chaotic dynamics. The issue we 
raise here is-is there any direct evidence of chaotic behavior? In this section, 
we take two approaches to answer this question. 

The first approach examines the unconditional third order moments of 
stock returns, following the method in Hsieh (1989). The motivation is as 
follows. If x, is a chaotic process, it can be written as: 

This is a special case of a more general category of nonlinear processes: 

where E,  satisfies the condition that E[E, I xtPl , .. . I = 0. For both models, we 
can consider f ( )  as the mean of x, conditional on its own past. Since f ( )  is 
nonlinear, these models are "nonlinear-in-mean" (as opposed to "nonlinear- 
in-variance," which will be discussed later). 

We can test for the null hypothesis that f ( )  = 0 against the alternative 
that f ( )  z 0. Under the null, the unconditional third order moments, 
E [ ~ , x , - ~ x , - ~ ]= 0, for i, j > 0. Hsieh (1989) proposes the following test: 

a) Define p(i, j) = E [ ~ ~ x , - ~ x , - ~ ] / a ~ ,  V[x,l. Estimate p(i, j )where a2 = 

with the appropriate sample moments: r(i ,  j) = [ ~ x , x , - ~ x , - ~  
IT1 /[EX? I, - - ,  

b) 	 r i j) - ( i  j )  has a limiting distribution N ( 0 ,  V(i, j)), where 

V(i, j) can be estimated by the method of moments: 


While Hsieh (1989) tests p(i, j )  = 0 individually using a t-statistic, we test 
the composite null hypothesis that p(i, j) = 0 for 0 < i Ij I m, for a given 
m, making use of the fact that the asymptotic covariance between r(i, j)  and 
r(il, j') can be estimated using the obvious sample cross-moments: 

The composite test can be conducted using the usual X 2  statistic.15 
This test statistic is designed so that it will not reject models which are 

"nonlinear-in-variance": 

15The proof of this statement follows easily from Hsieh (1989), which can be viewed as a 
modification of Tsay (1986). We should note that the third order moment test can fail to detect a 
chaotic process whose odd product moments are zero. This can happen if the function f() is 
antisymmetric. This is not true for any of the chaotic examples in this paper. 
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where g ( ) is a nonlinear function. Since xt and E ,  take on both positive and 
negative values, we cannot take logarithms of both sides and transform this 
model to one being nonlinear-in-mean. However, the third order moment test 
should detect hybrid models, those which are "nonlinear-in-mean" as well as 
"nonlinear-in-variance": 

(The GARCH-in-mean model, where the conditional variance appears in the 
conditional mean, is such an example.) 

As in the case of the BDS test, we perform simulations to evaluate the 
finite sample distribution of the third order moment test as well as its ability 
to detect nonlinearity-in-mean. The results are reported in Table VII. 

The first 4 models use IID data generated by the standard normal, Student 
t with 3 degrees of freedom, Cauchy, and the chi-square with 4 degrees of 
freedom. They show that the asymptotic distribution of the third order 
moment test approximates the finite sample distribution for 1000 observa- 
tions tolerably well for IID data generated by the standard normal and the 
X2(4),but rather poorly for the t(3) and the Cauchy. The latter two distribu- 
tions do not have fourth or higher moments, which are assumed to exist in 
the derivation of the asymptotic distribution of the third order moment test 
statistic. Thus care must be used when applying the third order moment test 
to very fat tailed data.16 

The next 5 models have non-IID data, but do not have nonlinearity-in-mean. 
There is a slight tendency for the test to reject too infrequently. This is more 
so for the AR1, MA1, and MA1, and 2-mean, and less so for the 2-variance 
and EGARCH. 

The next 4 models (NMA, TAR, filtered Mackey-Glass, and GARCH-in- 
mean), generate non-IID data which have nonlinearity-in-mean and nonzero 
third order moments. The third order moment test can detect the first 3 
models nearly 100% of the time, but the power against the GARCH-in-mean 
model is low, probably because the high order moments of the GARCH-in- 
mean model do not exist.17 

The last simulation uses the "sine" model which is nonlinear-in-mean but 
has zero third order moments: 

where E ,  is IID standard normal. The simulation shows that the third order 
moment test, as expected, cannot pick up the nonlinearity in this model. The 
reason is quite simple. If the conditional means are zero, then the third order 
moments are zero. However, the converse is not true: if the third order 

16 The failure of existence of fourth moments can also affect the distribution of the Tsay (1986) 
nonlinearity test and the Hinich and Patterson (1985) nonlinearity test. It is difficult to test 
whether fourth moments exist in a finite data set. This points to one of the advantages of the 
BDS test, whose limiting distribution does not require the existence of any moments. 

17 We also reject 100% of the replications using the tent map, the Hknon map, and the logistic 
map (when A = 4). 
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Table VII 

Simulated Size and Power of the Third Order Moment Test 
This table presents the percentage of the third order moment test (using 5 lags). The Monte 
Carlo uses 2000 replications, each having 1000 observations, for data generated by: (a) nine 
models for which the conditional mean is zero or linear: the standard normal, the Student t with 
3 degrees of freedom, the chi-square with 4 degrees of freedom, the Cauchy distribution, the first 
order moving average (MAl), the first order autoregression (ARl), the '2-mean' model (the first 
500 observations have mean -1 and variance 1,the second 500 observations have mean 1 and 
variance I), the '2-variance' model (the first 500 observations have mean 0 and variance 1, the 
second 500 observations have mean 0 and variance 2), and the exponential generalized autore- 
gressive conditional heteroskedasticity (EGARCH) model; and (b) five models for which the 
conditional mean is nonlinear: the threshold autoregression (TAR), the nonlinear moving 
average (NMA), the Mackey-Glass filtered by a third order autoregression, the generalized 
autoregressive conditional heteroskedasticity in mean model, and the "Sine" model. The "true 
size" denotes the percentage of rejections under the null hypothesis. 

Test True 
Statistic Model Size 

x2(15) N(O, 1) t(3) x (4) Cauchy 

Model 

True 
x2(15) MA1 AR1 2-mean 2-var EGARCH Size 

Model 

True 
x2(15) TAR NMA Mackey-Glass GARCH-M Sine Size 

moments are zero, it does not imply that the conditional means are zero. This 
was first pointed out by Pemberton and Tong (1981). Note, however, that 
BDS has no trouble in detecting this type of nonlinearity. (See the results in 
Table 111.) 

We now apply the third order moment test to stock returns. Table VIII 
shows that there is no evidence to reject the null hypothesis that stock 
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Table VIII 


Third Order Moments Test Statistics for Filtered Stock Returns 

This table presents the third order moment test statistics (using 5 lags) for 11stock returns: the 
weekly value-weighted portfolio (VW), the weekly equally weighted portfolio (EW), the weekly 
smallest decile portfolio (DECl), the weekly fifth decile portfolio (DEC5), the weekly largest 
decile portfolio (DEClO), the weekly S&P500 index (SPW), the daily S&P500 index (SPD), and 
the 15-minute S&P500 indices for the first, second, third, and fourth quarter of 1988 (SPMl, 
SPM2, SPM3, and SPM4, respectively). These statistics are asymptotically X2(15), whose critical 
values (tail probabilities) are: 22.31 (lo%), 25.00 (5%), 27.49 (2.5%), 30.58 (I%),and 32.80 
(0.5%). 

Stock Returns Third Order Moment Statistic 

VW 

EW 

DECl 

DEC5 

DEClO 

SPW 

SPD 

SPMl 

SPM2 

SPM3 

SPM4 


returns have zero third order moments. What does this mean? Had we 
rejected the null hypothesis of zero third order moments, we would have 
found evidence consistent with nonlinearity-in-mean (possibly chaotic dynam- 
ics). The failure to reject the null, however, does not allow us to rule out the 
presence of chaotic dynamics. We therefore turn to a second approach using 
nonparametric regressions to capture the conditional mean directly. 

Suppose returns are generated by the following model: 

where f ( )  is nonlinear and E~ is IID. This includes chaotic models as special 
cases, if we set c t  = 0. When f ( )  is a smooth function, Stone (1977) showed 
that a large class of nonparametric regressions can be used to fit f ( )  
consistently as the sample size increases. There are many ways to implement 
nonparametric regression; for example, kernel estimation, series expansion, 
neural network, and nearest neighbor. We select Cleveland's (1979) method 
of locally weighted regression (LWR), which is a generalization of nearest 
neighbor. LWR has been used to test for nonlinearity-in-mean by Diebold and 
Nason (1990) in weekly exchange rate changes, and LeBaron (1988) in 
weekly stock returns. 

Diebold and Nason (1990) gave a very good description of locally weighted 
regression. Briefly, the idea is this. Suppose the data are generated according 
to: 
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We have observed x,, x,-,,a. ., and would like to forecast x,,,. The BDS 
statistic indicates that, whenever xt-, was close to x,-,, x, was also close to 
x,. We can look at the history of returns, find those instances when x, was 
close to x,, run a nonparametric regression of x,,, on x, to estimate the 
function f() ,  and use f'(x,) to predict x,,,, where f ( )  denotes the nonpara- 
metric estimate of f(). The extension to the case where f()  contains more 
than one lag of x, is straightforward. Locally weighted regressions uses the k 
nearest neighbors of x,, and a scheme which gives more weight to closer 
observations and less weight to farther observations. There are a number of 
parameters to be selected: (a) The number of nearest neighbors to use: We try 
10% of all observations, up to 90%, increasing in steps of 10%. (b) The 
number of lags of x, to include as arguments of the unknown function f(): 
We use lags 1 through 5. (c) The weighting scheme: We use the "tricubic" 
scheme proposed by Cleveland and Devlin (1988).18 (d) A period for out-of- 
sample forecasting: for the weekly returns (VW, EW, DEC1, DEC5, DEC10, 
SPW), we arbitrarily start the forecast at  the lOOlst observation and contin- 
ued through the end. For the daily returns (SPD) we begin the forecast at  the 
1601st observation. For the 15-minute returns (SPM1, SPM2, SPM3, SPM4), 
we begin the forecast at  the 1401st observation. This way, each series has at  
least 1000 observations for the locally weighted regression, and at least 300 
observations for out-of-sample forecasting. 

If stock returns are governed by low complexity chaos, we should be able to 
use locally weighted regression to forecast returns much better than simple 
methods, such as the random walk (RW) model of prices. In addition, our 
forecasts~should improve as the forecast hcrizon becomes shorter and shorter. 
Neither implication is born out by the data. Table IX measures forecastabil- 
ity in terms of root mean squared errors. In most cases, the random walk 
model achieves the lowest root mean squared error. In a few instances, e.g., 
VW, EW, DEC1, and SPM4, the locally weighted regression has smaller 
forecast errors than the random walk, but the reduction in root mean squared 
error is less than 5%.19 This can, however, happen by chance, given the wide 
range of parameter values in choosing the locally weighted regression. 

One possible explanation of the inability of LWR to outperform random 
walk forecasts is that LWR is unable to capture conditional mean changes. 
We therefore perform a simulation using "2-mean," "2-variance," NMA, 
TAR, Sine, EGARCH, and Mackey-Glass. We generate 500 observations of 
each series, and begin out-of-sample forecasting at the 451st observations. 
The tricubic weighting function is used. Since the simulations are computa- 
tionally intensive, we use only one choice of 112-50 nearest neighbors (about 
10% of the entire sample). We compare the root mean squared error of the 
LWR forecasts with that of the "random walk" forecast for 2000 replications. 
Table X shows that LWR beats the random walk 100% of the time in the 

Is We have experimented briefly with nearest neighbor, which is a rectangular weighting 
scheme. The results are similar to those using the tricubic weighting function. 

19 These results are consistent with the findings in LeBaron (1988). 
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Mackey-Glass equation, and 95% of the time for the "Sine" model, which was 
not detectable by the third order moment test. In addition, LWR outperforms 
random walk in the TAR model, even though the function f() is not smooth. 
This indicates that LWR has the ability to pick up conditional mean changes. 

While we did not experiment with alternative methods of nonparametric 
regressions, other authors have had no more success. White (1988) found that 
forecasts of IBM stock returns using neural network did not outperform the 
random walk model. Prescott and Stengos (1988) found that forecasts of 
kernel estimators on gold and silver also could not outperform the random 
walk model. 

The preponderance of the failure to outperform the random walk model in 
asset markets forces us to conclude that there is no strong evidence that the 
movements in stock market are primarily due to conditional mean changes, 
when conditioning on past returns2' In particular, there is no evidence of 
low complexity chaotic behavior in stock returns.21 

VI. Is Conditional Heteroskedasticity Responsible 
for the Rejection of IID? 

Next we proceed to consider whether stock returns are nonlinear-in-vari- 
ance: 

X t  = . . ) ~ t >g ( ~ ~ 1 , .  (35) 

where E[et I xtPl , .. . I = 0 and V[ct 1 xtP1,.. . I = 1 (without loss of general- 
ity). This is a general model of conditional heteroskedasticity, which includes 
ARCH-type models as special cases. 

There is now growing evidence that stock market volatility is not only 
time-varying (e.g., French, Schwert, and Stambaugh (1987)) but is pre- 
dictable (e.g., Schwert and Seguin (1990)). A number of papers have used 
ARCH-type models to describe conditional heteroskedasticity (e.g., Bollerslev 
(1987) and Nelson (1991)). We pose two questions in this section: (a) What is 
the evidence of conditional heteroskedasticity? (b) Does the conditional het- 
eroskedasticity captured by ARCH-type models account for all the nonlinear- 
ity in stock returns? 

To answer the first question, observe that if we take the absolute values of 
equation (35), we obtain: 

If g ( ) is differentiable, a Taylor series expansion would yield the result that 
1 x, I depends on 1 x , - ~1 .  Thus correlation of 1 xt I with I xtPiI is evidence of 

20 These results could change if we increase the information set to include variables other than 
past returns. For example, Gallant, Rossi, and Tauchen (1990) use returns and volume in a 
bivariate system. 

Even if we had found evidence of chaotic behavior, estimating the unknown parameters of a 
chaotic map is next to impossible. See Geweke (1989) for a discussion. 
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Table IX 


Root Mean Squared Forecast Errors 

The table presents the root mean squared forecast errors using the locally weighted regression 
with tricubic weights, using lags 1through 5, and the number of nearest neighbors equaling the 
fraction ( f ) ,  0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 of the data. The root mean squared 
forecast errors of the random walk model (RW) are in parentheses. The smallest root mean 
squared forecast error for each series is underlined. All errors have been multiplied by 100. (See 
Table VIII for definitions of abbreviations.) 

Lags 

VW: (Random walk 0.05436081) 
0.10 0.05198337 0.05204231 0.05208826 0.05204822 0.05204699 

0.20 0.05758597 0.05765421 0.05769833 0.05766710 0.05766342 

0.30 0.05970985 0.05977849 0.05981333 0.05977608 0.05978498 

0.40 0.06074411 0.06080367 0.06083238 0.06078065 0.06080701 

0.50 0.06104386 0.06109431 0.06111920 0.06105552 0.06109534 

0.60 0.06100911 0.06105054 0.06107035 0.06100228 0.06104746 

0.70 0.06082516 0.06085788 0.06087175 0.06080501 0.06085057 

0.80 0.06054519 0.06056918 0.06057733 0.06051347 0.06055829 

0.90 0.06016496 0.06018105 0.06018456 0.06012428 0.06016784 


EW: (Random walk 0.05320546) 
0.10 0.05317910 0.05313575 0.05297957 0.05310239 0.05310214 

0.20 0.05399810 0.05394319 0.05383378 0.05387236 0.05386917 

0.30 0.05475939 0.05469907 0.05462234 0.05461992 0.05461392 

0.40 0.05531716 0.05526434 0.05521420 0.05518580 0.05517885 

0.50 0.05571191 0.05566488 0.05563107 0.05558950 0.05558233 

0.60 0.05600711 0.05596782 0.05594459 0.05589973 0.05589285 

0.70 0.05620623 0.05617554 0.05616085 0.05611508 0.05610873 

0.80 0.05630840 0.05628667 0.05627885 0.05623417 0.05622840 

0.90 0.05630185 0.05628798 0.05628544 0.05624305 0.05623784 


DEC1: (Random walk 0.06055333) 
0.10 0.05806902 0.05796735 0.05793429 0.05793747 0.05788714 

0.20 0.05914330 0.05904963 0.05901102 0.05901133 0.05900607 

0.30 0.05967503 0.05957489 0.05954111 0.05953993 0.05953798 

0.40 0.06018445 0.06009454 0.06008802 0.06008652 0.06008414 

0.50 0.06061733 0.06053545 0.06054605 0.06054455 0.06054260 

0.60 0.06090465 0.06083168 0.06085730 0.06085586 0.06085410 

0.70 0.06111063 0.06103978 0.06107295 0.06107149 0.06106924 

0.80 0.06125867 0.06118942 0.06122721 0.06122567 0.06122274 

0.90 0.06137222 0.06130418 0.06134270 0.06134127 0.06133782 


DEC5: (Random walk 0.05593892) 
0.10 0.05895377 0.05907995 0.05910458 0.05904954 0.05902467 

0.20 0.05939389 0.05950339 0.05953901 0.05959645 0.05960005 

0.30 0.05960399 0.05969049 0.05972788 0.05980120 0.05980946 

0.40 0.05971944 0.05979293 0.05982902 0.05988964 0.05989699 

0.50 0.05984676 0.05991038 0.05994459 0.05998930 0.05999401 

0.60 0.05986240 0.05992130 0.05995344 0.05998826 0.05999137 

0.70 0.05981183 0.05986855 0.05989852 0.05992758 0.05992973 

0.80 0.05969451 0.05974899 0.05977675 0.05980114 0.05980247 

0.90 0.05953412 0.05958599 0.05961180 0.05963290 0.05963368 
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f 

DEC10: (Random walk 0.05488350) 


0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0.80 

0.90 


SPW: (Random walk 0.05083948) 
0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0.80 

0.90 


SPD: (Random walk 0.00658354) 
0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0.80 

0.90 


SPM1: (Random walk 0.00029380) 

0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0.80 

0.90 


SPM2: (Random walk 0.00025644) 


0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0.80 

0.90 


Table IX-Continued 

Lags 

1 2 3 4 5 

0.05305787 0.05313033 0.05313959 0.05324359 0.05315436 

0.05668828 0.05675475 0.05677510 0.05680402 0.05677795 

0.05872669 0.05879617 0.05882264 0.05881426 0.05881659 

0.05963001 0.05969522 0.05971931 0.05969445 0.05971353 

0.06005248 0.06010943 0.06012974 0.06009160 0.06012147 

0.06018747 0.06023472 0.06025017 0.06020321 0.06024141 

0.06013509 0.06017344 0.06018397 0.06013311 0.06017672 

0.05997842 0.06000830 0.06001420 0.05996200 0.06000904 

0.05975363 0.05977644 0.05977930 0.05972548 0.05977443 


0.05955174 0.05957110 0.05956666 0.05956406 0.05955766 

0.05623793 0.05623091 0.05621985 0.05621961 0.05621936 

0.05506007 0.05505484 0.05504434 0.05504418 0.05504591 

0.05432155 0.05431458 0.05430424 0.05430363 0.05430552 

0.05375797 0.05374680 0.05373616 0.05373535 0.05373691 

0.05335459 0.05334193 0.05333248 0.05333188 0.05333303 

0.05306897 0.05305650 0.05304932 0.05304907 0.05304987 

0.05284070 0.05282971 0.05282462 0.05282451 0.05282518 

0.05259664 0.05258771 0.05258438 0.05258441 0.05258503 


0.00721163 0.00721740 0.00721715 0.00721743 0.00721916 

0.00719038 0.00719276 0.00719432 0.00719232 0.00719306 

0.00721627 0.00721747 0.00721892 0.00721708 0.00721742 

0.00722019 0.00722111 0.00722225 0.00722079 0.00722102 

0.00722375 0.00722433 0.00722536 0.00722404 0.00722417 

0.00722701 0.00722731 0.00722822 0.00722706 0.00722712 

0.00722815 0.00722836 0.00722908 0.00722816 0.00722821 

0.00722651 0.00722674 0.00722722 0.00722661 0.00722666 

0.00721953 0.00721972 0.00721988 0.00721968 0.00721972 


0.00029994 0.00030069 0.00030052 0.00030053 0.00030053 

0.00029738 0.00029791 0.00029779 0.00029780 0.00029781 

0.00029629 0.00029667 0.00029658 0.00029660 0.00029656 

0.00029540 0.00029573 0.00029565 0.00029567 0.00029562 

0.00029451 0.00029487 0.00029478 0.00029480 0.00029476 

0.00029395 0.00029432 0.00029423 0.00029425 0.00029421 

0.00029344 0.00029380 0.00029371 0.00029372 0.00029368 

0.00029279 0.00029313 0.00029305 0.00029306 0.00029301 

0.00029224 0.00029255 0.00029247 0.00029248 0.00029244 


0.00025903 0.00025900 0.00025898 0.00025899 0.00025906 

0.00025804 0.00025805 0.00025799 0.00025799 0.00025807 

0.00025800 0.00025803 0.00025796 0.00025797 0.00025805 

0.00025804 0.00025807 0.00025800 0.00025801 0.00025809 

0.00025803 0.00025807 0.00025799 0.00025799 0.00025808 

0.00025798 0.00025802 0.00025794 0.00025794 0.00025803 

0.00025788 0.00025792 0.00025784 0.00025784 0.00025793 

0.00025786 0.00025789 0.00025783 0.00025782 0.00025792 

0.00025797 0.00025800 0.00025794 0.00025794 0.00025805 
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Table IX- Continued 

Lags 

f 1 2 3 4 5 

SPM: (Random walk 0.00009105) 

0.10 0.00009783 0.00009788 0.00009752 0.00009738 0.00009736 
0.20 0.00009543 0.00009549 0.00009507 0.00009493 0.00009486 
0.30 0.00009409 0.00009414 0.00009379 0.00009365 0.00009356 
0.40 0.00009314 0.00009319 0.00009289 0.00009277 0.00009267 
0.50 0.00009268 0.00009273 0.00009246 0.00009234 0.00009224 
0.60 0.00009245 0.00009249 0.00009224 0.00009213 0.00009202~ 
0.70 0.00009225 0.00009229 0.00009205 0.00009195 0.00009183 
0.80 0.00009202 0.00009206 0.00009183 0.00009173 0.00009161 
0.90 0.00009166 0.00009170 0.00009147 0.00009137 0.00009125 

SPM4: (Random walk 0.00007927) 

0.10 0.00008360 0.00008355 0.00008367 0.00008365 0.00008365 
0.20 0.00008165 0.00008164 0.00008171 0.00008169 0.00008169 
0.30 0.00008064 0.00008063 0.00008068 0.00008066 0.00008066 
0.40 0.00008023 0.00008024 0.00008027 0.00008026 0.00008026 
0.50 0.00008004 0.00008007 0.00008009 0.00008008 0.00008008 
0.60 0.00007993 0.00007996 0.00007998 0.00007996 0.00007996 
0.70 0.00007985 0.00007989 0.00007991 0.00007990 0.00007989 
0.80 0.00007980 0.00007985 0.00007986 0.00007985 0.00007984 
0.90 0.00007974 0.00007980 0.00007981 0.00007980 0.00007979 

Table X 


Forecasting Simulated Data 

This table reports the percentage when the root mean squared forecast errors of the locally 
weighted regression is smaller than that of the random walk model. The locally weighted 
regression forecasts for observation 451 through 500 were generated using 5 lags, 50 nearest 
neighbors, and the tricubic weighting function. The Monte Carlo simulations use 2000 replica-
tions, each having 500 observations, for data generated by seven models: the '2-mean' model (the 
first 500 observations have mean -1 and variance 1, the second 500 observations have mean 1 
and variance I), the '2-variance' model (the first 500 observations have mean 0 and variance 1, 
the second 500 observations have mean 0 and variance 2), the nonlinear moving average (NMA), 
the threshold autoregression (TAR), the "Sine" model, the exponential generalized autoregres- 
sive conditional heteroskedasticity (EGARCH) model, and the Mackey-Glass filtered by a third 
order autoregression. 

Model Percentage 

2-mean 

2-variance 

NMA 

TAR 

Sine 

EGARCH 

Mackey-Glass 
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Table XI 


Testing for Conditional Heteroskedasticity 

This table presents the autocorrelation coefficients of the absolute values of the data for 11stock 
returns: the weekly value-weighted portfolio (VW), the weekly equally weighted portfolio (EW), 
the weekly smallest decile portfolio (DECl), the weekly fifth decile portfolio (DEC5), the weekly 
largest decile portfolio (DEClO), the weekly S&P500 index (SPW), the daily S&P500 index 
(SPD), and the 15-minute S&P500 indices for the first, second, third, and fourth quarter of 1988 
(SPM1, SPM2, SPM3, and SPM4, respectively). 

VW 

EW 

D1 

D5 

Dl0 

SPW 

SPD 

SPMl 

SPM2 

SPM3 

SPM4 


*Statistically significant a t  the 1% level (two-tailed test). 

conditional heteroskedasticity (particularly when x, is not correlated with 
x , - , ) . ~ ~Table XI presents the autocorrelations of the absolute valued data. 
There is strong evidence of conditional heteroskedasticity in weekly and 
daily returns, and somewhat weaker evidence in 15-minute returns.23 

ARCH-type models have been used to capture conditional heteroskedastic- 
ity in stock returns, and the typical diagnostic tests (e.g., autocorrelation of 
absolute values and squares of standardized residuals) show that they do. We 
are, however, interested in a deeper issue: does ARCH-type models capture 
all the nonlinear dependence in stock returns? To answer this question, we fit 
an EGARCH model to the data: 

EGARCH is chosen over the simpler ARCH or GARCH model for two 
reasons: (a) unlike the simple ARCH or GARCH model, EGARCH does not 
impose any restrictions on the signs of the parameters to guarantee that 
estimated variances are positive, thus avoiding numerical problems associ- 
ated with constrained optimization, and (b) EGARCH can accommodate 

22 The same argument shows that x: would be correlated with x f - ,  under conditional 
heteroskedasticity. See Engle (1982) and McLeod and Li (1983). 

23 We point out here that the evidence is consistent with conditional heteroskedasticity. But it 
does not rule out even higher order dependence (e.g., conditional skewness, conditional kurtosis). 
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conditional skewness discussed in Black (1976) which is not allowed in the 
less flexible ARCH and GARCH models. We use the Berndt, Hall, Hall, and 
Hausman (1974) procedure with analytic first derivatives to estimate this 
model. 

If the EGARCH model is correctly specified, the standardized residuals: 

should be IID in large samples. Here, 6,is the fitted value of the standard 
deviation from the variance equation. Thus BDS can be used as on the 
standardized residuals to test if EGARCH captures all nonlinear dependence 
in stock returns. 

Table XI1 shows that the BDS statistics on the standardized residuals are 
much smaller than those of the raw data. Only a few statistics are signifi- 
cant, if we use the asymptotic distribution. The trouble is that t,he asymptotic 
distribution of the BDS statistic cannot be used when dealing with ARCH, 
GARCH, and EGARCH standardized residuals, a point made in Table V. 
Therefore, we use the simulated critical values of the BDS statistic. The 2.5% 
and 97.5% critical values are given in Table XIII. Based on these critical 
values, the only series to pass the BDS diagnostic is the smallest decile 
portfolio, DEC1. All the other series contain several BDS statistics which are 
outside the 5% critical range. In particular, the daily S&P returns have the 
worst fit, failing the BDS diagnostic every time. There is sufficient evidence 
here to indicate that the EGARCH model cannot completely account for all 
nonlinearity in stock returns. 

One problem with ARCH-type models is that the variance equation does 
not contain an innovation. To obtain a more general model, we add a 
stochastic term in the variance equation, leading to the following specifica- 
tion for stock returns: 

where z, is an IID random variable, and a, evolves according to: 

log a, = Po + xipi log a,-i + v,, (40) 

where v, is IID, independent of z,. 
It is appropriate here to contrast this model with the mixture models in the 

earlier stock market literature. Blattberg and Gonedes (1974) pointed out 
that the symmetric stable distribution is obtained from a normal distribution 
whose variance is drawn from a strictly positive stable distribution, that the 
Student t is obtained from a normal distribution whose variance is drawn 
from an inverted gamma distribution, and that Clark's (1973) model is a 
normal distribution whose variance is drawn from a log normal distribution. 
Thus, all three mixture models can be written in the form: x ,  = a,z,, where 
z,, is IID standard normal, and a, is another IID random variable. In these 
cases, x, exhibits neither conditional heteroskedasticity or nonlinear depend- 
ence. Our more general specification allows for nonlinear dependence in the 
form of conditional heteroskedasticity. 
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To test the variance specification, we construct daily standard deviations of 
returns from April 21, 1982 to September 30, 1989, using the 15-minute data, 
after removing the serial correlation. Figure 5 is a plot of the natural 
logarithms of the daily standard deviations. Note that, while the volatility on 
October 19 and 20, 1987, were considered to be "huge" at the time, they did 
not show up as "outliers" in the logarithms. In fact, the volatility leading up 
to those days had been on the rise. This is consistent with the diagnostics on 
the least squares residuals. Using the Schwarz criterion, we determine the 
lag length to be 5.24 The least squares fit is 

log u, = - 0.8577 + 0.2385 log a,-, + 0.1298 log a,-, 
(0.1064) (0.0229) (0.0236) 

+ 0.1129 log 0,-, + 0.1515 log 0,-, + 0.1386 log a,-, 
(0.0236) (0.0236) (0.0229) 

The parentheses contain the standard errors of the estimated coefficients. 
Clearly, there is mean reversion in volatility. But the sum of the coefficients 
of this autoregressive process is 0.7713, which contains much less persistence 
than that of the GARCH model in Bollerslev (1987) and the EGARCH model 
in Nelson (1991). 

We ran the BDS test on the residuals to test for the appropriateness of the 
linear model. Panel A in Table XIV shows that the BDS statistics are very 
small, giving no evidence of nonlinearity. Furthermore, it is interesting to 
note that the coefficient of kurtosis of the residuals is 3.49, not much higher 
than 3. There does not appear to be extreme points. 

In the last step we check whether this model of conditional heteroskedastic- 
ity can capture the nonlinear dependence in stock returns. We standardize 
daily returns with the fitted values 6, from the variance equation: z, = x, / S t .  
(Note that x, here is the raw data, not the linearly filtered data.) We then 
remove linear dependence in z, (possibly due to asynchronous trading) using 
a first order autoregression. This lag length was identified by both the 
Akaike and the Schwarz criterion. Panel B in Table XIV contains the final 
diagnostics of this model. It shows that the BDS statistics are substantially 
lower than those in Table XI1 (for SPD). If we use the asymptotic distribution 
of the BDS test, we do not reject the m ~ d e l . ~ V h i s  lead us to conclude that 
the more flexible variance specification provides a much better description of 
the nonlinear dependence in daily stock returns. In addition, note that the 
kurtosis of 88.99 for SPD in Table V has been reduced to 8.816 in Panel B of 
Table XIV, implying that most but not all of the leptokurtosis of daily stock 
returns is due to variance changes. 

24 The Akaike criterion led to very long lags. 
25 Hsieh (1991) shows that the asymptotic distribution applies to the BDS statistic on the 

residuals of the generalized heteroskedasticity model in equations (39) and (40). Even if we 
apply a more stringent rejection criterion by using the critical values in  Table XIII, we could 
reject only 1BDS statistic, a t  dimension 2, when €10= 2. 
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Table XI1 


BDS Statistics for EGARCH Standardized Residuals 

This table presents the BDS statistics (at dimensions 2 through 5 and c equaling 0.5, 1, 1.5, and 
2 standard deviations of the data) for EGARCH standardized residuals of 11stock returns: the 
weekly value-weighted portfolio (VW), the weekly equally weighted portfolio (EW), the weekly 
smallest decile portfolio (DECl), the weekly fifth decile portfolio (DEC5), the weekly largest 
decile portfolio (DEClO), the weekly S&P500 index (SPW), the daily S&P500 index (SPD), and 
the 15-minute S&P500 indices for the first, second, third, and fourth quarter of 1988 (SPMl, 
SPM2, SPM3, and SPM4, respectively). 

€ I @  
m 0.50 1.00 1.50 2.00 

VW 2 0.49 -1.47 -2.16* -2.03* 
3 0.92 -0.96 -2.08* -2.11* 
4 1.16 -1.18 -2.38* -2.44* 
5 0.88 -1.02 -2.41* -2.45* 

EW 2 0.14 -0.58 -1.20 -1.23 
3 1.30 -0.09 -1.05 -1.40* 
4 1.50 -0.34 -1.42* -1.75* 
5 2.20 -0.34 -1.52* -1.80* 

DECl 2 0.83 1.01 1.11 1.16 
3 0.78 0.83 0.69 0.42 
4 0.17 0.60 0.35 -0.06 
5 -0.25 0.43 0.09 -0.35 

DEC5 2 0.29 -0.43 -0.94 -1.04 
3 0.67 -0.31 -1.00 -1.37* 
4 0.75 -0.64 -1.56* -2.00* 
5 0.88 -0.71 -1.74* -2.13* 

DEClO 2 0.08 -1.23 -1.82* -1.64* 
3 0.46 -1.07 -1.88* -1.84* 
4 0.68 -1.26* -2.16* -2.09* 
5 0.44 -1.14* -2.19* -2.14* 

SPW 	 2 -0.26 -0.46 -0.82 -0.83 
3 -0.37 -0.89 -1.59* -1.69* 
4 0.18 -0.76 -1.50* -1.75* 
5 1.22 -0.39 -1.27* -1.64* 

SPD 	 2 -3.46* -3.44* -2.88* -1.78* 
3 -4.44* -4.39* -3.95* -2.74* 
4 -4.36* -4.48* -4.11* -2.84* 
5 -4.05* -4.30* -4.06* -2.77* 

SPMl 	 2 0.42 -0.99 -1.31 -0.98 
3 1.72 0.11 -0.54 -0.58 
4 3.16* 1.50 0.68 0.23 
5 4.04* 1.97 0.95 0.26 

SPM2 	 2 2.08 0.95 0.02 -0.21 
3 3.10* 1.13 -0.11 -0.63 
4 3.82* 1.32 -0.35 -0.92 
5 4.90* 1.84 0.03 -0.60 
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Table XII-Continued 

*Significant a t  the 5% (two-tailed) test. 

Table XI11 


Simulated BDS Critical Values for EGARCH Standardized 

Residuals 


This table presents the simulated 2.5% and 97.5% critical values of the BDS statistic (at 
dimensions 2 through 5 and 6 equaling 0.25, 0.5, 1, 1.5, and 2 standard deviations of the data) 
when applied to EGARCH standardized residuals. The Monte Carlo simulation uses 2000 
replications, each with 1000 observations. N(0, 1) denotes the critical values of a standard 
normal distribution. 

2.5% crticial values 

2 

3 

4 

5 


97.5% critical values 
2 
3 
4 
5 

This model gives rise to some interesting possibilities. The mean reversion 
in volatility implies that one can forecast future volatility based on past 
volatility. In addition, the standardized data (after dividing by expected 
volatility) are IID, so we can obtain a nonparametric estimate of their 
density, which can then be used to make probability statements that are 
useful in, say, setting margin requirements for stocks. 

VIII. Concluding Remarks 

We have found strong evidence to reject the hypothesis that stock returns 
are IID. The cause does not appear to be either regime changes or chaotic 
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Figure 5. Logarithm of daily standard deviations of the S&P500 index. This plots the 
natural logarithm of the daily standard deviations of the S&P500 index, computed from fifteen 
minute returns during each trading day. 

dynamics. Rather, the cause appears to be conditional heteroskedasticity 
(e.g., predictable variance changes). While we find that ARCH-type models 
do not fully capture the nonlinearity in stock returns, a more flexible model 
of conditional heteroskedasticity can. These findings have many interesting 
implications. One, if we want to fit conditional density functions on stock 
returns, we must account for their nonlinear dependence. Two, if we are 
interested to model the nonlinearity in stock returns, we should direct our 
efforts at  conditional heteroskedasticity rather than conditional mean changes 
(which include chaotic dynamics). Three, if the flexible conditional het- 
eroskedasticity model holds up under future analysis, it can provide condi- 
tional volatility forecasts. Those, together with a nonparametric estimate of 
the density of the standardized residuals, can deliver a conditional probabil- 
ity distribution which would be useful in many applications. Lastly, it would 
be interesting to see if this model can capture nonlinearity found in other 



1875 Chaos and Nonlinear Dynamics 

Table XIV 


Diagnostics for a Generalized Heteroskedasticity Model 

This table presents diagnostics for a generalized heteroskedasticity model for daily S&P500 
returns. Panel A contains the diagnostics for residuals from a fifth order autoregression for the 
natural logarithm of daily standard deviations of the S&P500 index, computed from 15-minute 
returns during each trading day. Panel B contains the diagnostics from a first order autoregres- 
sion for the daily S&P500returns standardized by the fitted values of standard deviations based 
on the regression in Panel A. 

Panel A: Residuals from: log a, = Po + I:=,0,  log a t_ , + u, 

Mean 0.0000 

Std dev 0.3666 

Skewness 0.214 

Kurtosis 3.49 

Maximum 1.481 

Minimum -1.309 


BDS test: 

Panel B: Residuals from: z ,  = or, + or, z t _ ,  + e,, where zt  = x, /S t  

Mean 0.0000 

Std dev 1.0268 

Skewness -0.213 

Kurtosis 8.816 

Maximum 6.410 

Minimum -9.349 


BDS test: € / a  

m 0.50 1.00 1.50 2.00 
2 -0.20 0.30 0.94 1.94 
3 -1.25 -0.59 0.14 1.19 
4 -1.42 -0.66 0.06 1.14 
5 -1.18 -0.57 0.12 1.28 

financial data such as exchange rates and interest rates. This is left for 
future research. 
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