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Serial rank statistics for detection of changes
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Abstract

A class of ranks based test statistics for testing hypothesis of randomness (observations are independent
and identically distributed) against the alternative that the observations become dependent at some unknown
time point is introduced and its limit properties are studied. The considered problem belongs to the area of
the change-point analysis.
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1. Introduction

Let X1; : : : ; Xn be observations obtained at ordered time points t1 ¡ · · ·¡tn. We are interested
in testing that the observations are independent identically distributed (iid) random variables (H0)
against the alternative (H1) that there exists m∈ [1; n − 1] such that the <rst m observations are
independent identically distributed (iid) random variables and the observations obtained after the
mth one are dependent, typically form an AR- or ARMA sequence. In other words we are interested
in testing independence against alternative that after some unknown m(¡n) the independence of
observations changes to a certain dependence.

Most of the test procedures for detection of changes in statistical models was developed for
a change in location or regression parameters or in the distribution of single observations (for
review see recent books by Cs>orgő and Horv%ath, 1997; Brodsky and Darkhovsky, 2000; Chen and
Gupta, 2000 among others). The procedures for detection of changes in type of dependence, e.g.
independence versus AR-dependence has become of interest mostly during the last 10 years. One of
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the <rst papers was published by Bagshaw and Johnson (1977) who developed a test for detection
of a change in the parameters of ARIMA models based on the sum of the diEerences of squares of
residuals. Tests procedures based on spectral empirical distributions were studied by Picard (1985).
Giraitis and Leipus (1990, 1992), Giraitis et al. (1996) generalized her results and also developed
and studied procedures based on spectral densities. Bai (1993, 1994) and Horv%ath (1993) investigated
procedures based on residuals. Davis et al. (1995) developed and studied properties of likelihood
ratio type test procedures for a change in the parameter value and order of an autoregressive model.
Beran and Terrin (1996), Horv%ath and Kokoszka (1997), Horv%ath (2001) among others developed
and studied procedures for detection of changes in long-memory parameters. Kokoszka and Leipus
(2000) proposed and investigated procedures for detection of changes in ARCH models—see the
review paper by Kokoszka and Leipus (2002).

In the present paper a class of test statistics based on serial rank statistics is introduced and
studied. The procedure is simple and since the proposed test statistic is distribution-free under the
null hypothesis the critical values can be calculated relatively easily.

Wilcoxon type serial rank statistics were introduced by Wald and Wolfowitz (1943) for testing
randomness against serial dependence. Later on general rank based statistics were introduced and
studied not only for testing randomness versus dependence but also for more general problems, e.g.
for testing ARMA(p; q) dependence against ARMA(p+d; q+d) dependence. For more information
see the survey papers by Hallin and Puri (1992) and Hallin and Werker (1999) and the references
there. It appears that rank based procedures are quite useful in a number of problems in time series
analysis.

In the present paper we propose serial rank based test procedures for testing hypothesis of in-
dependence (H0) against alternatives where at some unknown time points the observations become
serially dependent. The resulting test procedures are distribution-free and are easy to calculate. We
focus on the max type statistics. However, the sum type and the MOSUM type test statistics can be
introduced along the same line. The limit distributions of the proposed test statistics under the null
hypothesis are derived and approximations to the critical values can be obtained either through the
limit distributions of the test statistics under the null hypothesis or through simulations.

The main results are contained in Section 2. Namely, a class of test statistics for the considered
testing problem is introduced and their limit behavior under the null hypothesis are formulated and
some remarks on possible approximations to the desired critical values are made. The proof of the
main theorem is postponed to Section 3.

2. Main results

We consider the testing problem

H0: X1; : : : ; Xn i:i:d: random variables with continuous d:f :

against

H1 : there is m¡n such that

X1; : : : ; Xm are i:i:d: r:v:′s and Xm+1; : : : ; Xn are dependent:
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Our test statistics will be based on the rank statistics

Sk(a) =
k∑

i=2

an(Ri)an(Ri−1); k = 2; : : : ; n; (2.1)

S0
k (a) =

n∑
i=k+1

an(Ri)an(Ri−1); k = 1; : : : ; n; (2.2)

where Ri is the rank of Xi among X1; : : : ; Xn and an(1); : : : ; an(n) are scores satisfying

Qan =
1
n

n∑
i=1

an(i) = 0: (2.3)

The statistics Sk(a) and S0
k (a) can be viewed as serial rank statistics based on the ranks (R1; : : : ; Rk)

and (Rk+1; : : : ; Rn), respectively. We set

�2
n(a) =

1
n

n∑
i=1

a2
n(i): (2.4)

At <rst we recall simple properties of Sk(a) and S0
k (a) that provide motivation for de<nition

of the test statistics. Straightforward calculations (for more details see Lemma 3.1) give that under
H0

E
(

1
k − 1

Sk(a) − 1
n − k

S0
k (a)

)
= 0: (2.5)

Tedious but direct calculations (for more details see Section 3) give also that under the null
hypothesis, as n → ∞,

E
(

1
k

Sk(a) − 1
n − k

S0
k (a)

)2

=
n

k(n − k)
�4

n(a)(1 + O(n−1)) (2.6)

uniformly in 1 ¡k ¡n. By a slight modi<cation of the proof of Corollary 1.1 in Hauesler et al.
(2000) we observe that under the null hypothesis and the assumptions of Theorem 2.1 below for
any t ∈ (0; 1), as n → ∞,

S[nt](a)√
[nt]�2

n(a)
→D N (0; 1);

S0
[nt](a)√

n − [nt]�2
n(a)

→D N (0; 1);
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where →D denotes convergence in distribution, while under alternatives with Xm; : : : ; Xn forming AR-
or ARMA sequence

S[nt](a)
[nt]

→P c(t);

S0
[nt](a)

[nt]
→P c0(t);

where c(t) − c0(t) �= 0 for at least some t ∈ (0; 1).
Now, using union-intersection principle (cf. Hawkins, 1989; Cs>orgő and Horv%ath, 1997) we

introduce our test statistics as follows:

Tn(a) = max
1¡k¡n

√
k(n − k)

n
1

�2
n(a)

∣∣∣∣ 1
k − 1

Sk(a) − 1
n − k

S0
k (a)

∣∣∣∣ : (2.7)

This is a so called max-type test statistic. Similarly structured test statistics are used for detecting
other type of changes.

Large values of Tn(a) indicate that the null hypothesis is violated.
Since the proposed test statistic Tn(a) depends on the observations only through the ranks R1; : : : ; Rn

the resulting test is distribution-free under the null hypothesis.
Approximation to the critical values can be obtained either from its limit distribution under the

null hypothesis (see Theorem 2.1 below) or by simulations.
We assume that the scores an(1); : : : ; an(n) in addition to (2.3) satisfy

�2
n(a)¿D1 (2.8)

1
n

n∑
i=1

a4
n(i)6D2 (2.9)

with some positive D1 and D2.

Theorem 2.1. Let X1; : : : ; Xn be iid random variables with continuous distribution function and let
the scores satisfy (2.3), (2.8)–(2.9). Then for all y

P(
√

2 log log nTn(a)6 2 log log n + y + 1
2 log log log n − 1

2 log �) → exp{−2e−y}; (2.10)

as n → ∞.

The proof is postponed until the next section.
One can introduce other classes of test statistics based on weighted maxima of serial rank statistics

for the considered testing problem, e.g.

max
1¡k¡n

1√
n

1
�4

n(a)

∣∣∣∣∣
1

k−1 Sk(a) − 1
n−k S0

k (a)

w(k=n)

∣∣∣∣∣ ;



M. Hu,skov�a / Statistics & Probability Letters 61 (2003) 199–213 203

where w is a weighted function. Eventually, one can consider a MOSUM (moving sum) type tests
procedure

max
G¡k¡n−G

1√
2G

1
�4

n(a)

∣∣∣∣∣
k∑

i=k−G+1

an(Ri)an(Ri−1) −
k+G∑

i=k+1

an(Ri)an(Ri−1)

∣∣∣∣∣ ;
where G = G(n) satis<es limn→∞ G(n) = ∞ and limn→∞ G(n)=n = 0.

Motivated by results of Hallin et al. (1987) and the above test statistics one can develop test
statistics for more general type of change point alternatives, e.g., one can consider the test statistic

Tn(a; s) = max
s¡k¡n−s

√
k(n − k)

n
1

�2
n(a)

×
∣∣∣∣∣ 1
k − 1

k∑
i=s

an(Ri)an(Ri−s) − 1
n − k

n−s∑
i=k

an(Ri)an(Ri+s)

∣∣∣∣∣ ; s = 1; : : : :

3. Proofs

Since the test statistic Tn(a) is distribution-free under the null hypothesis we may assume without
loss of generality that R1; : : : ; Rn are ranks of U1; : : : ; Un which is a sample from (0; 1)-uniform
distribution.

We start with a technical lemma on the moments of some rank statistics.

Lemma 3.1. Let U1; : : : ; Un be iid random variables with uniform distribution function on (0; 1)
and let R1; : : : ; Rn be corresponding ranks. Let the scores an(:) bn(:) satisfy (2.3) and

n∑
i=1

bn(i) = 0; (3.1)

respectively. Then, as n → ∞,

Ean(R1)bn(R2) = − 1
n(n − 1)

n∑
i=1

bn(i)an(i) (3.2)

and, as n → ∞,

E(an(R1)bn(R2))2 =
1
n2

n∑
i=1

a2
n(i)

n∑
j=1

b2
n(j)(1 + O(n−1)); (3.3)

Ean(R1)bn(R2)an(R3)bn(R3) = O


 1

n3


 n∑

i=1

a2
n(i)b2

n(i) +

(
n∑

i=1

bn(i)an(i)

)2



 (3.4)
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Ean(R1)an(R2)bn(R3)bn(R4)

= O


 1

n4


 n∑

i=1

a2
n(i)b2

n(i) +

(
n∑

i=1

bn(i)an(i)

)2

+
n∑

i=1

a2
n(i)

n∑
j=1

b2
n(j)




 : (3.5)

Proof. The assertions follow by direct calculations applying (2.3) and (3.1) and

P(R1 = r1; : : : ; Rn = rn) =
1
n!

for any permutation r1; : : : ; rn of 1; : : : ; n.

As easy consequences we obtain

ESk(a) = −k − 1
n − 1

�2
n(a)

ES0
k (a) = −n − k

n − 1
�2

n(a)

hence (2.5) holds true. Again by Lemma 3.1, as n → ∞,

ES2
k (a) = (k − 1)Ea2

n(R1)a2
n(R2) + 2(k − 2)Ea2

n(R1)an(R2)an(R3)

+ (k − 2)(k − 3)Ean(R1)an(R2)an(R3)an(R3)

=
k
n2

(
n∑

i=1

a2
n(i)

)2(
1 + O

(
1
n

))
+ O

(
k2

n3

n∑
i=1

a4
n(i)

)

= k�4
n(a)(1 + O(n−1))

uniformly in 1 ¡k ¡n. Quite analogously we get

ES02
k (a) = (n − k)�4

n(a)(1 + O(n−1));

cov(Sk(a); S0
k (a)) =

k(n − k)
n2 �4

n(a)(1 + O(n−1))

uniformly in 1 ¡k ¡n and hence (2.6) holds true.
The idea of the proof of Theorem 2.1 relies on the fact that Sk(a) and S0

k (a) are suTciently close
to statistics of a similar structure for which the limit distribution of the corresponding maxima is
known. Namely, we show that Sk(a) and S0

k (a) are suTciently close to the partial sums

Sk(a;U) =
k∑

i=2

(an([nUi] + 1) − Qan(U))(an([nUi−1] + 1) − Qan(U)); k = 2; : : : ; n; (3.6)
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and

S0
k (a;U) =

n∑
i=k+1

(an([nUi] + 1) − Qan(U))(an([nUi−1] + 1) − Qan(U)); k = 1; : : : ; n − 1; (3.7)

Qan(U) =
1
n

n∑
i=1

an([nUi] + 1);

where [c] denotes the integer part of c.
Let U(:) = (U(1); : : : ; U(n)) be the ordered sample corresponding to (U1; : : : ; Un). It is well-known

that U(:) and (R1; : : : ; Rn) are independent random vectors and we can write

Sk(a;U) =
k∑

i=2

(an([nU(Ri)] + 1) − Qan(U(:)))(an([nU(R(i−1)] + 1) − Qan(U(:))); k = 2; : : : ; n:

(3.8)

Therefore

E
(

1
k − 1

Sk(a;U) − 1
n − k

S0
k (a;U)

)

= E
{
E
(

1
k − 1

Sk(a;U) − 1
n − k

S0
k (a;U)

)∣∣∣∣U(:)

}
= 0; (3.9)

where we apply (2.5) with an(i) replaced by an([nU(i)]+1). Proceeding similarly and applying (2.6)
instead of (2.5) we obtain

E
(

1
k − 1

Sk(a;U) − 1
n − k

S0
k (a;U)

)2

=
n

k(n − k)
�4

n(a)(1 + O(n−1)) (3.10)

uniformly in 1 ¡k ¡n under H0. Clearly,

Ean(U) =
1
n

n∑
i=1

an(i): (3.11)

The assertion of Theorem 2.1 is a straightforward consequence of the following two theorems.

Theorem 3.1. Let U1; : : : ; Un be iid random variables with uniform distribution function on (0; 1)
and let R1; : : : ; Rn be the corresponding ranks. Let the scores an(:) satisfy (2.3), (2.8) and (2.9).
Then for all y, as n → ∞,

max
1¡k¡n

√
k(n − k)

n

(
1

k − 1
|Sk(a) − Sk(a;U)| +

1
n − k

|S0
k (a) − S0

k (a;U)|
)

= oP(n−") (3.12)

with some "¿ 0.
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Theorem 3.2. For each n = 1; 2 : : : let Yn1; : : : ; Ynn be iid random variables with zero mean, unit
variance and 8nite fourth moment, n = 1; 2 : : : . Then for all y

P

(√
2 log log n max

1¡k¡n

√
k(n − k)

n

∣∣∣∣∣ 1
k − 1

k∑
i=2

YniYn; i−1 − 1
n − k

n∑
i=k+1

YniYn; i−1

∣∣∣∣∣
6 2 log log n + y +

1
2

log log log n − 1
2

log�
)

→ exp{−2e−y}; (3.13)

as n → ∞.

Theorem 3.1 can be useful in deriving the limit behavior of the test statistics discussed at the
end of Section 2. Theorem 3.2 can be used in developing test statistics for the considered testing
problem using empirical correlation coeTcients of the <rst k and last n−k observations. One should
point out that the important issue is that we consider a triangular array of the Y ’s.

Proof of Theorem 3.1. We employ the martingale property of properly transformed Sk(a) and a
number of properties of rank statistics including moment inequality for rank statistics proved in
Hu#skov%a (1997).

Set

Vk(a; b) =
k∑

i=2

an(Ri)bn(Ri−1); k = 2; : : : ; n

Ṽ k(a; b) = Vk(a; b) +
k∑

i=2

bn(Ri−1)
1

n − i + 1

i−1∑
j=1

an(Rj); k = 2; : : : ; n − 1; (3.14)

where an(1); : : : ; an(n) and bn(1); : : : ; bn(n) are scores satisfying (2.3), (2.8), (2.9) and

1
n

n∑
i=2

b4
n(i)6D3; n¿ 3 (3.15)

1
n

n∑
i=1

bn(i) = 0 (3.16)

with some D3 ¿ 0. V 0
k (a; b) and Ṽ 0

k(a; b) are de<ned accordingly. Clearly,

Vk(a; a) = Sk(a); V 0
k (a; a) = S0

k (a):

Next we prove three auxiliary lemmas.

Lemma 3.2. Let U1; : : : ; Un be iid random variables with (0; 1)-uniform distribution and let
R1; : : : ; Rn be the corresponding ranks. Let assumptions (2.3), (2.8), (2.9), (3.15)–(3.16) be
satis8ed.
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Then (Ṽ k(a; b); �{R1; : : : ; Rk−1}; k=2; : : : ; n−1) and (Ṽ 0
k(a; b); �{Rn; : : : ; Rk+1}; k=n−1; : : : ; 1) form

martingales. Here �{R1; : : : ; Rk−1) and �{Rn; : : : ; Rk+1) denote a �-8eld generated by R1; : : : ; Rk−1

and by Rn; : : : ; Rk+1, respectively.
Moreover, as n → ∞,

EṼ k(a; b) = 0; k = 2; : : : ; n; (3.17)

EṼ 0
k(a; b) = 0; k = 2; : : : ; n; (3.18)

EṼ 2
k(a; b) = k�2

n(a)�2
n(b)

(
1 + O

(
k
n

+ log((n − k)=n)
))

; (3.19)

E(Ṽ 0
k(a; b))2 = (n − k)�2

n(a)�2
n(b)

(
1 + O

(
n − k

n
+ log((k)=n)

))
(3.20)

uniformly in 1 ¡k ¡n − 1.

Proof. Direct calculations yield (3.17), (3.18) and that

E(Ṽ k(a; b)|R1; : : : ; Rk−1) = Ṽ k−1(a; b) + bn(Rk−1)E(an(Rk)|R1; : : : ; Rk−1)

+ bn(Rk−1)
1

n − k + 1

k−1∑
j=1

an(Rj)

= Ṽ k−1(a; b); k = 3; : : : ; n;

where we applied also (2.3). This means that Ṽ k(a; b); k = 2; : : : ; n; forms a martingale and also that
the expectation of Ṽ k(a; b) is zero.

Using Lemma 3.1, (3.17), (2.3), (3.1) and martingale properties of Ṽ k’s we have

EṼ 2
k(a; b) =

k∑
i=2

Eb2
n(Ri−1)


an(Ri)

(
1 − 1

n − i + 1

)
− 1

n − i + 1

n∑
j=i+1

an(Rj)




2

= Eb2
n(R1)a2

n(R2)

(
k∑

i=2

(
n − i

n − i + 1

)2

+
k∑

i=2

n − i
(n − i + 1)2

)

Eb2
n(R1)an(R2)an(R3)

(
−2

k∑
i=2

(n − i)2

(n − i + 1)2 +
k∑

i=2

(n − i)(n − i + 1)
(n − i + 1)2

)

= �2
n(a)�2

n(b)(k + O(log((n − k)=n) + k=n))

which implies (3.19). The assertions on Ṽ 0
k ; k = 1; : : : ; n; can be shown in the same way therefore

it is omitted.
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Lemma 3.3. Under the assumptions of Lemma 3.2 for any C ¿ 0 there exist nC and DC ¿ 0 such
that for all n¿ nC

P
(

max
2¡k¡kn

1√
k
|Ṽ k(a; b)|¿C

)
6

DC

C2 �2
n(b)�2

n(a)(log kn + 1);

P
(

max
2¡n−k¡kn

1√
n − k

|Ṽ 0
k(a; b)|¿C

)
6

DC

C2 �2
n(b)�2

n(a)(log kn + 1)

for any 1 ¡kn ¡n and

P
(

max
2¡k¡n

1√
n
|Ṽ k(a; b)|¿C

)
6

DC

C2 �2
n(b)�2

n(a);

P
(

max
2¡k¡n

1√
n
|Ṽ 0

k(a; b)|¿C
)
6

DC

C2 �2
n(b)�2

n(a):

Proof. All inequalities are straightforward consequences of Lemma 3.1 and of the H%ajek-R%enyi-Chow
inequality for martingales (see, e.g. Chow and Teicher, 1988).

Next we investigate

˜̃V k(a; b) = Vk(a; b) − Ṽ k(a; b) = −
k∑

i=2

bn(Ri−1)
1

n − i + 1

i−1∑
j=1

an(Rj); k = 2; : : : ; n − 1 (3.21)

and

˜̃V 0
k(a; b) = V 0

k (a; b) − Ṽ 0
k(a; b); k = 2; : : : ; n: (3.22)

Lemma 3.4. Let the assumptions of Lemma 3.2 be satis8ed. Then

max
1¡k¡n

k(n − k)
n

1
k2 ( ˜̃V k(a; b)) = OP(�2

n(b)�2
n(a)(log n)2) (3.23)

and

max
1¡k¡n

k(n − k)
n

1
(n − k)2 ( ˜̃V 0

k(a; b))2 = OP(�2
n(b)�2

n(a)(log n)2): (3.24)

Proof. By the Markov inequality we have that for any C ¿ 0

P
(

max
1¡k6n

k(n − k)
n

1
k2 | ˜̃V k(a; b)|2¿C

)
6

1
C

n∑
k=2

E( ˜̃V k(a; b))2 n − k
kn

: (3.25)
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and

E( ˜̃V k(a; b))26 2E

(
k∑

i=2

bn(Ri−1)an(Ri−1)
1

n − i + 1

)2

+ 2E


 k∑

i=2

bn(Ri−1)
1

n − i + 1

i−2∑
j=1

an(Rj)




2

:

Since
∑k

i=2 bn(Ri−1)an(Ri−1)1=(n − i + 1); k = 2; : : : ; n; are is the simple linear rank statistics and
regarding the assumptions (2.3), (2.9) we notice that(

E
k∑

i=2

bn(Ri−1)an(Ri−1)
1

n − i + 1

)2

=


1

n

n∑
j=1

an(j)bn(j)
k∑

i=2

1
n − i + 1




2

= O(�2
n(a)�2

n(b)(log((n − k)=n))2)

and

var

{
k∑

i=2

bn(Ri−1)an(Ri−1)
1

n − i + 1

}
= O


1

n

n∑
i=1

a2
n(i)b2

n(i)
k∑

j=2

1
(n − k + 1)2




= O
(
�2

n(b)
√

n
1

n − k

)

therefore

E

(
k∑

i=2

bn(Ri−1)an(Ri−1)
1

n − i + 1

)2

= O
{
�2

n(b)�2
n(a)

(√
n

1
n − k

+ (log((n − k)=n))2

)}
(3.26)

uniformly in 1 ¡k ¡n. Finally, by Lemma 3.1 and regarding (2.3) and (3.1) we get

E


 k∑

i=2

bn(Ri−1)
1

n − i + 1

i−2∑
j=1

an(Rj)




2

= E


 k−1∑

v=1

bn(Rv)
1

n − v

v−1∑
j=1

an(Rj)




2

= O


�2

n(b)�2
n(a)


 k∑

i=1

i
(n − i)2 + n−3=2

k∑
i=1

i2

(n − i)2 + n−5=2

(
k∑

i=1

i
n − i

)2




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uniformly in 1 ¡k ¡n, which together with (3.25) and (3.26) imply (3.21). The proof of (3.22)
follows the same line hence it is omitted.

Now, we <nish the proof of Theorem 3.1. We decompose the partial sums Sk(a) as follows:

Sk(a) = Sk(a;U) + Mk(a) + Nk(a); k = 2; : : : ; n; (3.27)

where

Mk(a) =
k∑

i=2

an(Ri)(an(Ri−1) − (an([nU(Ri−1)] + 1) − Qan(U(:)))); (3.28)

Nk(a) =
k∑

i=2

(an(Ri) − (an([nU(Ri)] + 1) − Qan(U(:))))(an([nU(Ri−1)] + 1) − Qan(U(:))): (3.29)

We apply Lemmas 3.2–3.4 with

bn(i) = an(Ri) − (an([nU(Ri)] + 1) − Qan(U(:)))

taking U(:). Particularly, we <nd that with this choice of an(i)’s and bn(i)’s

�2
n(b) = �2

n(a;U(:)) =
1
n

n∑
i=1

(an(i) − (an([nU(i)] + 1) − Qan(U(:))))2

and by Lemma in Hu#skov%a (1997) and (2.9)

E(�2
n(a;U(:)))26C2

1
n2

n∑
i=1

a4
n = O(n−1):

This in combination with Lemmas 3.2–3.4 and (3.27) imply, as n → ∞,

max
1¡k¡n

√
k(n − k)

n
1
k
|Sk(a) − Sk(a;U)| = OP(n−")

max
1¡k¡n

√
k(n − k)

n
1

n − k
|Sk(a) − Sk(a;U)| = OP(n−")

with some "¿ 0. Theorem 3.1 is proved.

Proof of Theorem 3.2. The proof is based on a classical results of Strassen (1967). We apply
Theorem 4.3 in Strassen (1967) to the random variables

Zni = YniYn; i−1; i = 2; : : : ; n;
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that have the property

E(Zni|Yn1; : : : ; Yn; i−1) = 0 a:s: i = 2; : : : ; n

and

E(Z2
ni|Yn1; : : : ; Yn; i−1) = Y 2

n; i−1 a:s: i = 2; : : : ; n:

By Theorem 4.3 of Strassen (1967) there are independent Brownian motions {Wnj(t); t ∈ [0;∞)}; j=
1; 2 and sequences of nonnegative random variables Vn2; : : : ; Vn; [n=2] and Vn; [n=2]+1; : : : ; Vnn such that

k∑
i=2

Zni = Wn

(
k∑

i=2

Vnk

)
; 26 k6 n=2 (3.30)

and
n∑

i=k+1

Zni = Wn

(
n∑

i=k+1

Vnk

)
; n=2 ¡k6 n: (3.31)

Moreover, Vnk is �{Zn1; : : : ; Znk} measurable, Wn1(
∑k

i=2 Vni + s) − Wn1(
∑k

i=2 Vni) is independent of
�{Zn1; : : : ; Znk} for any s¿ 0,

E(Vnk |Zn2; : : : ; Zn;k−1) = E(Z2
nk |Zn2; : : : ; Zn;k−1) = Y 2

n;k−1 a:s: (3.32)

and

E(V 2
nk |Zn2; : : : ; Zn;k−1)6CE(Z4

nk |Zn2; : : : ; Zn;k−1) = CY 4
n;k−1 a:s: (3.33)

26 k6 n=2, with some C ¿ 0.
Then by the H%ajek-R%enyi-Chow inequality (cf. Chow and Teicher, 1988) for any +¿ 1

2 and any
x ¿ 0 we have

P

(
max

26k6n=2

1
k+

∣∣∣∣∣
k∑

i=2

(Vni − E(Vni|Zn2; : : : ; Zn; i−1))

∣∣∣∣∣¿ x

)

6
1
x2

n∑
i=2

k−2+EZ4
n;k 6Cx−2 (3.34)

with some C ¿ 0. Since Ynk are i.i.d. random variables with zero mean, unit variance and <nite
fourth moment and by (3.32) we also have for any +¿ 1

2 and any x ¿ 0

P

(
max

26k6n=2

1
k+

∣∣∣∣∣
k∑

i=2

(E(Vni|Zn2; : : : ; Zn; i−1) − 1)

∣∣∣∣∣¿ x

)
6Cx−2 (3.35)

with some C ¿ 0. Lemma 1.2.1 of Cs>orgő and R%ev%esz (1981) yields that

max
26k6n

sup
|s|6Ck+

(k+log k)−1=2|Wn1(k) − Wn1(k + s)| = OP(1): (3.36)
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Now, from (3:30) and (3.32) – (3.36) we can infer that

max
1¡k6n=2

∣∣∣∣∣
k∑

i=2

YniYn; i−1 − Wn1(k − 1)

∣∣∣∣∣
/

k1=2−r

= OP

(
max

1¡k6n=2
k+=2−(1=2−r)(log k)2

)
= OP(1) (3.37)

for any given 0 ¡r ¡ 1
4 with properly chosen + = +(r) ¿ 1

2
By symmetry we get for any given r ∈ (0; 1

2 ) that

max
n=2¡k6n

∣∣∣∣∣
n∑

i=k+1

YniYn; i−1 − Wn2(n − k)

∣∣∣∣∣
/

(n − k)1=2−r = OP(1): (3.38)

Now, the assertion of the theorem can be concluded from (3.37), (3.38) and the Darling-Erdős
theorem (e.g., Theorem A.4.1 in Cs>orgő and Horv%ath, 1997). The proof is now complete.

Proof of Theorem 2.1. The assertion follows from Theorems 3.1 and 3.2 with

Yni = (an([nUi] + 1) − Qan)=�n(a); i = 2; : : : ; n

and from the observation

Qan(U(:)) = OP(n−1=2):
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