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An Algorithm for Optimal Partitioning
of Data on an Interval
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Abstract—Many signal processing problems can be solved by
maximizing the fitness of a segmented model over all possible par-
titions of the data interval. This letter describes a simple but pow-
erful algorithm that searches the exponentially large space of par-
titions of data points in time ( 2). The algorithm is guar-
anteed to find the exact global optimum, automatically determines
the model order (the number of segments), has a convenient real-
time mode, can be extended to higher dimensional data spaces, and
solves a surprising variety of problems in signal detection and char-
acterization, density estimation, cluster analysis, and classification.

Index Terms—Bayesian modeling, cluster analysis, density esti-
mation, histograms, optimization, signal detection.

I. INTRODUCTION: THE PROBLEM

AVARIETY of signal processing and related problems can
be viewed as the search for an optimal partition of data

given on a time interval . For example, one may estimate a
segmented model by maximizing some measure of model fit-
ness1 defined on partitions of . Since the space of all partitions
of a continuum is infinite, it is advantageous to discretize the
interval. Often the data points themselves, say

(1)

naturally subdivide into subintervals—which we call data
cells. We avoid a precise definition because many types of
data cells are possible. Common examples are counts in bins,
measurements at a set of sample times (evenly spaced or not),
and event or point data. The underlying idea is that restricting
consideration to the finite space of partitions whose elements
are sets of data cells will result in no significant loss of infor-
mation or of resolution in the independent variable.
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1This concept goes by many names, including fitness, cost, goodness of fit,
loss, penalty, objective function, risk, etc. Here, we assume that the data analysis
problem can be phrased in terms of some fitness that is to be maximized.

A partition of an interval is a set of blocks

(2)

where the blocks are sets of data cells defined by index sets

(3)

satisfying the usual conditions, and
if . Here, means a set of zero length, since the

block boundaries are not relevant here. We impose connected-
ness too—i.e., that there be no gaps between the cells com-
prising a given block. , the number of blocks, must satisfy

. Partitions will be denoted in boldface, and refer
to the interval unless otherwise stated. Define to be the (fi-
nite) set of all partitions of into blocks.

Take as given an additive fitness function that assigns a value
to any partition in the form

(4)

where is the fitness of block . Computationally, the
data cells must be represented by a data structure that contains
sufficient statistics for the model—i.e., all information neces-
sary to determine for any block.

We exhibit an efficient dynamic programming algo-
rithm that finds an optimal partition

for all partitions .
Scargle [21] proposed two greedy iterative algorithms for

finding near-optimal partitions: one top-down (optimally divide
into two parts; recursively do the same to each such part)

the other bottom-up (merge adjacent data cells). In both cases,
Bayesian model comparison provides effective fitness functions
and halting criteria, implementing an procedure for data
spaces of 1, 2, and higher dimensions—hence the term Bayesian
Blocks [21]. But in practice, these greedy algorithms often find
significantly suboptimal partitions, motivating the development
reported here.

The dynamic programming idea for this kind of problem
seems to have originated with Bellman [6]: a paper which
influenced Kay’s work [12]–[14]. An extensive discussion of
precisely the same problem addressed here, but with a different
approach to its solution, is in [3] and [4]. Work by Hubert [10],
[11], with applications to meteorology, influenced Kehagias and
co-workers [8], [15]–[19], who developed a dynamic program-
ming algorithm much like ours, for applications such as text
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segmentation (see also [9]), where the raw data are provided in
the form of a similarity matrix. In [22], an dynamic
programming algorithm for finding the optimal partition of an
interval into blocks, for a given , is presented. See also [20],
[2] for related work. Thus while similar algorithms have been
previously developed, ours finds the exact global optimum for
any block-additive fitness function, automatically determines
the number of segments, and can be used in either real-time or
retrospective analysis.

II. DYNAMIC PROGRAMMING: FINDING OPTIMAL PARTITIONS

We describe an algorithm that is guaranteed to solve
the above problem by finding an exact global optimum, for any
fitness function that is additive in the sense of (4). There is
a large but finite number of partitions in . Dynamic
programming [5] is an intelligent method of searching this space
of all possible solutions. Our algorithm can be applied whenever
any subpartition of an optimal partition is optimal.

Theorem 1 (Principle of Optimality): Let be an op-
timal partition of and be any subset of
the blocks of . Then is an optimal partition of the part
of it covers, namely .

Intuitively, this result follows from the contradiction that a
better subpartition of could be used to construct a partition of

better than . The proof relies on the fact that the block-
additivity of the fitness function implies that it is also additive
on subpartitions. To see this, divide partition into any two
disjoint parts, and ,
with and . Then the additivity of
yields

(5)

Proof 1: As above, denote by the subpartition of
, consisting of the blocks in

that are not in . Let be any other partition of . Since
is an optimal partition of and is also a

partition of it follows that
so . Thus

is an optimal partition of .
Dynamic programming is a recursive procedure that can be

used to efficiently find the solution to many kinds of combina-
torial optimization problems. Our algorithm derives the optimal
partition of the first data points using previously obtained
optimal partitions, i.e., those of the first data points.
At each iteration we must consider all possible starting loca-
tions of the last block of the optimal partition. For
each putative , the fitness function is—by the principle of opti-
mality—the fitness of the optimal subpartition prior to plus the
fitness of the last block itself. The former was stored at previous
iterations, and the latter is a simple evaluation of . The desired
new optimal partition corresponds to the maximum over all .

More precisely, define opt to be the value of the fitness
function of the optimal partition of the first cells of , for

. The following dynamic programming algorithm
finds the optimal partition .

1) Define opt .
2) Given that opt has been determined for

:
• Define end is the union

of cells .
• Then compute

opt opt end

(6)

• The value of where this maximum occurs is stored as
lastchange .

3) Repeat 2 until , when opt , the optimal
partition fitness for all cells, has been obtained.
4) Backtrack using the lastchange vector to identify the
start points of individual blocks of the optimal partition

in the following way. Let
lastchange , etc. Then the last block in con-
tains cells , the next-to-last block in
contains cells and so on.

Theorem 2: This deterministic dynamic program-
ming algorithm finds the partition of that maximizes the (ad-
ditive) fitness function.

Proof 2: The proof is by mathematical induction. Clearly,
opt end is the fitness of the
only possible (and therefore optimal) partition of the set com-
prising the first cell. At iteration , assume not only that
we have found the optimum partition of , but also that
for , we have stored the corresponding fitness
for this and all previous iterations in the array , and the
index of the cell beginning this partition’s last block in array
lastchange . Let ; then the
principle of optimality shows that when indexes the first cell
of the last block of the desired partition is the corre-
sponding maximum fitness. Further, for any is the fitness
of a legitimate partition of , namely that consisting of the
optimal partition of the cells prior to followed by the single
block . These two facts combine to prove that the max-
imum of specified in (6) gives the desired optimum parti-
tion at iteration . Identification of the corresponding op-
timal blocks—starting with the last one and working backward,
as in part (4) of the algorithm—can be validated with straight-
forward recursive application of the principle of optimality. Fi-
nally, since the algorithm requires

evaluations of the function . It
also requires additions and comparisons in de-
termining the maximums.

III. APPLICATIONS

These results apply to any segmented modeling of 1-D data
defined by a fitness function that satisfies (4). Piecewise con-
stant, or step functions form the most natural model class. How-
ever, the nature of the model depends on the application, and
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many other forms are possible, including piecewise linear and
piecewise exponential. The key is that the fitness function must
not depend on any model parameters other than the changepoint
locations. We have found excellent results with the posterior
probability of the model for each segment, given the data in that
segment, marginalized over all parameters but these locations
[21]. Using logs turns the product posterior (resulting from sta-
tistical independence of the blocks) into the required additive
form (4).

A comment about smoothness constraints is in order. With
some fitness functions the algorithm produces the degenerate
solution assigning a segment to each data point. In the Bayesian
setting described above, a natural way to address this problem
is to adopt a prior distribution for the number of segments, for
example giving higher weight to smaller numbers. Indeed, the
geometric prior [7] corresponds to a constant term in the fit-
ness function for each block, so there is no problem with main-
taining additivity. This artifice controls model complexity, but
without imposing an explicit smoothness condition with con-
comitant loss of time resolution. Time series features on any
time scale, no matter how short, can be found if the data support
them in a statistically significant way.

Finally, we mention a few sample applications. Implementing
density estimation with piecewise constant Poisson models
yields histograms in which the bins are not constrained to be
equal. The number of bins and their sizes and locations are
determined by the data. The same model provides denoising
and structure estimation for time series of events or counts of
events in bins [21].

Further, almost all of the results described here can be easily
extended—almost without change—to data of higher dimen-
sionality, as will be described in future papers. In this setting,
cluster analysis can be effected as a post-processing of seg-
mented models—piecing the blocks together into clusters—and
similarly with unsupervised classification and other data mining
procedures.

IV. CONCLUSION

As we have seen, dynamic programming gives a good (poly-
nomial) algorithm for finding an optimal partition of data on an
interval for any fitness function satisfying the additive prop-
erty [see (4)]. Ironically, it has the same complexity as
the greedy algorithm.

In comparing the use of our algorithm to detect and charac-
terize clusters (collections of blocks) with some of the standard
clustering techniques [1], we note that our method inherently
compares partitions that have different numbers of blocks, so the
number of blocks is automatically determined by the data. This
is to be contrasted with most standard clustering techniques, in
which , the fixed number of clusters must be specified ahead
of time. One often seeks to minimize the maximum diameter
(defined as the maximum distance between any pair of points in
the cluster) of the clusters, or to maximize the minimum separa-
tion between the clusters. In dimension 1, there are well-known

dynamic programming algorithms for finding the best
partitions into k clusters. For dimension 2 and higher, it is known

that these standard problems are NP-complete. We do not yet
know if our problem is NP-complete in dimension 2 and higher.

In addition, considered as a density estimation or signal de-
tection technique, our approach does not introduce any explicit
smoothing of the data. Structure on any time scale, no matter
how short, will be detected if it is supported by the data. While
the parameter in the geometric prior discussed above controls to
some extent the number of blocks—and thus affects the rough-
ness of the optimized model—it is not explicitly a smoothing
parameter. Another feature is that the incremental way the al-
gorithm operates on the data makes a real-time mode trivial to
implement. This mode has found to be very useful in the rapid
detection of change points in a data stream. Also, since opt
is calculated from opt , some of the neces-
sary calculations can be performed as the data are still being
collected. In addition, it is easy to modify the dynamic program-
ming to yield the optimal partition with blocks of a minimum
size (each block contains at least d data points, for a given pos-
itive integer d).2

ACKNOWLEDGMENT

The authors are grateful to S. Kay, T. Kehagias, and the ref-
erees for helpful comments and pointers to relevant earlier work.

REFERENCES

[1] C. J. Alpert and A. B. Kahng, “Splitting orderings into multi-way parti-
tionings to minimize the maximum diameter,” J. Classific., vol. 14, pp.
51–74, 1997.

[2] I. Auger and C. Lawrence, “Algorithms for the optimal identification of
segment neighborhoods,” Bull. Math. Biol., vol. 51, pp. 39–54, 1989.

[3] D. Barry and J. A. Hartigan, “Product partition models for change point
problems,” Ann. Statist., vol. 20, pp. 260–279, 1992.

[4] , “A Bayesian analysis for change point problems,” J. Amer. Statist.
Assoc., vol. 88, pp. 309–319, 1993.

[5] R. Bellman, Dynamic Programming. Princeton, NJ: Princeton Univ.
Press, 1957.

[6] , “On the approximation of curves by line segments using dynamic
programming,” Commun. ACM, vol. 4, p. 284, 1961.

[7] M. A. Coram, “Nonparametric Bayesian Classification,” Ph.D. disserta-
tion, Dept. Statistics, Stanford Univ., Stanford, CA, 2002.

[8] P. Fragkou, V. Petridis, and A. Kehagias, “A dynamic programming al-
gorithm for linear text segmentation,” J. Intell. Inform. Syst., vol. 23, no.
2, pp. 179–197, Sep. 2004.

[9] O. Heinonen. Optimal multi-paragraph text segmentation by dynamic
programming. presented at Proc. COLING-ACL’98. [Online]. Avail-
able: http://arXiv.org/abs/cs/9 812 005

[10] P. Hubert, “Change points in meteorological time series,” in Applications
of Time Series Analysis in Astronomy and Meteorology, T. Subba Rao,
M. Priestley, and O. Lessi, Eds. London, U.K.: Chapman and Hall,
1997.

[11] , “The segmentation procedure as a tool for discrete modeling of
hydrometeorogical regimes,” Stoch. Env. Res. and Risk Ass., vol. 14, pp.
297–304, 2000.

[12] S. Kay, Optimal segmentation of time series based on dynamic program-
ming, 1988. unpublished.

[13] S. M. Kay, Fundamentals of Statistical Signal Processing: Detection
Theory. Englewood Cliffs, NJ: Prentice-Hall, 1998, p. 449.

[14] S. Kay and X. Han, Optimal segmentation of signals based on dynamic
programming and its application to image denoising and edge detection,
2002. unpublished.

[15] A. Kehagias and V. Petridis, “Time series segmentation using predictive
modular neural networks,” Neural Computat., vol. 9, pp. 1691–1710,
1997.

2 These and other features are described in more detail at an algorithm repos-
itory at: http://astrophysics.arc.nasa.gov/~pgazis/CodeArchiveServer.html.



108 IEEE SIGNAL PROCESSING LETTERS, VOL. 12, NO. 2, FEBRUARY 2005

[16] A. Kehagias. (2002) Hidden Markov model segmentation of hydro-
logical and environmental time series. Tech. Rep. [Online]. Available:
http://arxiv.org/abs/cs/0 206 039

[17] A. Kehagias, P. Fragkou, and V. Petridis, “Linear text segmentation
using a dynamic programming algorithm,” in Proc. 10th Conf. European
Chapter of the Association for Computational Linguistics, Budapest,
Hungary, 2003, pp. 171–178.

[18] A. Kehagias, “A hidden Markov model segmentation procedure for hy-
drological and environmental time series,” Stochastic Environ. Res. and
Risk Assess., vol. 18, pp. 117–130, 2004.

[19] A. Kehagias, A. Nicolaou, P. Fragkou, and V. Petridis, “Text segmen-
tation by product partition models and dynamic programming,” Math-
emat.Comput. Modeling, vol. 39, pp. 209–217, 2004.

[20] F. Quintana and P. Iglesias, “Bayesian clustering and product partition
models,” J. Roy. Statist. Soc. B, vol. 65, pp. 557–574, 2003.

[21] J. Scargle, “Studies in astronomical time series analysis. V. Bayesian
blocks, a new method to analyze structure in photon counting data,” As-
trophys. J., vol. 504, p. 405, 1998.

[22] R. Vidal, “Optimal partition of an interval,” in Applied Simulated An-
nealing. New York: Springer-Verlag, 1993, p. 291.


	toc
	An Algorithm for Optimal Partitioning of Data on an Interval
	Brad Jackson, Jeffrey D. Scargle, David Barnes, Sundararajan Ara
	I. I NTRODUCTION: T HE P ROBLEM
	II. D YNAMIC P ROGRAMMING: F INDING O PTIMAL P ARTITIONS
	Theorem 1 (Principle of Optimality): Let ${\bf P}^{\max}$ be an 
	Proof 1: As above, denote by ${\bf P}_2$ the subpartition of ${\

	Theorem 2: This deterministic $O(N^2)$ dynamic programming algor
	Proof 2: The proof is by mathematical induction. Clearly, ${\hbo


	III. A PPLICATIONS
	IV. C ONCLUSION
	C. J. Alpert and A. B. Kahng, Splitting orderings into multi-way
	I. Auger and C. Lawrence, Algorithms for the optimal identificat
	D. Barry and J. A. Hartigan, Product partition models for change
	R. Bellman, Dynamic Programming . Princeton, NJ: Princeton Univ.
	M. A. Coram, Nonparametric Bayesian Classification, Ph.D. disser
	P. Fragkou, V. Petridis, and A. Kehagias, A dynamic programming 
	O. Heinonen . Optimal multi-paragraph text segmentation by dynam
	P. Hubert, Change points in meteorological time series, in Appli
	S. Kay, Optimal segmentation of time series based on dynamic pro
	S. M. Kay, Fundamentals of Statistical Signal Processing: Detect
	S. Kay and X. Han, Optimal segmentation of signals based on dyna
	A. Kehagias and V. Petridis, Time series segmentation using pred
	A. Kehagias . (2002) Hidden Markov model segmentation of hydrolo
	A. Kehagias, P. Fragkou, and V. Petridis, Linear text segmentati
	A. Kehagias, A hidden Markov model segmentation procedure for hy
	A. Kehagias, A. Nicolaou, P. Fragkou, and V. Petridis, Text segm
	F. Quintana and P. Iglesias, Bayesian clustering and product par
	J. Scargle, Studies in astronomical time series analysis. V. Bay
	R. Vidal, Optimal partition of an interval, in Applied Simulated



