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ABSTRACT

Statistical methods of change-point detection can be useful for discovering inhomogeneities in precipitation,
air pressure, or temperature time series caused by a change in the measurement process such as a relocation of
a gauge. The method is based on a second correlated series that can be relied on to be correct, following the
approach suggested by Potter. A summary of the latest methods is given, and the necessary tests and their critical
values are provided. An application to air pressure series measured at three Swiss meteorological stations is

presented.

1. Introduction

In the last decade several papers concerning the de-
tection of change in time series have appeared in the
statistical literature. Unfortunately, the new ideas and
results in these papers are often known only within the
mathematical community and have not been used in
applications. These methods can be very useful in me-
teorology to find systematic changes in the mean of
measured quantities, such as precipitation, air pressure,
or temperature. Such changes might be caused by an
alteration in the measurement process such as the re-
location of a gauge, a change in the gauge exposure, or
a change in the time at which the measurement is taken.
The detection of such a change in the series of interest
{Y;} is made possible by the existence of some other
series { X, } that can be relied on to be correct and that
is correlated with the series {Y;}. The series {X;} is
called the reference series. The series {X;} and {Y;}
can be compared by statistical methods and possible
change in the series {Y; } may be detected. This ap-
proach was recommended by Potter (1981) for detect-
ing the shift in the mean of precipitation series. The
same idea of finding inhomogeneities in the series {Y, }
using the reference series {X;} was later applied by
Alexandersson (1986), Hanssen-Bauer and Ferland
(1994), and Rhoades and Salinger (1993). Other au-
thors who applied statistical methods for change-point
detection in meteorological series included Buishand
(1982, 1984), Lombard (1994), and Vannitsem and
Nicolis (1991).
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Potter uses the results of Maronna and Yohai
(1978), who studied a model with a linear regression
relationship between the series of interest and the ref-
erence series, that is,

model I

Y,=a+bX,+e,, i=1,"‘,n,

where {e;,i = 1, - -+, n} are random errors.

In our paper we study the model described above as
well as another simpler model where we suppose that
our series of interest oscillates with approximately the
same variance as the reference series and the only dif-
ference is in the mean, that is,

model II

Yi=a+Xi+eis i=1,"',n,

where {¢;,i = 1, - -+, n} are again random errors.
For better understanding of the topic of our paper, it

is important to realize that in practice we can meet two

situations that are substantially different from the sta-

tistical point of view.

(A) The time of possible change is known.

In the first case we know from the history of our
series that at a certain point of time an event occurred
that might influence our measurement, for example, the
time of measurement was shifted or automatic mea-
surement started. The question is whether this event
introduced a systematic change into our series.

(B) The time of possible change is unknown.

It can sometimes happen that we do not know the
history of our series or the history is not complete.
Thus, it is not known whether any change in the mea-
surement process occurred or not. In this case the goal
of our investigation is not only to detect a systematic
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TaBLE 1. Critical values for model II obtained
by the Bonferroni inequality.

n 5% critical value 1% critical value
10 ' 3.75 4.96
20 3.49 4.21
30 347 4.07
40 - 3.48 4.03
50 3.50 4.02
70 3.54 4.03
100 3.60 4.05

¢

change in our measurement but also to find where this
change occurred.

2. Mathematical formulation

To solve these problems the hypothesis testing can
be applied. The log-likelihood ratio will be used to pro-
vide test statistics.

- a. Model II

We start with the simple model II and introduce the
new variables Z; = Y, — X;,i =1, - -+, n, supposing
that these differences are normally distributed.

(A) Suppose first that the time of change is known
and equal to k. The problem can be described using the
following null and alternative hypotheses.

Ho: Z,-=a+e,-, i?l,"',n,
Ak: Zi=a+e,-, i=1,"‘,k,
Zi=a+d+e, i=k+1,---,n, d=+0.

Here and in the following the variables {¢; } are in-
dependent, identically normally distributed - with zero
mean and unknown variance ¢ 2.

The problem described above can be treated by the
two-sample ¢ test with the test statistic 7, distributed
under the null hypothesis according to the Student’s t-
distribution with (n — 2) degrees of freedom:

n—kkl]"? . 1
Tk=|:( )] (Zk_ ;k)_.
. n S
1 k
1/2(Sk"_sn>
_n n 1
[L((l_E);ll/Zsky
n n :
where
: : 5, :
Si= X Z,SE = Z,Zy==,ZF= ,
k le ,l Sk lzé—l ke k k n—k
1
st = [Z(Z”—Zk)2+ Z Z - ZH?.

n—2

i=k+1
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Denote by 1,(m) the 100 p% quantile of a ¢ distri-
bution with m degrees of freedom. The null hypothesis
is rejected if

[Te| > ti—ar(n —2).

For n large the ¢ distribution can be approximated by
the standard normal distribution and quantiles of the ¢
distribution by quantiles of the standard normal distri-
bution.

(B) The more complicated situation occurs if the
time of change is unknown. Then we can set the null
hypothesis and the alternative in the following way:

Hy: Zi=a+e, i=1,",n,
A: Jke {1, ,hn— 1} such that
Z;=a+e, i=1,-,k,
ZiZ2a+d+e, i=k+1,---,n, d+0.

The null hypothesis can be rejected if at least one
of the statistics {|7,|} is greater than the critical
value, that is, the test statistic has the form 7'(n)
= maXi.....—1| Tx|. The exact distribution of 7'(n)
was derived by Worsley (1979). However, the distri-
bution is so complex that Worsley was able to calcu-
late the critical values only for the number of obser-
vations n less than 10.

Approximate critical values can be obtained by sev-
eral different methods, namely

» the Bonferroni inequality,
¢ simulation,
¢ the asymptotic distribution.

1) BONFERRONI INEQUALITY

The Bonferroni inequality for the sequence of ran-
dom events { .4, } can be expressed in the form

P(Ln) cAk) = Zn‘, P(A).
k=1 k=1

Applying this inequality to the events o4 = {|7T%]
>c}l,k=1, --+-,n— 1, we obtain

TABLE 2. Critical values for model II obtained by simulation.

n 5% critical value 1% critical value
10 3.66 4.90
20 3.28 4.06
30 3.19 3.87
40 3.16 3.80
50 3.15 3.76
70 3.15 3.73

100 3.16 371

200 3.19 3.71

400 3.23 3.73
1000 3.28 3.79
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TaBLE 3. Critical values for model II obtained
from the asymptotic distribution.

n 5% critical value 1% critical value
10 3.62 4.88
20 3.60 4.70
30 3.61 4.65
40 3.61 4.62
50 3.62 4.60
70 3.63 4.59
100 3.64 4.57
200 3.66 4.55
400 3.68 4.54
1000 371 4.54
P[T(n) > c]
n—1
=P( max |T,| >c)=< Y P(T| > c).
k=1,"+-,n—1 k=1

The value #;_,/2¢.—1y(n — 2) can serve as the conser-
vative critical value because

P[T(n) > ti—wnm-n(n —2)I s«

Table 1 presents the critical values obtained in this way
for several values of n.

2) SIMULATION

To estimate the critical values we performed a sim-
ulation study using the program MATLAB. Forn = 10,
20, ---, 100, 200, , 1000 we got 100 000 reali-
zations of the statistic 7'(n) and calculated the empirical
distribution function and its quantiles. The procedure
was repeated ten times and the critical values were es-
timated by the average of the corresponding empirical
quantiles. The estimation of the both 5% as well as 1%
critical values are given in Table 2.

3) ASYMPTOTIC DISTRIBUTION

Yao and Davis (1986) derived the limit distribution
of the statistic 7(n) normalized by the appropriate con-
stants a,, b,:

lim P[w < x] =exp(—2e~*m"2), (1)
where a, = (2 log logn)"?and b, = a;' + (a,/2) log
log logn. Some chosen critical values for the signifi-
cance level @ = 0.05 and a = 0.01 are presented in
Table 3.

It is well known that the convergence of (1) is slow.
From our simulation study it follows that for 100 < n
=< 1000 the 50%, 51%, - - -, 99% quantiles obtained
from the asymptotic distribution are greater than the
corresponding critical values obtained by simulation.
This means that the test based on the asymptotic critical
values is more conservative than that based on simu-
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lation. Moreover, the maximal difference between the
distribution function of 7'(n) estimated by simulation
and the approximate distribution function obtained by
(1) is about 0.08 and the 95% quantile of limit distri-
bution (1) corresponds to the 98%—99% quantile ob-
tained by simulation.

If the time of change is known we can use the test
statistic B, = T?(n — 2 + T2)7! instead of T,. Under
the null hypothesis B, is distributed according to the
beta distribution with parameters 1/2 and (n — 2)/2.
For the unknown time of change we can use the statistic
B(n) = max,.,,...,—; By instead of the statistic T(n).
In the paper of Maronna and Yohai (1978), the statistic
nB(n) is denoted by T,.

b. Model I

(A) First we suppose the time of change is known
and equal to k. The null hypothesis and the alternative
can be set as follows:

Hy: Yy=a+bX +e, i=1, - ,n,
A: Yi=a+in+e,', é:l’...,k’
Yi=a+d+bX,+e, i=k+1,---,n, d=+0.

The test statistic B, has the following form (see Wor-
sley 1983 and Maronna and Yohai 1978):

. C?
Bk b — — 2
| - (X — ) nk Qk(n—k)
S(x; —x)n—k n
(Y, — Y, — b(x - x.)1°
_n- k
(% — %) nk ’
1 —_
[ S —-x)n—k 0
where x;, ‘- -, x, are realizations of the random vari-
ables X;, -, Xy ri =Y —d—bx,,i=1, , n

are the residuals under the null hypothesis; C = E, 1
r,,Q 2,:1 r,,xk 2,=] x,/k, Yk 2,=1Y,/k. Under
the null hypothesis B, is distributed according to the
beta distribution with parameters 1/2, (n — 3)/2. We
reject the null hypothesis if

TABLE 4. Critical values for model I obtained
by the Bonferroni inequality.

n 5% critical value 1% critical value
10 3.95 5.31
20 3.52 4.26
30 348 4.09
40 349 4.04
50 3.50 4.03
70 3.54 4.03
100 3.60 4.06
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TABLE 5. Critical values for model I obtained by simulation.

n 5% critical value 1% critical value
10 3.86 5.13
20 3.30 4.04
30 3.26 3.87
40 321 3.88
~ 1 (n-3)
Bk > /Bl—a[i ) __2_ )

where ,_,(p, q) is the 100(1 — a)% quantile of the
beta distribution with parameters p, g. There is a more
frequently used statistic Ty that is equivalent to the sta-
tistic B,. They are related as follows:

A 2
B, = ——.
-3+ T2

Under the null hypothesis the statistic T is distributed
according to the ¢ distribution with (n — 3) degrees of
freedom. Thus, we reject the null hypothesis at the level
aif

|Tel > ticann(n — 3).

(B) If the time of change is unknown, the null hy-
pothesis and the alternative can be set as follows:

Hy: Y, =a+bX, +e, i=1,-,n,
A: Jke {1, ,n— 1} such that
Yy=a+bX, +e, i=1, -k,
Y=a+d+bX;,+e, i=k+1,---,n, d=+0.

For testing the null hypothesis we can use the statis-
tic B(n) = max,,...,., B, or equivalently T(n)
= MaX—q,... 1 | Tkl Note that in the paper of Maronna
and Yohai (1978) the statistic nB(n) is denoted by T,.
Approximate critical values can be again obtained by

¢ the Bonferroni inequality,
¢ simulation,
» the asymptotic distribution.

1) BONFERRONI INEQUALITY

Using the Bonferroni inequality in the same way as
in the model II we obtain conservative critical values
being Bi-aim-1)[1/2, (n — 3)/2] for the statistic B(n)
and £,_a/2,—1,(n — 3) for the statistic T(n). The con-
servative critical values of T(n) are given in Table 4.

If we are interested in computation of p values, the
procedure suggested by Worsley (1983) gives upper
bounds that are less conservative than those obtained
by the application of the Bonferroni inequality. Nev-
ertheless, a limitation of this approach is that the ap-
proximation might be poor for sample sizes n > 50,
which are often encountered in climatology.
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2) SIMULATION

The distribution of B(n) and T(n) depends on the
values of x,, -, x,. This means that if we wish to
simulate B(n) or T(n), we have to use our measured
values x;, '+, X,. Maronna and Yohai (1978) sup-
posed that x,, - - -, x, are realizations of independent
identically distributed random variables X;, ---, X,
with the normal distribution and obtained, with the
help of a Monte Carlo study, the critical values of T,
= nB(n). Their critical values of T(n) are given in
Table 5.

3) ASYMPTOTC DISTRIBUTION

Maronna and Yohai (1978) showed that if x,, -- -,
x, are realizations of the i.i.d. random variables X;,
, X, with 0 < EX? < o and if, moreover, { (Y},
X)), (Y5, X5), - - -} form an independent sequence and
for every fixed i the variables X; and ¢; are independent,
then the limit distribution of T'(n) and T(n) is the same.
Huskov4 (1994, personal communication ) showed that
the limit distribution of T(n) and T(n) is the same un-
der less restrictive conditions assuming the vectors
{Xi, ---,X,} and {e[, --- , e,} are independent and
{X;} is a stationary ARMA sequence. This result en-
ables us to use the critical values from Table 3 also for
the model I if the number of observations » is large.

3. Discassion about the application of the suggested
metheds to the meteorological series

The suggested methods can be applied to annual as
well as to monthly averages. However, especially in
the application to monthly averages, we may meet
some problems because the assumptions of the sug-
gested methods are not fulfilled. In the following dis-
cussion we deal with the problem of how seriously the
violation of the assumptions can affect the conclusions
of our inference.

TABLE 6. The 5% critical values of the statistic
T(n) for an AR(1) sequence.

p
n 0.1 0.2 0.3 0.4 0.5 0.6 0.7
10 3.90 4.21 4,56 4.94 5.39 5.86 6.38
20 3.52 3.82 4.18 4.64 5.19 5.89 6.82
30 3.45 3.74 4,12 4.56 5.14 5.89 6.96
40 3.43 3.73 4.10 4.55 5.12 5.89 6.99
50 342 3.72 4.09 4.54 5.11 5.89 6.96
70 3.43 3.74 4.10 4.56 5.12 5.89 6.96
100 3.44 3.75 4.12 4.58 5.14 5.90 6.99
200 3.48 3.80 4.19 4.65 523 5.99 7.06
400 3.52 3.85 4.25 472 5.31 6.09 7.16
1000 3.59 3.94 4.36 4.84 5.45 6.25 7.34
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TABLE 7. The 1% critical values of the statistic
T(n) for an AR(1) sequence.
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TABLE 8. Comparison of p values obtained by the asymptotic
distribution (2) and by simulation for p = 0.3 and 100 = n = 1000.

p
n 0.1 0.2 0.3 0.4 0.5 0.6 0.7
10 5.22 5.68 6.12 6.65 720 7.80 8.29
20 4.38 4.81 5.27 5.87 6.61 7.49 8.61
30 423 4.58 5.06 5.64 6.44 7.36 8.74
40 4.14 4.52 5.00 5.58 6.32 7.34 8.74
50 4.09 4.46 4.97 5.51 6.25 7.25 8.66
70 4.07 443 4.90 5.47 6.19 7.7 8.56
100 4.05 442 491 5.46 6.20 7.14 8.56
200 4.06 444 492 5.47 6.17 7.10 8.44
400 4.08 4.48 4.95 5.52 6.21 7.12 8.44
1000 4.14 4.56 5.04 5.62 6.34 725 8.60

a. Problem of the distribution

In the methods described above we assumed a nor-
mal distribution of the random errors. However, the
limit distribution of the statistic

1

n1/2

k
S — =S,
n

i
max

Kot ]_( I_E 1/2S_k
n n

does not depend on the distribution of the variables
{Z; } under the assumption that they are iid, satisfying
E|Z;|*** < o for some § > 0 (see Csorgs and Horvath
1988). So, for every reasonable distribution, the same
table of critical values can be used provided the number
of observations n is moderately large. For series where
the change is more likely to occur in the quotient Y;/
X; than in the difference Y, — X;, it is possible to use
the logarithm of the original series. Supposing that after
this transformation the random errors are distributed
according to the normal law, we can again use the sug-
gested procedure. This approach is recommended by
‘‘Deutsche Wetterdienst” for the monthly averages of
precipitation and was applied by Buishand (1982) and
Rhoades and Salinger (1993).

T(n)=

b. Dependence

It is well known that there exists a certain persistance
in the behavior of nature. This persistance is manifested
by a dependence between the meteorological observa-
tions that are close in time. Such time series are very
often modeled by ARMA series. The typical behavior
of an autoregressive sequence of the first-order AR(1),
with a large positive autoregressive coefficient, is a
conspicuous slow oscillation around the mean. If we
suppose that our variables are independent, this oscil-
lation might be misinterpreted as a change in the mean.
From this fact it is clear that for such series the critical
value for rejecting the null hypothesis of no change

0.4
0.25

03
0.17

0.2
0.09

0.1
0.03

0.05
0.01

p value from Eq. (2)
p value by simulation

must be larger than for the independent variables. It
was shown by Huskova (1994, personal communica-
tion) that if {Z,} is a stationary ARMA (p, g) sequence
satisfying

Z - ®Z ,— - (I)pZt—p

=¢+ b+ 0+ 0y,

where {¢,} are i.i.d. such that Ee; = 0, Ee] > 0, Ee}
< o and the polynomial ®(z) =1 - ®z — --- — 9,27
satisfies the condition that ®(z) # O for all complex z
such that |z| =< 1, then the limit behavior of the statistic
T(n)is

-1/2 _
limP{[ZWf(O)/v] T(n) bn<x}

a,

n—w

= exp(—2e*n~1?),

(2)

where y = varZ, and f( ) denotes the spectral density
of the corresponding ARMA process. Thus, the critical
values obtained from Table 3 have to be multiplied by
[27f(0)/y]'2. Especially, for an AR(1) sequence that
is one of the most frequently used in meteorology, the
critical values should be multiplied by [(1 + p)(1
— p)" 112, where p is the first autoregressive coeffi-
cient. We remark that the same standardization was rec-
ommended by Lombard (1994) for detecting change
points by Fourier analysis if the observations are cor-
related.

To get a feeling for how much the distribution of
T(n) differs from the asymptotic distribution if » is
small and the variables {Z,} are dependent, we simu-
lated 100 000 realizations of AR(1) sequence satisfy-
ing the following equation

Zi=pZi—l+6iv izl,"‘,n,

where Z,, €, -, €, were independent and Z, was
distributed according to the distribution N[O, (1
—p*'Jandey, - - -, €, according to the distribution
N(0, 1). The 5% critical values for selected values
of p are given in Table 6; the 1% critical values in
Table 7.

Tables 8 and 9 compare for p = 0.3 and p = 0.5, p-
values obtained by the asymptotic distribution (2) and

TaBLE 9. Comparison of p values obtained by the asymptotic
distribution (2) and by simulation for p = 0.5 and 100 = n =< 1000.

04
0.22

p value from Eq. (2)
p value by simulation

0.3
0.15

0.2
0.08

0.1
0.03

0.05
0.01
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Fic. 1. Monthly averages of the air pressure (hPa) measured at
Saentis (solid line), Guetsch (dashed line), and Weissfluhjoch (dotted
line) from 1961 to 1990.

p values obtained by simulation. The difference be-
tween the asymptotic distribution function and the real
distribution function estimated by simulation decreases
very slowly. Due to the slow speed of convergence, the
difference between p values obtained by (2) and p val-
ues obtained by simulation (supposing these are less
than 0.4) is the same up to two decimal places for all
n in the range 100—1000. We also notice that the test
based on the critical values obtained by (2) is more
conservative. _

The coefficients of the ARMA series or the value of
the spectral density function at zero should be known
from the researcher’s experience. If we are sure that in
a certain interval the series is not subjected to any
change, these coefficients can be obtained by estima-
tion using this part of the series.

c. Removing seasonality

The monthly averages are almost never identically
distributed random variables because of their seasonal
character. This property might be inherited also by their
differences. Therefore, we suggest to remove the sea-
sonality by subtracting the corresponding means from
the series.

4. Applications

Figure 1 presents three series of monthly averages
of air pressure given in hectopascals measured at
three Swiss meteorological stations— Saentis, Guetsch,
and Weissfluhjoch—in the years 1961-90. The posi-
tions of the barometers in these stations are the follow-
ing: Saentis—47°15’N, 9°21’E, height 2500.1 m;
Guetsch—46°39’N, 8°37'E, height 2284.0 m; Weiss-
fluhjoch—46°50'N, 9°49'E, height 2669.2 m. Every
series consists of 360 observations. The series mea-
sured at Saentis was homogenized and serves as the
reference series. The problem was to detect the inho-
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Fic. 2. Differences between the Guetsch and
the Saentis seasonal adjusted series.

mogeneities in the Guetsch and Weissfluhjoch series
caused by changes in the measurement process. Later
on we obtained the history of these series so that we
had the possibility to compare our results with reality
and to see if the suggested procedures worked properly.

At the beginning of the statistical inference we re-

"moved the seasonality in our series subtracting from

January’s data the overall January average, from the
February’s data the overall February average, etc.

a. Guetsch—Saentis series

Supposing that the air pressure data measured at
Seantis and Guetsch differ only in the mean we started
by applying model II. The difference between the
Guetsch and Saentis seasonal adjusted series is plotted
in Fig. 2.

Foreveryk =1, ---,n — 1, n = 360, the series of
the differences was split into two parts so that the first
part consisted of k observations and the second one of
the remaining (n — k) observations. For each split the
statistic T, was calculated. The values of statistics { 7} }
are shown in Fig. 3. The maximum of the statistics { T} }

15— T),

10

| T I
0 - 100 200 300

Time (months)

F1G. 3. Statistics {7,} corresponding to model II
for the Guetsch—Saentis difference series.
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TABLE 10. Results for the Guetsch—Saentis series.

Time Time of Test

interval n change statistic
Step 1 1-360 360 119 13.92
Step 2 1-119 119 106 2.87
120-360 241 240 12.82
Step 3 120-240 121 191 278
241-360 120 356 1.83

occurred for k£ = 119 and was equal to 13.92. Com-
paring this value with the interpolated 1% critical value
from Table 2, the null hypothesis is rejected at the 0.01
significance level. Applying model I to the same data
gave similar results since the variances of both series
are approximately the same and therefore the estimate
of the regression coefficient b equals to 0.987, which
is very close to the value 1.

Having detected the change after observation 119 the
question may arise if there is some other change in
addition to the one detected. The correct way to test the
hypothesis that two changes in the series exist would
be to find the maximum of test statistics corresponding
to all possible division into three parts. This procedure
would be time consuming and the properties of the test
statistic derived from the log-likelihood principle have
not been studied. Another possibility is to study sepa-
rately two parts of our original series, that is, the part
before the change and the part after the change. If the
intervals between the changes are large, then Vostri-
kova (1981) showed that this procedure applied re-
peatedly discovers all the inhomogeneities in the series.

Proceeding in this way we did not detect any change
in the first part of the series: the statistic T(n) for n
= 119 was equal to 2.87. Obviously, this value is
smaller than the 5% critical value obtained from Table
2 by interpolation. In the second part we discovered a
shift in location after observation k = 240, the statistic
T(n) for n = 241 being equal to 12.816. Continuing in
the same way we did not find any other shift in location.
The results are given in Table 10.

The means, medians, and standard deviations for all
three parts of the series of the differences are given in
Table 11.

Adjusting each part of the series by subtracting the
corresponding mean and joining all three parts to-
gether, we got the series in Fig. 4.

TaBLE 11. Descriptive statistics for the Guetsch—Saentis series.

Standard

Time Mean Median deviation
interval n (hPa) (hPa) (hPa)
1-119 119 0.385 0.365 0.358
120-240 121 —-0.427 -0.468 0.317
241-360 120 0.049 0.047 0.255

1541
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FIG. 4. Adjusted Guetsch~Saentis difference series.

The normal plot is given in Fig. 5. Both figures show
a small number of outliers. Their appearance should be
of interest for the meteorologists but cannot invalidate
our results about the inhomogeneities in the series.

The more important problem is the problem of de-
pendence between the observations. The autocorrela-
tion function corresponding to the adjusted series pre-
sents a positive correlation between the neighboring
observations (see Fig. 6).

Thus, our assumption about the independence was
false. Assuming the differences between the seasonal
adjusted series form an autoregressive sequence of first
order, the estimate of the autoregressive coefficient p
equals p = 0.33. The comparison of the test statistics
with the corresponding interpolated critical values from
Tables 6 and 7 gives the same results about the change
points as the previous ones obtained under the assump-
tion of independence.

Finally, we would like to show how our resuits co-
incide with the history of the Guetsch series. In the
records three important events appear:

1) achange of gauge (16 December 1970) after ob-
servation k = 120;
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Adjusted Guetch-Saentis differences
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F1G. 5. Normal plot for the adjusted
Guetsch—Saentis difference series.
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FiG. 6. Autocorrelation function of the adjusted Guetsch—Saentis
difference series. Dotted lines denote approximate 95% confidence
limits about zero.

2) another change of gauge (23 August 1979) after
observation k = 224, ' :

3) the beginning of automatic measurement (1 Jan-
uary 1981) after observation k£ = 240.

Thus, our procedure correctly discovered the change in
the first and third case but did not detect any inhomo-
geneity after observation k = 224. ' :

b. Weissfluhjoch—Saentis series

Using model II for the differences between Weiss-
fluhjoch and Saentis (see Fig. 7), the test statistic T(n)
for n = 360 had the value 3.422 and the maximum
occurred for k£ = 189. The behavior of {7, } is plotted
in Fig. 8.

Supposing that the variables are independent, we
compare the value 3.422 with the interpolated critical
values from Table 2. We see that the null hypothesis
can be rejected at the 0.05 significance level but it is
not rejected at the 0.01 level. Supposing the variables
form an AR(1) sequence and estimating p by p = 0.36,
the value T(n) = 3.422 is smaller than the interpolated
5% critical value from Table 6. This means that the
change after the observation k£ = 189 was not confirmed
in spite of the fact that the difference between the mean
of the first and second part of the series was 0.129 hPa.
We obtained this result because we supposed that we
did not know anything about the history of the series
so that we applied (B). However, later we were in-
formed that in the history of the series there was a rec-
ord about the change of the gauge on 24 August 1976,
that is, after the observation £ = 188, which might in-
fluence the series. Using (A) for the independent ran-
dom variables, the null hypothesis is rejected at the
significance level & = 0.05 because

| T, > 1.96.

If we suppose that the variables form an AR(1) with
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Fic. 7. Differences between the Weissfluhjoch and the
Saentis seasonal adjusted series.

p = 0.36, then under the null hypothesis the statistic 7
is asymptotically distributed according to the normal
distribution N{O0, [(1 + p)(1 — p)~'1"?}. The null
hypothesis is rejected at the significance level @ = 0.05
because

. 1.36\'?
| T > 1.96(m> = 2.85.

In the above examples the decision of whether
there is a change point was based on the comparison
of test statistics with the interpolated critical values
from Tables 2, 6, and 7. Some readers might prefer
to conduct tests using asymptotic distributions (1)
and (2). Application of asymptotic distributions en-
ables one to calculate p values and to gain in this way
more information about the result of the test. How-
ever, the real p values are smaller than those obtained
from (1) and (2). For some situations the difference
can be roughly estimated, see the discussion about
the speed of convergence of asymptotic distributions.
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FiG. 8. Statistics {7}} corresponding to model II
for the Weissfluhjoch—Saentis series.
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5. Conclusions

For rejection of the null hypothesis in the case of
unknown change, the difference between the mean
of the first and second part of the series must be
rather large, much larger than for the case where we
had a record about particular event and we were in-
terested as to whether this event inserted the inho-
mogeneity into the series. This procedure protects
the users from altering the data without substantial
reasons.

The method was suggested for only one sudden
change in the series. If there are more changes, as in
the Guetsch example, the procedure can be applied as
well, but the user has to bear in mind that the power of
the tests decreases.
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