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SUMMARY

This paper summarizes the author's experience in researching methods of discovering a change in the
behaviour of meteorological and hydrological series. Basic statistical tests applying `maximum' type
statistics to detect a sudden or gradual change in location are given. The author stresses that the
characteristic properties of the meteorological and hydrological data, especially the dependence between
neighbouring observations, have to be considered by performing statistcal tests for change-point detection.
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1. INTRODUCTION

Scientists are afraid that the impact of human activity on nature may cause a change in nature.
This apprehension precipitated the launching of the world project to study important hydro-
logical and meteorological series. The contribution of the Czech Republic to the World Climato-
logical Program ± Water consisted of two projects:

(i) Analysis of long hydrometeorological series.
(ii) Analysis of hydrological observations in the Czech Republic.

These projects were directed by the researchers of the Czech Hydrometeorological Institute. The
goal was to create a statistical software package for detection of non-stationarity in time series
and to apply this software to some hydrological and meteorological series. The desire was to
create a program that would not be di�cult to understand and to use even for non-statisticians.
As I was known to be interested in problems of change-point detection, I was invited to suggest
appropriate statistical methods and to check whether all procedures used were mathematically
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correct. In the course of my co-operation with the Czech Hydrometeorological Institute I had the
opportunity to study several hydrometeorological series:

(i) the air temperature series;
(ii) the water temperature series;
(iii) the precipitation series;
(iv) the water discharges series.

Later on, researchers from di�erent ®elds within the Czech Republic, as well as from abroad,
were sending me their data for analysing whether their series could be considered stationary or
not. For example, I analysed, among others, the series of total ozone amount measured by the
Czech Meteorological Institute in Hradec KraÂ loveÂ , the in¯uence of woodcutting on the series of
water discharges that was originally studied by researchers of the Institute of Forest Management
in FryÂ dek ± MõÂ stek, and the air pressure series measured by the Swiss Meteorological Institute in
Zurich. In this way I gained a lot of experience with the performance of di�erent statistical
methods and tests for change-point detection. I also had the opportunity to observe some
features typical of the behaviour of hydrometeorological series as well as other series arising from
the measurement of some natural processes in the environment. I realized that despite many new
results in the study of change-point detection, practical problems can often be encountered that
have not yet been solved. In this paper, I would like to illustrate some of these problems and to
warn against mistakes that might be made.

Before creating the statistical software for change-point detection we have to answer several
questions. First, what statistical properties do the series under study possess? Second, what kind
of inhomogeneities or non-stationarities are we looking for? Third, which statistical methods
shall we apply? Of course, the answers are not unique. In what follows I present my answers to
these questions and I am aware that the answers of many other researchers to the same problems
may di�er substantially.

2. PROPERTIES OF HYDROMETEOROLOGICAL DATA

2.1. Seasonality

As far as I know, the basic hydrometeorological data are monthly observations. Unfortunately,
they usually have a strong seasonal character. The easiest way to handle the seasonality is to
subtract from January's data the overall January average, from the February's data the overall
February average etc. One could object that the deseasoning can in¯uence the detection of a
change in the global mean. For the series I was dealing with the practical impact of the
deseasoning on the detection of a global change was small. However, my strong opinion is that
for most problems of searching for inhomogeneities in hydrometeorological series, the annual
averages are more appropriate.

2.2. Skewed distribution

The monthly water discharges are often skewed. The statisticians analysing the hydrometeoro-
logical data often transform the observations, usually using the logarithmic transformation,
remove the seasonality and then use tests for normally distributed random variables. Sometimes
the interpretation of a change in parameters causes problems as the mean and the variance of
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log-normal distribution are functions of both parameters. Some time ago we studied the monthly
averages of water discharges of a small creek called NacÏ etõÂ nskyÂ in the Erzgebirge mountains
(see Figure 1).

The forest in the Erzgebirge mountains was heavily damaged by acid rain. In this situation one
might expect change in variation of runo�s as soil loses the capability for water retention and in
rainy periods the water discharges are large and in dry periods they are small. The transformed
deseasonalized series is shown in Figure 2. The tests detected the change in the mean but not in
the variance of the transformed data. Therefore, we concluded that the scale characteristic
changed but the shape characteristic of the original series remained the same.

It is well known that averaging reduces the skewness of the data. If we deal with the annual
averages instead of monthly averages the problem of skewness is usually not so serious. Let us
take the example of the water discharges of the river Labe measured in DeÏ cÏ õÂ n (Czech Republic).
The basic descriptive statistics are given in Table I.

2.3. Dependence

It is well known that there exists a certain persistance in the behaviour of nature. This persistance
is manifested by a dependence between the meteorological observations which are close in time.
The series with quickly decreasing correlograms are often modelled by ARMA sequences.

Figure 1. Monthly water discharges of NacÏ etõÂ nskyÂ Creek, years 1951±1990

Figure 2. Transformed deseasonalized series of monthly water discharges of NacÏ etõÂ nskyÂ Creek, years 1951±1990
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Consider the example of global world temperature anomalies compiled by Jones et al. (1994)
(see Figure 3).

If we suppose that the ®rst part of the series (years 1854±1903) is stationary (for in the 19th
century emission of gases that contribute to the greenhouse e�ect was low), then the values of the
sample autocorrelation function of this series calculated for lags t � 1; 2; 3; 4; 5 are the following:
ar�1� � 0�237; ar�2� � 0�0227; ar�3� � ÿ0�026; ar�4� � 0�005; ar�5� � ÿ0�006. Hence, the ®rst
part of series of global world temperature anomalies is one of the examples where a short-
memory model could be applied.

On the other hand, Lawrance and Kottegoda (1977) mentioned that hydrologists, who study
rainfall and river¯ow series, sometimes observe long periods of very low or very high ¯ows, the
so-called Joseph e�ect. This e�ect causes failure of the correlogram to die out. Then, the long-
memory models are usually applied.

The behaviour of a process with strong dependent observations (where the value of the spectral
density at zero is large) is `lazy' in the sense that the process can stay for a certain period on one
level and then slowly change to another level, therefore the change must be more apparent to be

Table I. Descriptive statistics for monthly and annual water discharges of Labe in DeÏ cÏ õÂ n measured
in 1851±1989

Average Standard deviation Coe�cient of skewness

November 222.658 139.995 1.881
December 277.628 189.330 1.736
January 311.940 210.630 1.870
February 386.968 237.220 1.100
March 519.315 267.562 1.317
April 501.754 259.748 1.444
May 344.584 164.657 1.468
June 260.901 170.763 3.222
July 222.674 147.234 2.150
August 199.247 127.236 1.944
September 191.594 148.636 3.301
October 205.346 121.595 2.091

year 303.742 94.003 0.719

Figure 3. Global annual temperature anomalies (ENSO ± uncorrected), years 1854±1993
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discovered. I would like to stress that the type of assumed dependence largely in¯uences the
decision about the existence of non-stationarities in the series.

2.4. How to establish properties of the studied series?

Statisticians usually provide the researchers studying real data with a battery of tests for change-
point detection, i.e. with parametric and non-parametric tests, as well as tests for the independent
and dependent observations. It would be easy to decide which test to use if the researchers
knew that a certain part of a series is de®nitely stationary. Unfortunately, such a situation is very
rare. The procedure to discover the properties from the observed data is misleading because if
there are inhomogeneities in the series, the behaviour of basic statistical characteristics such as
the autocorrelation function is `weird'; see Figure 4 presenting the annual rainfall departures in
Sahel constructed by Nicholson (1994) and the corresponding autocorrelation function in
Figure 5.

The e�ect of a change in parameters on the sample autocorrelation function as well as on other
sample characteristics as the coe�cient of skewness or kurtosis is well known to all statisticians.
The non-statisticians may easily make the mistake of using the original measurements for the
model setting.

Sometimes, the researchers can use their knowledge about properties of some series that are
similar to the series under study due to the similar environmental conditions. Of course, this
approach requires a long experience with the hydrometeorological data.

Figure 4. Standardized annual rainfall departures in Sahel, 1901±1990

Figure 5. Autocorrelation function of standardized annual rainfall departures in Sahel, years 1901±1990
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Finally, I would like to add a reminder that if the ®nite part of a time series is observed, it is
impossible to distinguish between a stationary series with the positive dependence between the
neighbouring observations and a sequence of independent variables with the slowly changing
mean. Consider the long temperature series measured in Klementinum, Prague (see Figure 6).
If we suppose (for the same reason as we gave for the series of global world temperature

anomalies) that the ®rst part of the series (years 1775±1900) is stationary and calculate its
correlogram (see Figure 7), then the long-memory model might be applied. On the other hand,
some statisticians might prefer the model with a change occurring between years 1835±1840. We
conclude that the choice of the model is always subjective. On the other hand, some statisticians
might prefer the model with a change occurring between years 1835±1840. We conclude that the
choice of the model is always subjective.

3. NON-STATIONARITY

What does it mean that a process is non-stationary? The question is not easy because the
stationarity of a process can be violated in many ways. However, hydrometeorologists usually
expect that the change occurs either in location or in variation or in both. The increase of
temperature due to global warming is one example of a change in location. The increase of
variance of water discharges caused by the diminishing capability for water retention of the soil

Figure 6. Annual temperature series measured in Klementinum, Prague, 1775±1992

Figure 7. Autocorrelation function of the ®rst part of the annual temperature series measured in Klementinum,
Prague, years 1775±1900
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due to deforestation serves as an example of a change in variation. In the change-point literature
the sudden change of type A is usually studied. The scientists object that they more likely expect
the continuous change of type B (see Figure 8). It seems that such a change may be observed in
the series of total ozone amount measured in the solar observatory of the Czech Hydrometeoro-
logical Institute in Hradec KraÂ loveÂ (see Figure 9) or in the series of global world temperature
anomalies (see Figure 3) or in the series of rainfall departures in Sahel (see Figure 5).
From the statistical point of view, the search for a change of type B means that the change in

linear regression is to be detected where time plays the role of the independent variable.
In our study we used methods where a non-stationarity of a certain type was supposed. Some

statisticians prefer techniques which were not suggested to discover a particular type of departure
from stationarity. These methods are based on cumulative sums (or moving sums) of recursive
residuals and were ®rst introduced by Brown et al. (1975).

The problem of more than one change can often be encountered in applications. Suppose one
change was already detected. Then there exists the possibility of studying separately two parts of
the original series, i.e. the part before the change and the part after the change, and to try to decide
whether these two parts can be considered stationary or whether another change can be
discovered. In the case where another change-point is detected, one can proceed in the same way
until all change-points are found. For the detection of a sudden change in the mean of type A,
Vostrikova (1981) showed that if the intervals between the changes are large then the procedure of
sequential division discovers all the inhomogeneities in the series. This follows from the fact that if
a step-function with several jumps is approximated in the L2 sense by a two value function with
only one jump, then the `jump-point' of the best approximation coincides with one of the `jump-
points' of the approximated function. On the other hand, if a function with several changes of type
B is approximated by a function with only one change of the same type, the change-point may not

Figure 8. Sudden change of type A, and continuous change of type B

Figure 9. Total ozone amount measured in Hradec KraÂ loveÂ , 1962±1992
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coincide with any change of the approximated function. Therefore, the sequential approach yields
completely incorrect results for the detection of continuous alternations of the process.

4. STATISTICAL METHODS

The most frequently applied procedures for the detection of a sudden change in a series of
observations are based on statistical hypothesis testing. In our study we used test statistics that are
of so calledmaximum type. The idea behind this is described below. Suppose for awhile that we do
not know whether a series changed or not, but we know for sure that if the series changed then it
occurred at a certain point k. In the framework of mathematical statistics, the problem can be
solved by testing the null hypothesis that claims that there is no change in the distribution of the
series against the alternative hypothesis that claims that the distribution of the series changed at
time k. Suppose that the test statistic for this problem is known. In the case of testing whether a
change of parameter of a known distribution occurs, the usually applied test statistic is equivalent
to the log-likelihood ratio. Now, consider the situation where we do not know whether a change
occurred nor do we have any idea where the change point could be. We then test the null
hypothesis of no change against the alternative that there exists a time when the distribution of the
series changed. In this case it is natural to use for testing the maximum of preceding test statistics,
where the maximum is taken over all possible time points where the change might occur.

For illustration, consider the following simple example of the detection of a change of type A in
the mean of independent normally distributed variables X1; . . . ;Xn. The null hypothesis claims
that X1; . . . ;Xn are distributed according to the same N�m; s2�. The alternative claims that there
exists a time point k 2 f1; . . . ; n ÿ 1g such that X1; . . . ;Xk are distributed according to N�m1; s2�
and Xk�1; . . . ;Xn are distributed according to N�m2; s2�with m1 6� m2. Supposing s

2 is unknown,
then the test statistic T�n� is the maximum of the absolute values of two-sample t-test statistics

T�n� � max
1 4 k<n

jTk j � max
1 4 k<n

�n ÿ k�k
n

� �r
j �Xk ÿ �X�k j

1

sk

�Xk �

Xk
j�1

Xj

k
; �X�k �

Xn
j�k�1

Xj

n ÿ k
; sk � fp �S�Xi ÿ �Xk�2 � S�Xi ÿ �X�k �2�=�n ÿ 2�g:

The null hypothesis is rejected if the statistic T�n� is larger than a corresponding critical value.
The calculation of exact critical values is complicated because the test statistics (that we take a
maximum of) are dependent and their covariance function R�k; l� depends on both k and l and
not only on the di�erence k ÿ l. Moreover, if the number of observations increases, the
maximum type test statistic tends to in®nity w.p.1. The intuitive explanation for erratic
behaviour of the sequence f jTk j g near the edges �k near 0 or near n� is the following. When k
is near the edge (say near 0) we compare an estimate calculated from the large number of
observations ± the last n ÿ k ones ± with an estimate provided by a very small number
of observations ± the k ®rst ones. Some authors (see James et al. 1987) cope with this problem
so that they use for testing the maximal statistic where the maximum is taken only over a certain
portion of time points fk; �t0n� < k < ��1 ÿ t0�n�g for some 0 < t0 < 0�5. Some other statisticians
(see Deshayes and Picard 1986) suggest weighting the statistic corresponding to the point k by
the weight w�k=n�, i.e. instead of the statistic T�n� � max1 4 k<n jTk j they apply the statistic
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max1 4 k<nw�k=n� jTk j . The weights suppress in¯uence of the statistics jTk j near the beginning
and near the end of the series (see Gombay and HorvaÂ th 1988). The most frequently used
weights are fw�k=n� � ��fp k=n�1 ÿ k=n�g; k � 1; . . . ; n ÿ 1g. We conclude that the three types of
test statistics are usually applied to solve the same problem:

(i) global maximum of statistics over all time points;
(ii) maximum of statistics over a trimmed portion of time points;
(iii) maximum of weighted statistics.

The supporters of the ®rst approach believe that it is more natural to consider the global
maximum than the trimmed maximum because it is our decision how to choose t0 and the
rejection-acceptance decision may depend on this choice (see Gombay and HorvaÂ th 1994b). The
supporters of trimmed maximal statistics emphasize that there is a large probability that under
the null hypothesis the maximal value occurs for time point k near 0 or n. This e�ect is illustrated
in Figure 10 which shows the polygon of frequencies of the time k0, where the statistic T�n� takes
its maximum, provided n � 200 andH0 holds. The polygon was based on 100,000 simulations of
sequences of 200 independent variables with N(0,1) distribution. It is clear that if we leave out the
values jTk j near both edges, the critical values of T�n; t0� � max�t0n�<k<��1ÿ t0�n� jTk j are smaller.
If the researchers are sure that the change cannot occur at the very beginning or at the very end
of the series, then detection of a change by applying T�n; t0� is easier. Table II shows the
di�erence between critical values of the global maximal statistic T�n� and the statistic T�n; 0�05�
when 5 per cent of the values f jTk j g in the beginning and 5 per cent of jTk j in the end were
trimmed. (Both critical values were estimated by simulation.)

Figure 10. Polygon of frequencies of time tmax where the statistic T�n� takes its maximum, n � 200, H0 holds

Table II. Several examples of 5 per cent and 1 per cent critical values of the global maximal statistic T�n�
and of the trimmed maximal statistic T�n; 0�05�

n 5% critical values of: 1% critical values of:

T�n� T�n; 0�05� T�n� T�n; 0�05�
50 3.15 3.08 3.76 3.69
100 3.16 3.06 3.71 3.62
200 3.19 3.07 3.72 3.61
300 3.21 3.08 3.73 3.62
500 3.24 3.09 3.73 3.62
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The maximum of weighted statistics detects more easily a change in the middle of the series
than at the edges (see the intuitive explanation and numerical results given by James et al. (1987)).
Notice that the maximum of weighted statistics TP�n� in the case of a search for a change in the
mean of normally distributed random variables is the Studentized CUSUM statistic as it holds

TP�n� � max
1 4 k<n

jTk j k

n
1 ÿ k

n

� �� �r
� max

1 4 k<n

1

n
p

����Xk
i�1
�Xi ÿ �X�

���� 1sk :
Personally, I prefer the procedures based on the maximum of non-weighted statistics, for their

estimate of the change-point is better.
For all testing statistics described above, approximate critical values can be obtained by several

di�erent methods, namely:

(i) the Bonferroni inequality and its improvements;
(ii) the asymptotic distribution;
(iii) simulation.

The Bonferroni inequality for the sequence of random events fAkg can be expressed in the form

P
[n
k�1
Ak

 !
4
Xn
k�1

P�Ak�:

Applying this inequality, for example, to the events Ak � f jTk j > cg, k � 1; . . . ; n ÿ 1, we
obtain

P�T�n� > c� � P max
1 4 k 4 nÿ1

jTk j > c

� �
4
Xnÿ1
k�1

P� jTk j > c�:

The value t1ÿa=2�nÿ1��n ÿ 2� can serve as a conservative critical value because

P�T�n� > t1ÿa=2�nÿ1��n ÿ 2��4a:

For small signi®cance levels and moderate lengths of the series, the Bonferroni inequality gives
rather good estimates of critical values.

The asymptotic distribution of the global maximal statistic for a change in the mean as well as
the variance of normally distributed variables was studied by Yao and Davis (1986), HorvaÂ th
(1993) and Gombay and HorvaÂ th (1994a). General results for the global maximum of the log-
likelihood statistics were obtained by Gombay and HorvaÂ th (1996). Consider again the example
of the statistic T�n�. Under the null hypothesis the limit distribution T�n� normalized by the
appropriate constants an and bn is of the extreme type, i.e.

lim
n!1P

T�n� ÿ bn
an

> x

� �
� 1 ÿ exp

ÿ2eÿx���
p
p

� �
�1�

where an � �2 log log n�ÿ1=2 and bn � aÿ1n � �an=2�log log log n. Unfortunately, the con-
vergence to the limit distribution is slow. From our simulation study it follows that for
1004 n4 1000 the 50, 51, . . . , 99 per cent quantiles obtained from the asymptotic distribution
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are greater than the corresponding critical values obtained by simulations. This means that the
test based on the asymptotic critical values is more conservative than that based on simulations.
Moreover, the maximal di�erence between the distribution function of T�n� estimated by
simulations and the approximate distribution function obtained by (1) is about 0.08 and the
95 per cent quantile of limit distribution (1) corresponds to the 98±99 per cent quantile obtained
by simulations.

I would like to mention that the limit distribution (1) was obtained for any independent zero
mean random variables such that E jXi j 2�d <1; �d > 0�. This enables us to use (1) even for
non-normally distributed (e.g. skewed) data (see CsoÈ rgoÈ and HorvaÂ th 1988).
Antoch et al. (1996) show that if the variables X1; . . . ;Xn are not independent but form an

ARMA sequence then the asymptotic critical values have to be multiplied by fp 2pf �0�=gg where
g � var Xt and f ��� denotes the special density of the corresponding ARMA process. For AR
sequences of the ®rst order the di�erence between asymptotic critical values and critical values
obtained by simulations is even greater than for the independent variables (see JarusÏ kovaÂ 1996).

The critical values for detection of a change in the mean of independent normally distributed
variables as well as in the mean of an autoregressive sequence of the ®rst order obtained by
simulation were tabulated by JarusÏ kovaÂ (1996). The critical values for a change in the variance of
independent normally distributed variables were tabulated by JarusÏ kovaÂ and Antoch (1993).

The distribution of a trimmed maximal statistic can be approximated by the distribution of the
maximum of a limit process on the interval �t0; 1 ÿ t0�. Gombay and HorvaÂ th (1996) give
conditions under which the limit process for statistics derived from the log-likelihood principle
for detection of a change in a d-dimensional parameter y is kB�t� k = fp t�1 ÿ t�g, where kB�t� k
denotes the Euclidean norm of the d-dimensional Brownian bridge. Siegmund (1985) derived the
approximation of the exceedence probability that gives good estimates of critical values for
trimmed maximal log-likelihood statistics

P max
t0 4 t 4 1ÿ t0

kB�t� k
fp t�1 ÿ t�g > x

� �
' xd eÿx

2=2

2�dÿ2�=2G�d=2� 1 ÿ d

x2

� �
log

1 ÿ t0
t0
� 2

x2

� �
: �2�

The approximation (2) was derived for x large but it gives surprisingly good estimates even for
moderate values of x. Using (2), the 5 per cent asymptotic critical value of T�n; 0�05� is 3.15 and
1 per cent critical value is 3.67.

Now, we shall consider the change of type B. In the case of a change in the mean of type B of
normally distributed random variables we test the null hypothesis which claims thatX1; . . . ;Xn are
distributed according to N�a; s2� against the alternative hypothesis that there exists a time point
k 2 f1; . . . ; n ÿ 1g such that for i � 1; . . . ; k, the variable Xi is distributed according to N�a; s2�,
and for i � k � 1; . . . ; n the variable Xi is distributed according to N�a � b�i ÿ k�=n; s2�, where
b 6� 0. For the known variance s2 (we suppose for simplicity s2 � 1� the test statistic of the
`maximum type' U�n� � max1 4 k<n jUk j can be applied, where the statistics

Uk �

Xn
i�k�1

�Xi ÿ �X��i ÿ k�

�n ÿ k��n ÿ k � 1��2n ÿ 2k � 1�
6

ÿ �n ÿ k�2�n ÿ k � 1�2
4n

� �s ; k � 1; . . . ; n ÿ 1
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are distributed according to N(0,1), but are not independent. For unknown s2 the test statistic has
the form

~T�n� � max
1 4 k<n

j ~Tk j � max
1 4 k<n

jUk j
�p RSS ÿ U2

k�
�p n ÿ 2�

where RSS is the residual sum of squares under the null hypothesis. Under the null hypothesis
the statistics ~Tk have t-distribution with n ÿ 2 degrees of freedom. In addition to the global
maximum of statistics over all time points we can again introduce the maximum of statistics over a
trimmed portion of time points ~T�n; t0� � max1 4 k 4 ��1ÿ t0�n� j ~Tk j . Critical values of ~T�n� and
~T�n; t0� can be obtained by the Bonferroni or Worsley inequality if the number of observations is
small.

The asymptotic behaviour of statistics ~T�n� and ~T�n; t0� is given by the limit process

X�t� �

Z 1

t

�s ÿ t� dW�s� ÿW�1� �1 ÿ t�2
2

�1 ÿ t�3
3
ÿ �1 ÿ t�4

4

� �s :

Critical values of ~T�n� can be calculated from the asymptotic distribution

lim
n!1P

~T�n� ÿ ~bn
~an

> x� � 1 ÿ exp
ÿ 3
p

eÿx

2p

� � 
�3�

where ~an � �2 log log n�ÿ1=2 and ~bn � �2 log log n�1=2.
Conservative critical values of ~T�n; t0� can be obtained by the inequality

lim
n!1P� ~T�n; t0� > x� � P max

0 4 t 4 1ÿ t0
jX�t� j > x

� �
4 2�1 ÿ F�x�� � 3

p
log
�1 � �p 1 ÿ t0��
�1 ÿ �p 1 ÿ t0�� ÿ

2

3
p arctan 3

p �1 ÿ t0�
� �

eÿx
2=2

2p
:

�4�

Using (4) the 5 per cent conservative critical value of ~T�n; 0�05� is 2.51 and the 1 per cent
critical value is 3.07.

For several values of n the 5 per cent and 1 per cent critical values of ~T�n� and ~T�n; 0�05�
obtained by simulations are listed in Table III.

Similarly, as in the case of (1), the convergence in (3) is slow. The 5 per cent and 1 per cent
critical values calculated from (3) are smaller than those obtained by simulations. On the
other hand, the critical values obtained by (4) are close to the critical values obtained by
simulations.

At the end of this section I would like to mention that besides the statistics of the `maximum
type' one can also apply (for the same kind of problems) the statistics derived from the Bayesian
principle. The Bayesian approach was introduced by Cherno� and Zacks (1964), Kander and
Zacks (1966) and Gardner (1969) and further developed by MacNeill (1974), and Jandhyala and
MacNeill (1991).
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The distribution theory for the statistics derived from this principle is in many cases easier than
for the `maximum type' statistics. For the positive (negative) change in the mean of type A the
testing statistic has the form

TB � 1

s2
Xn
i�1
�Xi ÿ �X��i ÿ 1�

(see Cherno� and Zacks 1964) and for the positive (negative) change in the mean of type B the
statistic is

TB � 1

s2
Xn
i�1
�Xi ÿ �X�i�i ÿ 1�

(see Farley and Hinich 1970). Supposing s2 is known, both of them have normal distribution with
a zero mean and an easily calculable variance. On the other hand, the `Bayesian' statistics do not
provide a user with the estimate of the change-point.
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