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ABSTRACT 

In many experiments, several measurements on the same variable are taken over time, a geo- 
graphic region, or some other index set. It is often of interest to know if there has been a change 
over the index set in the parameters of the distribution of the variable. Frequently, the data consist 
of a sequence of correlated random variables, and there may also be several experimental units 
under observation, each providing a sequence of data. A problem in ascertaining the boundaries 
between the layers in geological sedimentary beds is used to introduce the model and then to 
illustrate the proposed methodology. It is assumed that, conditional on the change point, the data 
from each sequence arise from an autoregressive process that undergoes a change in one or more 
of its parameters. Unconditionally, the model then becomes a mixture of nonstationary autoregres- 
sive processes. Maximum-likelihood methods are used, and results of simulations to evaluate the 
performance of these estimators under practical conditions are given. 

Nombreuses sont les expiriences dans lesquelles on est appeli ?I mesurer la m&me variable a 
plusieurs reprises dans le temps, dans I'espace ou selon un autre scheme de rifirence. Dans de telles 
circonstances, il est nature1 de chercher h savoir si les parametres de la loi de la variable sont partout 
les m&mes. Bien souvent, les donnies sont corrilies, et lorsqu'il y a plusieurs unitis expirimentales 
sous observation, on dispose alors de suites de donnies corrilies. Ce probleme se prisente en 
giologie, par exemple, lorsqu'on souhaite identifier les strates d'une couche sidimentaire. Cette 
illustration sert de point de dipart i la prisentation d'un modele et d'une stratigie d'analyse de ce 
type de donnies. On suppose que conditionnellement a un point de rupture, les donnies de chaque 
suite sont issues d'un processus autorigressif dont I'un ou plusieurs des parametres subissent 
un changement. Marginalement, le modele s'exprime alors comme un milange de processus 
autorigressifs non stationnaires. On montre comment il est possible d'appliquer le principe du 
maximum de vraisemblance dans un pareil contexte, et on Cvalue le mirite de cette approche sous 
diffirentes conditions expirimentales, au moyen de simulations. 

1. INTRODUCTION 

The analysis of panel data has received considerable attention, particularly by econome- 
tricians (Gong and Sickles 1992, Baltagi, Chang and Li 1992) and sociologists (Palmquist 
and Green 1992). Kim and Basawa (1992) discuss an empirical Bayes approach to panel 
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data arising from AR(1) processes. Although work in this area has concentrated on both 
sequences of independent and dependent observations, none has sought to investigate 
independent sequences of dependent observations which undergo a change at possibly 
different points from sequence to sequence, by including these change points as model 
parameters. Tang and MacNeill (1993) give a thorough discussion of the effect of serial 
correlation on changes in the parameters of a regression model. They are concerned with 
testing for a change rather than with estimating the change point. Also, unlike the model 
presented below, each sequence is assumed to have the same change point. Allowing for 
different change points from sequence to sequence leads to a model with mixtures of 
autoregressive processes in each row, complicating the problem and preventing the use 
of standard methodology for vector-valued autoregressive processes. The results of Tang 
and MacNeill do, however, show that not taking into account the underlying correla- 
tional structure (if it exists) of the problem can compromise the power of tests or lead to 
false Type 1 error probabilities. It is therefore plausible that similar observations would 
apply to mixtures of autoregressive processes were their correlational structure ignored. 
More recently, Miiller and Rosner (1994) have modelled the decline and recovery of 
white-blood-cell count (WBC) in a group of patients undergoing chemotherapy, using a 
Bayesian hierarchical approach; the within-patient WBC readings, are, however, assumed 
to be independent. 

In Section 2 a model is introduced in which it is assumed that the data consist 
of independent sequences of correlated observations with each sequence undergoing 
a change at a possibly different location. Specifically, this paper presents maximum- 
likelihood methodology for segments of autoregressive processes, each of which is 
subject to a change in one or more of its parameters. The common distribution of 
the times of change is considered to be of importance in the analysis, as the soil- 
profile example below illustrates. The methodology presented, however, is applicable 
in a variety of other settings, for example when there are anticipated changes in blood 
pressure readings after treatment or in weight gain after diet modification. This extends 
the previous work of Joseph and Wolfson (1993) to include sequences of correlated 
observations. 

Soil profiles change with increasing depth. Frequently these changes occur quite 
abruptly because of the way sedimentary beds were laid down. Within a sedimentary bed 
there may also be trends in specific soil characteristics. These trends may themselves 
undergo sudden changes (Preston and Davis 1972). Soil profiles are not only important 
in providing a geological history of a region but also directly affect the rate at which 
water is absorbed and retained, and are a crucial component of petrology and mineral 
exploration. Attempts to ascertain estimates of the distribution of the depth at which a 
change occurs have depended on stochastic-process models, difficult to verify, of the 
actual sedimentation process that led to the sedimentary beds (Schwarzacher 1972a, b). 
It is possible, however, to avoid modelling this sedimentation mechanism and let only 
the data collected at different depths per site be used directly for inference. 

In the application that follows, such data are analyzed by introducing a multipath 
change-point model. Andrews and Herzberg (1985) provide a set of observations collected 
at the West Side Field Station of the University of California, located in Fresno County, 
40 miles southwest of Fresno. Twenty soil profile samples were obtained by randomly 
selecting twenty sites over a 150-hectare region. The analysis of Section 3 was based on 
11 sites, located in geologically similar regions. At each site three readings were taken 
(on the percentages of sand, clay and silt) at each of 12 successive depths. Because the 
depths are separated by only 15 cm, the 12 observations within each type (sand, clay and 
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silt) are ostensibly dependent. Here the component silt is considered, since a preliminary 
analysis on clay and sand showed no change. At several of the sites the first differences 
of the percentages of silt appear to change abruptly, but the depth of the change is 
not necessarily constant from site to site. By imposing an autoregressive model which 
undergoes a change at a random depth, the distribution of the depth of change, as well 
as the remaining parameters of the autoregressive process, is estimated. 

In Section 2, the model is presented and the method of maximum likelihood used to 
estimate the parameters. The sedimentology problem is analyzed in Section 3. The results 
of simulations of autoregressive processes of order 1, presented in Section 4, show the 
method to work well, even in the important case when there are few sequences. 

2. THE MODEL AND ESTIMATION 

A sequence of random variables XI ,X2,.  ..,XN is said to have a change point at z 
if XI ,X2,. ..,XT follow a distribution F1 ,  while XTt1,XTt2,. ..,XN follow another dis- 
tribution F2.Statistical inference about an unknown change point in a single sequence 
of observations, known as the single-path change-point problem, has been extensively 
studied. Most of the single-path literature is devoted to sequences of independent random 
variables (Hinkley 1970, Smith 1975, Pettitt 1979, Worsley 1986). Picard (1985) inves- 
tigated the asymptotic (number of observations per sequence --+ co) behaviour of the 
maximum-likelihood estimator of the change point in single-path time-series models. In 
the context of a problem in material accountancy, Henderson (1986) examined correlated 
change-point data with arbitrary but known correlation matrix. Smith (1977) considered 
the same setting with unknown correlation matrix from a Bayesian viewpoint. 

In the multipath setting the data consist of several sequences, each one containing 
a possibly different change point. Recent work on the multipath problem has focused 
on independent sample path segments of independent random variables. Joseph and 
Wolfson (1992) introduced the problem and reviewed a range of possible estimation 
approaches. The consistency of maximum-likelihood estimators of the change point was 
addressed by Joseph and Wolfson (1993), and Joseph et al. (1996) investigated Bayesian 
methods. 

Many applications of the multipath change-point problem, however, arise from data 
which are dependent. In this paper, a multipath change-point model is introduced by 
extending the earlier work of Joseph and Wolfson (1993) to correlated observations 
arising from panel data. 

Conditional on zl ,z2, ...,TM, consider the array of random variables 

where the observations from the ith row, i = 1,2, .. . ,M, arise from an autoregressive 
process of order p ,  AR(p), which possibly undergoes a change in its mean and/or its 
autocovariance function. To keep notation simple, row subscripts are suppressed whenever 
there is no risk of ambiguity. 

Specifically, the ith row in the array (1) is a sample path segment from an AR(p) 
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process, {X,, t = 1,2,. ..), defined by the usual stochastic difference equations: 

P 

X , - r = x b ( x e U - p ) t r ,  for p t l < r ,  p t l < t < r  

X - p = ( X u - ) t , for p t I < r ,  r t I < t <N, 
u=l 

or z < p ,  t L p t 1 ,  

where { e t )  are independent and identically distributed (i.i.d.) random variables, indepen- 
dent of . . . for all t = 2,3, ....Suppose also, as is customary, that XI, X2, . . .,Xp 
have a multivariate normal distribution. 

The time point z is called the change point even through it is assumed that no 
change occurs if r 5 p or r 2 N -p t 1. Different change points t i  are allowed 
from row to row. The ri 's are assumed to be i.i.d. with common probability function 
a k  = P(ri  = k), k = 1,2, .  . . ,N .  Joseph and Wolfson (1993) discuss this assumption in 
the independent-observations setting. 

The inference problem are: 

(i) to estimate ah, k = 1,2, .  ..,N ,  and 
(ii) to estimate p, p', $1, $2,. . . ,$p, $:, $:, . . . ,$;, and 0:. 

2.1. Maximum-Likelihood Estimation: The Likelihood Function. 

As above, row subscripts are suppressed here for ease of notation. For each row, 
conditional on z= k, the sequence XI ,X2,. ..,XN defines a sample path segment from 
a Gaussian process. Hence, conditional on z = k, the variables X1,X2,. ..,Xk have a 
multivariate normal distribution with k-dimensional mean vector p = (p, p, .. . ,p) and 
covariance matrix $, say, ~ h i l e X ~ + ~ , X ~ + ~ ,  . . . ,XN have a multivariate normal distribution 
with N -k-dimensional mean vector p' = (p', p', . . . , p') and covariance matrix $,say. 

Define 4 = ($I, $2,. .. and 4' = (I$$,$:, ...,$;). Let 

be the full observed likelihood conditional on t = k, for a particular sample path. Let 

be the observed likelihood of the first k observations, conditional on r = k. Let 

be the conditional observed likelihood of the last N -k observations, given xl,x2,. ..,xk 
and r = k. 

By assumption, lk(x) is a function of p', +', 0: only, for 1 < k 5 p,  and is a function 
of p, 4 ,  0: only,forN - p t 1  < k  < N .  

The likelihood for the ith row is given by 
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and the full likelihood for all M sequences is then given by 

where X is the observed array arising from (1) . Let a = ( a l ,a2,.. . ,a N ) .  
Equation (3) allows us to interpret the problem of estimation of p, p', +, +', 02 

and a as a mixture problem with unknown mixing parameter a.This leads to an 
iterative procedure based on that suggested by Peters and Walker (1978), who obtained 
maximum-likelihood estimators in a multivariate normal setting. 

However, unmodified exploitation of the multivariate normality of all joint and con- 
ditional distributions leads to intractable expressions; in typical time-series settings the 
covariance matrices are of high dimension. It is therefore essential to make use of the 
autoregressive nature of the observations within each row, conditional on the change point 
in that row. Unconditionally, therefore, Equation (3) describes a mixture of multivariate 
normal distributions rendering adaption of the methods of Srivastava and Worsley (1986) 
inappropriate. 

Following Box and Jenkins (1976, Section A7.5), let Mhp) be the product of the 
error variance and the inverse of the autocovariance matrix of a sequence X 1 , X 2 , .. . ,XN,  
generated by a stationary A R ( p )  process. In particular, 

where y l r - . 1  = COV(Xr,Xs),and rn$fXp)is the ( r , s )element of Mjp). 
Let 

Let IMip)I denote the determinant of MP).The likelihood of ( x l , x 2 , .. . , x N )is then 

N / 2  
I ( X )= (&) I M L P ) ~4 exp (-sPt*',;$W) 

The expression ( 5 )  depends on the awkward M#') only through M ~ P ) ,which may be 
computed by exploiting its double symmetry. 

For each segment of an AR(p) process with a change at k,  p  + 1 5 k 5 N - p ,  write 

The second term on the r.h.s. of (6 )  is, because of ( 3 ,  equal to 
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Next, because the process is Markov of order p ,  the first term on the r.h.s. of (6) can 
be written as 

For k 5 p ,  the likelihood for a single row is given by the expression (6) with p = p' 
and 9 = 9'. For k > N -p t 1, the likelihood is (6) with p = p and autoregressive 
parameter vector 9 ,  i.e., 

= (&)
N /2 

/M$')/ exp ( s " ' )  for k s p  (9)20: 

and 

x = ( )N/2 
exP (-S l ~ ~ ~ ~ ~ ' ) )  k > p - p t l .  (10)I~ ip ) I ;  for 

2x0; 

The maximum-likelihood estimators of p, p', 9 ,  $I, 0: and a are obtained from a set 
of equations which must be solved iteratively. The approach is equivalent to that of the 
EM algorithm for mixture problems (Dempster, Laird and Rubin 1977). Here, however, 
the equations are derived by equating the partial derivatives with respect to the parameters 
of L(X) = In l(X) to zero. Tedious calculations, which depend on standard time-series 
approximations, lead to final iterative equations given in the Appendix. While these 
equations would have defied solution before the advent of modern high-speed computers, 
that is no longer the case. 

2.2. Consistency. 

It would seem as if consistency of the maximum-likelihood estimators, @,$,+,+I, 
62 and & might be established by standard maximum-likelihood theory for problems 
with finitely many parameters, but because the information matrix in the present setting 
is intractable, this approach is not feasible. The only alternative seems to be to use 
a compactness argument based on that proposed by Wald (1948, 1949). Indeed, the 
proof given below follows from that of Redner (1981), who modified Wald's results 
on consistency. We have assumed compactness of the parameter space to streamline the 
exposition by making Redner's Theorem 5 directly applicable. For practical purposes, 
this assumption is almost always reasonable, as a priori one may in practice confine 
the parameters to some compact set. Dropping this assumption would necessitate the 
definition of a suitable metric as in Joseph and Wolfson (1993), and the extension of the 
parameter space to include points at infinity, so that the compactness argument of Wald 
could be used. 

THEOREM1.Let l(X) = 1(X; 0) be the likelihood defined by Equations (3) and (4) where 
0 = (p,pl, #J ,#J1,o:,a )  E Q, the parameter space of 0. Suppose that Q is a compact 
subset of W3+3p+N. Let 0 * be the true parameter. Then the maximum-likelihood estimator 
8 is strongly consistent for 0 * as  M -+oo. 

Proof. Redner (1981, Theorem 5) establishes consistency of 0 for mixture families when 
identifiability is violated. Lack of identifiability necessitates the consideration of quotient 
topological space, with equivalence classes defined by the equivalence relation 0, w O2 
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FIGURE1: West Side Field Station silt concentration - first differences. 

if and only if B, = per Here, pe is the mixture of multivariate normal densities defined 
by Equation (3) of Section 1. The convergence of Redner's Theorem 5 is in this quotient 
space. When there is identifiability, however, the quotient space reduces to the space S2 
itself and the convergence reduces to classical almost sure convergence. 

In the setting of this paper, conditional on t = k, the joint distribution of the ob-
servations in any row is multivariate normal. Yakowitz and Spragins (1968) show that 
mixtures of multivariate normal densities are identifiable. As is alluded to by Redner, the 
compactness of S2 ensures that his conditions 1, 2a, 4' and 5 are satisfied. Hence e +8 * 
almost surely as M -+ oo. 

NOTE.The convergence here is ensured by allowing the number of paths, M, to tend 
to infinity, while the number of observations per path remain fixed. 

3. SOIL PROFILES 

3.1. The Data. 

Figure 1shows plots of the differences in silt concentrations with increasing depth. All 
I 1  sequences from the same geographic region are presented. The data were differenced 
to remove the increasing trend in the proportion of silt. 

3.2. Model and Notation. 

The differences were assumed to follow the model of Section 2 with the autoregressive 
parameter p = 1. A rough analysis, carried out by averaging the 11 series, justifies the 
choice of an AR(1) model with a change point; the estimated autocorrelation function of 
the first differences decays, and only the first term of the partial autocorrelation function 
approaches significance. A more careful approach to model selection which takes into 
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account a putative change point is not possible on such a small data set, and would also 
entail the examination of residuals arising from a mixture model. Let ai, i = 1,2, .  . . , l o ,  
denote the probability that the rate of change of silt proportion alters after a depth of 
15i cm. The probability of no change is given by all.Let p and p' denote the expected 
differences in silt proportion before and after the change in each sequence. Let 0: denote 
the error variance of the differences. Let 4 and 4' denote the autoregressive parameters 
in the AR(1) models describing the differences before and after the change. 

3.3. Test for a Change Point. 

In order to first test for the presence of a change point, the statistic LR = -2 log A 
was calculated, where A is the ratio of the maximized likelihood under an AR(1) model 
with no change to the maximized likelihood under the model of Section 2. 

Under the hypothesis of no change, the asymptotic distribution of the LR is not the 
usual chi-square, the model of Section 2 being a mixture model (Titterington, Smith and 
Makov 1985, pp. 154-155). The null distribution of the LR was obtained via a parametric 
bootstrap. See Figure 2. The observed LR was 13.48, yielding a p-value of 0.04, which 
lends credence the change-point model. It is interesting to note that the bootstrap null 
LR distribution has a shape similar to a chi-square distributions, but with a point mass 
at zero. This phenomenon has been conjectured as a general result for the distribution of 
the LR statistic in order-testing problems for mixtures of exponential family distributions 
(Boehning 1992). 

3.4. Results. 

It was found that fi = 0.69, (i'= 7.87, I$ = -0.42, $ = 0.18, be= 4.8, 6 9  = 0.41, 
= 0.59, and iri = 0, i # 9, 11. The interpretation is that while an estimated 59% of 

sites in this region would not have a change in mean difference, remaining constant at an 
increase of 0.69% per 15-cm increase in depth, the other 41% do change. This change 
is estimated to occur at a depth of 135 cm, and is relatively large, in that the postchange 
mean difference is 7.87% per 15-cm increase in depth. The estimated standard deviation 
of about 5% indicates that the change in mean difference is approximately of the order 
of one standard deviation. The negative value for I$ may indicate that a larger than 
average difference at one depth is followed by a smaller difference at the next depth. The 
estimated value for 4' is more difficult to interpret, since it is based on short segments. 

Standard goodness-of-fit criteria for time series such as those based on estimated 
residuals seem not to apply to models with an unknown change; the unknown random 
change point in each path precludes the calculation of residuals. The model of Section 
2 was used for several reasons: (i) it is plausible and parsimonious, (ii) higher-order 
ARMA models with a change point require extensive data to fit, and (iii) estimation for 
ARMA models is based on iterative least-squares analysis of the residual sum of squares. 
In our change-point model the observations in each row arise as a mixture of multivariate 
normal random variables, so that the least-squares methods are no longer equivalent to 
maximum likelihood. Our approach is through the likelihood and the EM algorithm. 

3.5. Practical Implementation. 

Since the likelihood surface may be multimodal, the EM algorithm may not converge 
to the global maximum. To increase the probability of attaining the true maximum, the 
EM algorithm was implemented starting from 25 different data-dependent initial sets of 
parameter values. The final parameter estimate with the highest likelihood value was 
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FIGURE2: West Side Field Station silt concentration -LR bootstrap distribution. 

then selected as the best contender for the global maximum. In order to explore the 
multimodality of the likelihood surface, standard techniques from principal-components 
analysis were used on the sample correlation matrix of the final estimates. Twenty-five 
vectors, each connecting an initial guess with the corresponding final estimate, were 
created. These were plotted in the two-dimensional orthogonal subspace created by the 
first two principal components. The results, shown in Figure 3, while not constituting 
a proof that the global maximum has been attained, do suggest that the same peak is 
reached from most of the starting values, and that this value corresponds to the observed 
maximum of the likelihood function. Another approach for choosing starting values is 
given by Lindsay and Brasak (1993). 

4. SIMULATIONS 

Simulations were performed to evaluate the methods for small and moderate sample 
sizes. The AR(1) case was chosen to conform with the example of Section 3. Referring 
to (I), fix M sequences of length N = 40, where M = 10, 30, 100 or 500. Two 
sets of choices for the normal parameters were considered: a change from y = 0 to 
p' = 1, and a change from p = 0 to p' = 2. Throughout, 0;= 1 was used. Four sets 
of autoregressive parameters were chosen: @ = @' = 0.5, a change from @ = 0.5 to 
I$' = 0.75, @ = I$' = -0.5, and a change from @ = -0.5 to @'= -0.75. 

For N = 40, two choices for the change-point distribution were considered: 

1. U(15,24), a uniform distribution on the integers from 15 to 24, so that pr{t = 
k) = 0.1, k = 15,. ..,24, and zero elsewhere. 

2. T(16,24), a "tent-shaped" function, with peak at z = 20, and sloping down linearly 
to zero at t = 15 and t = 25. Hence pr{t = 20) = 0.2, pr{t = 19) = pr{t = 21) = 
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Piist Principal Component 
PCA or1 Correlation of Peaks 

FIGURE likelihood surface. 3: West Side Field Station silt concentration -

0.16, pr{t = 18) = pr{t = 22) = 0.12, pr{t = 17) = pr{t = 23) = 0.08, and 
pr{t = 16) = pr{t = 24) = 0.04, all other choices for k having zero probability. 

These choices cover two likely possible shapes for the distributions o f t .  In the first, 
the change is equally likely to occur anywhere in a specified region, but nothing is known 
about the relative probabilities within the region. The second covers the case where the 
most likely location for the change is known, but points near this value are also possible, 
with decreasing probability further from the centre. 

The two choices for the change-point distribution, combined with two sets of normal 
parameters, four choices of autoregressive parameters c, and four choices for M, give 64 
different situations. Each of these 64 combinations was simulated 300 times. 

Outcome measures for the simulations include the average error in &, defined by 
lak-GkI averaged over all N possible locations for k and over all 300 simulations, and 
various statistics summarizing the largest error, defined by SUP^<^^^^^^ - bkl.These 
included the mean, median and range of the largest error over the 300 simulations. The 
stopping criterion was 

where the superscript I represents the iteration number. 
The procedure for obtaining initial estimates was as follows: The estimate for t was 

chosen as that value that maximized the difference between the average before-change 
and after-change sample means. The values for p and p' were then initialized to those 
mean values. The autoregressive coefficients were obtained by averaging the quotients of 
successive centered observations. Finally, the initial value of o: was obtained from the 
residual mean squares given the other initial estimates. 
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TABLE1: AR(1) change-point simulations with positive AR coefficients. 300 simulations per set of parameters. 

Average and maximum errors over the 300 simulations and 40 locations for the change, and average number 

of iterations until convergence are given. 

No. PDF Avg. err. Max. err. Avg. iters. 

1 0.84639 235 
2 0.71562 212 
3 0.83788 214 
4 0.95091 214 
5 0.47551 101 
6 0.47376 97 
7 0.55589 101 
8 0.42218 92 
9 0.56496 324 

10 0.46498 305 
11 0.51681 328 
12 0.61 101 319 
13 0.29487 103 
14 0.34053 101 
15 0.27528 125 
16 0.25468 129 
17 0.28713 337 
18 0.33816 311 
19 0.30186 335 
20 0.31369 323 
21 0.14650 80 
22 0.13360 74 
23 0.13000 97 
24 0.13805 92 
25 0.17003 292 
26 0.14671 296 
27 0.12653 303 
28 0.14179 306 
29 0.05891 67 
30 0.06605 64 
31 0.05959 86 
32 0.05597 84 

In all cases, maximum-likelihood estimates were computed via the equations given in 
the Appendix, programmed in Fortran, and run on a Sun Microsystems SPARCstation 
ELC. 

The results of the simulations are tabulated in Tables 1and 2. The results for negative 
AR coefficients were slightly better. This is because the means of autoregressive processes 
are more accurately estimated when the autoregressive coefficients are negative than when 
they are positive. The reason for this is that in any given finite sequence of observations, 
the series with negative coefficients is more likely to be centered around the mean, 
since it typically will alternate values above and below the mean. However, series with 
positive coefficients have a tendency to drift above or below the mean for longer periods 
of time. 

As expected, errors in estimation of the change-point distribution decreased appreciably 
as M increased. For M = 500 even the maximum error was commonly much less than 0.1, 
while maximum errors of 0.5 were typical when M = 10. As Figure 4 shows, however, 
even with M = 10, the estimated probability tended to be in the same neighbourhood 
as the true probability, but was often moved over by one or two indices along the x-
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TABLE2: AR(1) change-point simulations with negative AR coefficients. 300 simulations per set of parameters. 
Average and maximum errors over the 300 simulations and 40 locations for the change, and average number 
of iterations until convergence are given. 

No. M 4 4' PDF Avg. err. Max. err. Avg. iters. 

-0.50 -0.50 U(15, 24) 0.02595 0.81924 217 
-0.50 -0.50 T(16, 24) 0.02591 0.80507 21 1 
-0.50 -0.75 U(15, 24) 0.02529 0.89983 189 
-0.50 -0.75 T(16, 24) 0.02356 0.89967 179 
-0.50 -0.50 U(15, 24) 0.01381 0.41123 80 
-0.50 -0.50 T(16, 24) 0.01313 0.51861 62 
-0.50 -0.75 U(1.5, 24) 0.01196 0.34317 51 
-0.50 -0.75 T(16, 24) 0.01129 0.65759 51 
-0.50 -0.50 U(15, 24) 0.02084 0.47753 280 
-0.50 -0.50 T(16, 24) 0.01965 0.47958 268 
-0.50 -0.75 U(15, 24) 0.01907 0.39582 223 
-0.50 -0.75 T(16, 24) 0.01813 0.40923 20 1 
-0.50 -0.50 U(1.5, 24) 0.00995 0.22326 68 
-0.50 -0.50 T(16, 24) 0.00923 0.29518 58 
-0.50 -0.75 U(15, 24) 0.00835 0.18494 50 
-0.50 -0.75 T(16, 24) 0.00772 0.23582 46 
-0.50 -0.50 U(15, 24) 0.01482 0.24080 304 
-0.50 -0.50 T(16, 24) 0.01355 0.30318 275 
-0.50 -0.75 U(15, 24) 0.01285 0.28552 212 
-0.50 -0.75 T(16, 24) 0.01182 0.24505 195 
-0.50 -0.50 U(15, 24) 0.00536 0.11264 41 
-0.50 -0.50 T(16, 24) 0.00511 0.13533 37 
-0.50 -0.75 U(15, 24) 0.00442 0.08787 29 
-0.50 -0.75 T(16, 24) 0.00422 0.10360 28 
-0.50 -0.50 U(15, 24) 0.00791 0.15819 228 
-0.50 -0.50 T(16, 24) 0.00708 0.16822 191 
-0.50 -0.75 U(1.5, 24) 0.00597 0.10582 126 
-0.50 -0.75 T(16, 24) 0.00584 0.12032 116 
-0.50 -0.50 U(15, 24) 0.00240 0.05064 31 
-0.50 -0.50 T(16, 24) 0.00230 0.05229 26 
-0.50 -0.75 U(15, 24) 0.00203 0.04806 25 
-0.50 -0.75 T(16, 24) 0.00189 0.04380 21 

axis. Under most circumstances, these errors should not greatly decrease the value of 
the analysis. As M increases, the change points as well as p, pt, 4, 4' and a: are all 
estimated with improved precision. 

Approximately 200 to 300 iterations were required for convergence. This quan- 
tity varied with the difference between p and pt, requiring fewer iterations for larger 
differences. Also, more iterations were required on average as M decreased. 

5. CONCLUDING REMARKS 

The multipath change-point design arises in diverse fields such as geology and 
medicine, including clinical trials. For example, Lyle et al. (1987) decribe a random- 
ized controlled trial to examine the effect of calcium supplementation on blood pressure. 
After a 4-week baseline period of weekly blood-pressure measurements, 75 men were 
randomly assigned to either a treatment (calcium) or a placebo group for a 12-week 
period. One of the aims of the trial was to establish if calcium supplementation lowers 
mean arterial pressure. The time to reaction for each patient may be different, and not 
all patients may respond. The methods of Section 2 may be used to estimate the distri- 
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bution of a time to a change after treatment, as well as the before and after mean blood 
pressures. 

Frequently, it is not reasonable to assume that the data within each sequence are 
independent, but, conditional on the change point in that sequence, can be modelled by 
an autoregressive process. The model presented here is limited to the case of equally 
spaced normally distributed data, with unknown but assumed identical means in each 
sequence. The model could also be extended to include different means across sequences, 
but identifiability problems occur unless one is willing to impose the condition that there 
must be a change point p + 15 z 5 N - p  + 1. The case of different means in dependent 
data with Pr{no change point) > 0, as well as allowance for different pre- and postchange 
variances, is also important, and could be explored in a Bayesian framework, in a similar 
fashion to the model of Joseph et al. (1996) for independent sequences. The case of 
unequally spaced autoregressive data could be approached with methods such as those 
in Jones and Boadi-Boateng (1991). 

APPENDIX 

The iterative equations below are obtained by setting the partial derivatives of the 
likelihood function equal to zero [Equation (11) may be obtained simply by using 
Lagrange multipliers]: 
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