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ABSTRACT

The purpose of this paper is to make a Bayesian analysis of a first-
order autoregressive process subject to one change in both the
variance of the error terms and the autocorrelation coefficients at
an unknown time point. The main emphasis is to derive the posterior
distributions of the change point, the autocorrelation parameter and
the variance ratio. A numerical illustration is provided using the
Gibbs sampler.
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1. INTRODUCTION

The change point problem has been considered by many authors
from various viewpoints. From a Bayesian viewpoint, primary interest
in the study of structural change has focused on models assuming inde-
pendence between observations. In practice this assumption may be vio-
lated, as in the case of an autoregressive time series. In addition, most
studies have been concerned with the problem of a change in the mean
of a sequence of independent random variables. There are many contri-
butions to this area since introduced by Page (1954). From a Bayesian
viewpoint, Chernoff and Zacks (1964) and Kander and Zacks (1966)
derived Bayesian tests for detecting a change in the mean of a sequence
of independent normal random variables.

Changes in regression have been considered by Holbert and Broemeling
(1977), Chin Choy and Broemeling (1980), and Salazar et al. (1981). There
are many other papers which appeared in the literature from a non-
Bayesian viewpoint. Broemeling and Tsurumi (1987) gave a review of the
literature.

While many Bayesian studies assume homoscedasticity in the error
terms, only a few studies have investigated the problem of a change in
the variance at an unknown time point (e.g.. Smith, 1973). He gave
posterior probabilities for the time point when a variance change occurs.
Using sampling theory, Hsu (1977) derived two tests for a variance shift
in a sequence of independent random variables. For a sequence of
independent and normally distributed random variables, Menzefricke
(1981) obtained the posterior distributions of both change point and
variance,

Abraham and Wei (1984) derived the posterior distributions of the
parameters of a time series assuming a known inflation or deflation of
the errors variance. Assuming the change point known, Broemeling
and Tsurumi (1987) considered a linear model with correlated error terms
and where the variance and the correlation coefficient change. Ng Vee
Ming (1990) analyses a linear model in which both the mean and the pre-
ciston change once at an unknown time point. The posterior distributions
of the change point and the ratio of precisions are derived. Recently, a
few studies have appeared in the literature concerning the problem of
multiple change points in the variance of a sequence of independent
and autocorrelated observations. Tsay (1988) proposed a procedure to
detect outliers, level shifts, and variance changes in an autoregressive
moving average model. Inclan and Tiao (1994) considered the problem
of multiple change points in the variance of a sequence of independent
observations. They proposed a procedure to detect variance changes
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based on an iterated cumulative sums of squares algorithm. Recently,
Wang and Zivot (2000) considered a Bayesian time series model of multi-
ple structural changes in level. trend, and variance. They. however,
assumed constant autoregressive parameters. Several financial series that
exhibit sudden changes of variance have been studied by many authors
(See. Hsu, 1977; Wang and Zivot, 2000),

While Salazar (1982). and Wang and Zivot (2000) assume a constant
autocorrelation coeflicient, the purpose of this paper is to make a
Bayesian analysis of a first-order autoregressive process (AR(1)) subject
to one change in both the variance of the error terms and the autocorrela-
tion coefficient at an unknown time point. We would like to point out
that, in some situations, the variance of the error terms and the auto-
correlation can change in such a way that the variance of the observa-
tions do not change. The main emphasis is to derive the posterior
distributions of the change point, the autocorrelation parameter and
the variance ratio. To overcome the numerical difficulties encountered
when Bayesian methods are used, we will apply the Gibbs sampler
algorithm to a simulated series,

2. THE FIRST-ORDER AUTOREGRESSIVE PROCESS

Assuming a change in both the autocorrelation coeflicient of an
AR(1) process and the variance of the error terms at an unknown time
point m, the model is given by:

Yi—p=piyii =W +e; i=1,..., m

Vi—p=psvicg—p)+te: i=m+1,....n

where p; and p, are unknown autocorrelation coeflicients, y; is the ith
observation of the dependent variable, the error terms ¢, are independent
random variables and follow a A"((].GI:] fori=1,2,....mand a N(0. a%]
for i=m+1,.... n.mis the unknown change point and y; is the initial
quantity. Without loss of generality. we assume p = (.

The prior distributions of the unknown parameters are assigned as
follows: m has a uniform distribution over [1. n—1], the precision
n, = o;° has a gamma distribution with parameters «;/2 and b;/2; a;,
b,>0; i=1. 2, and the conditional distribution of p; given 5, is normal
with mean p; and precision #,;: i=1,2. Furthermore, we assume that
(p1, 1) and (py. 1y>) are independent random variables.
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The likelihood function is given by

L(0/y) ] cxp{—’%‘Z (yi = P uf}
= =l

n

nsm e 3
X 11y cxn{%‘ ; (_1-'.-93.1',_1)‘}

i=nt—+1

where () = (2, py. p,51.172) while the prior distribution of the parameters
) is given by

d=1, =) ! ) UE

- ! 2 2
PO) 1,7 exo{ - oy — ) bexp{ =2, — )},

By Baye's theorem, the joint posterior distribution of 0 is

) n B
L(f/y) xr}l pr{—%Z(_r,—m_v,1)‘+h|}

i=1

x:;é T pr{ Z (vi = pavioa)” -I—ha}

—1 n+1

Performing some calculations, the following expressions can be
rewritten as [ollows:

m

> i i) = Ailpy — i) +S(py) and
i=1

n

D = pwia) = Aslpy — p2)’ + S(py)  where,

i=n+]

m m m
Al-z..,p.i—zu., (1) = 32 01— pupir)?

n

A = Z V. Z vivi-1, and S(p,) = Z (v = povict)’.

i=ni+1 r m+1 i=m+1

Therefore, the joint posterior distribution of (! can rewritten as follows:

a2l ! 558 5y 2
L(O/y) oy " exp{ =0 [(py = 1) A1+ (o) + bi + (o — )]}
a- oy - |

LB s nD a 2
xy > exp{ =2 [(py = 2V A2 + S(ha) + ba + (03— )]}
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Furthermore, we have

Ailp; = pi) + S(p) + b+ (i — ) = Aillpi — b)) + T(5,).
f Aip; + S(p) + b + 12
pi= % and T(p,) = lip; '5(!:;) i =l

with T(p;) >0, fori=1,2.

Finally, the joint posterior distribution of ¢ can be written as follows:

LR

P(0/v) \frl . cxp{f%‘ [(p, = f),)l + T(py )th}

n-nrigs |l

Xy cxp{* ”7: [(p2 = p2)* + T(f’:)]"'l}'

Integrating P(0/y) on (g,.2) and (py,p>), and using normal and
Fisher integrals, respectively, leads to the posterior distribution of the
change point m, giving

N (Mt n—m-+das
P(m/_l),\r( ; )r( ; )

mie) | ks

x () F ()T T T T

3. POSTERIOR DISTRIBUTION OF THE
VARIANCE RATIO

The posterior distribution of the variance ratio t = a1 /a3 is given by
P(rfy) = Z P(z/m.y)P(m/y)

|
m=1

where

P(t/m.y) x K(m.py. p2)[tK(mpy.pp)] 7

x [I+ rK(nr.fil.[Jz)]fm?.m

with K(m, py, pa) = ((T(pa)A2) /(T (py)A1)).
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4. POSTERIOR DISTRIBUTION OF THE SHIFT
IN THE AUTOCORRELATION
COEFFICIENTS: 6 = p,—p,

The joint posterior distribution of the parameters & = (m. p,.0. ¢,.01)
is given by

. t | i (0 — )’
P(E/y) S € ——A1- T | + ———
/) x ﬂ,l,,,f,l.}‘l"{ 25 I (I’|][ T%1)

| 1 L (pr — Pr)°
————cexpd = =s iy « Tf;) L4222 POL N L
) o '”'”"‘mp{ 205 P2) [ i T(p,) } }

Integrating P(</y) with respect to (a;,62), the joint posterior distribu-
tion of (n, p;. &) is obtained as

1 = 5 1 by &
P(m, py. 8/y) r(f” +ay + )I‘(” m+ d; Jr—)[]"(p,),d,]'_?'_

2 2

o T
X [T (py)A3] =3 I:l + 7({);";;:);) ]

nembis

x |14 421+ 0 =Pp) p2)’ ) .
T(p-)

Thus, the posterior distribution of the shift in the autocorrelation
coeflicients d = p> — p; is given by

n-1

P(3/y) x Z'/

m=1#

Pim.p,0/y)dp,.
1

((m+ay+1)/2)

Note. (1) The integral Jo [+ (py = P T ()]

X [1+ (py +0— py)/T(p,)] 'dp, can be obtained using
numerical integration or the Gibbs sampler.

((r—m+dr+1)/2

(2) The joint posterior distribution of the autocorrelation coefficients
(p1.p2) is given by Plp.pa/y) =30 l, Plpy, pafm,y)P(m/y) where
P(py, pa/m, y) is proportional to a double-r product distribution. Thus,
P(py, p2/y) 1s a mixture of double-r product distributions, with m +a,
degrees of freedom, location gy, and precision T'(p,)/(m + a;) for the
first factor and n — m + > degrees of freedom, location p» and precision
T(p>)/(n—m + a;) for the second factor.
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5. A NUMERICAL STUDY

For illustrative purposes. in this section our goal is to present a simu-
lated example. In order to overcome the numerical difficulties of approxi-
mating the marginal posterior distributions of the model parameters, we
apply the Gibbs sampler algorithm (See for more details Carlin et al.,
1992; Gelfand et al.. 1990) to our model, The model with generated data
is given by

w—=p=030g—pw+e; t=1...., 105

Y= pu=050-1 —p) +es =106,..., 200
with e, ~ N(0O, 1) forr=1,...105; ¢, ~ N(0.3) for i= 106, ... 200: y;,=0.1.
Without loss of generality, we assume u =0,

We chose m* = 105 as the true value of the change point m and
pi"=0.3 and p,' =0.5 as the true values of the autocorrelation coeffi-
cients p, and p,. The following plot (Fig. 1) represents the simulated
200 observations according to the above autoregressive process of order
one. Notice that even though the series has a structural change, it is not
completely clear where the change occurred.

Now. using the Gibbs sampler with 2.200 replicates, the posterior
distributions of the change point, the precision and the autocorrelation
coeflicient before and after the change have been simulated. Table 1 dis-
plays the estimates of the model parameters (rom the Gibbs sampling
algorithm. It provides us with the posterior mean and median estimates
and their respective standard deviations as well as the 2.5 and the 97.5
percentiles.

Simulated series

" 31 81 Fal 61 14 131 151 171 W

Index

Figure 1. A simulated series. (View this art in color at www.dekker.com.)
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Table 1. Posterior estimates.

Parameters Mean SD 2.5% Median 97.5% Sample
k 104.1 1.352 101.0 104.0 105.0 2300
eta[l] 0.8605  0.121 0.6494  0.8531 1.112 2200
etal2] 0.1124 0.0162 0.0828 0.1116 0.1457 2200
rho[1] 0.4138 0.0919 0.2358 0.4125 0.5964 2100
rho[2] 0.5609 0.0858 0.3852 0.5612 0.7311 2100

Notation: eta[l]=n: eta2] = s rho[l] = py: rho[2]=pa: k=m is the change-
point.

First. we can readily see from Fig. 2 that the posterior mode is equal
to 105 which is the true value of the change point m. The posterior mean
and median is both equal to 104. Here, we find three largest spikes of m
equal to 103, 104 and 105 with the 105th point taking a dominant 43%. It
seems that the marginal posterior distribution of m gives a clear indica-
tion about the change point when the change in the precisions is large.

We obtained also the unconditional posterior density functions of the
precisions 17y, 17> and the autocorrelation coeflicients p,, p>. The resulting
curves are displayed in Figs. 3 and 4, respectively.

From Fig. 3. one can notice that the posterior distributions of the
precision #y and s, are visibly well separate here indicating that it is
extremely unlikely that the values of », and n, can be equal. These
distributions do not overlap which shows that there is evidence of a
change in the precisions. Table | summarizes the posterior estimates
for the simulated series. The posterior mean (0.1124) and median
(0.1116) of n> estimate fairly well the true value of 5, which equals
0.1111 while the posterior mean (0.8605) and median (0.8531) of », exhi-
bit some bias since the true value equals 1. We have a similar scenario for

k sample: 2300

0.6

04}

02 l

0.0 —————— === _
T |J ]
93 100 110

Figure 2. Posterior distribution of the change-point. (View this art in color at
www. dekker.com.)
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eta[1] sample: 2200
4.0
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Figure 3. Posterior density [unctions of the precisions ny, 5o ( View this art in
color at www.dekker.com.)

pi and ps (see Table 1). All the 95% highest posterior density (h.p.d)
intervals of the parameters contain the true value.

Using the same generated series, various simulations were run for
various values of the precisions and autocorrelation coeflicients. We assu-
med a change in the middle of the series, namely at the true change point
m* = 103, with low, moderate and sharp shift in the autocorrelation coeffi-
cients oy and p> and similarly for the precisions parameters iy, and 15. Using
a single iteration of the Gibbs sampler. the posterior estimates for the
appropriate series are summarized in Tables 2-5. As the change in variance
increascs, the probability of detecting the true value of the change point
increases for fixed values of p, and p; for this particular series. On the other
hand, for a large shift in the autocorrelation coefficients with a fixed varia-
bility. the posterior estimates of the change-point are not at its true value.
The mass functions of m gives wider ranges but cover the true value of the
change-point m. This is an indication that the detection of the change point,
based on the posterior mode or median, is sensitive to changes in the auto-
correlation coeflicients as well as in the variability of the variance ratio.
Estimation results when m" = 105 are given in Tables 2-5.
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rho[1] sample: 2100
6.0 |
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Figure 4. Posterior density functions of the autocorrelation coefficients py. po.
(View this art in color at www.dekker.com.)

Figure 5 shows the posterior mass function of the change point m
when the series is subject to a sharp shift in the autocorrelation coeffi-
cients with p; =0.3 and p>=0.7. As expected, the mass function of m
exhibits a wider range which however, covers the true value of m. Neither
the mode a posteriori nor the median estimates accurately the true
value of the change point m as was the case of a moderate shift in the
autocorrelation coefficients with p; = 0.3 and p> =10.5.

Table 2. Bayes estimates when m* = 105; o, = 1: 6,=3: p, =0.3; p=0.5.

Parameter True values Mean (SD) Median Sample
m 105 104.1(1.35) 104 2300
m I 0.861(0.121) 0.853 2200
" 0.111 0.112(0.016) 0.112 2200
M 0.3 0.414(0.092) 0.413 2100

I 0.5 0.561(0.858) 0.561 2100
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Table 3. Baycs estimates when m® = 105; 6y =1; 6:=2: p; =0.3; p,=0.5.

Parameter True values Mean (SD) Median Sample
m 105 107.7(5.31) 107 3000
1 1 0.825(0.118) 0.819 2000
2 0.25 0.251{0.038) 0.249 2000
M 0.3 0.396(0.099) 0.396 1000
P 0.5 0.564(0.874) 0.563 1000

Table 4. Bayes estimates when m* = 105; gy = 1; 62 =2; p; =0.3: p>=0.7,

Parameter True values Mean (SD) Median Sample
2] 105 108.6(4.34) 109 3300
il | 0.829(0.117) 0.823 3200
N2 0.25 0.250(0.038) 0.248 3200
m 0.3 (0.409(0.094) 0.409 3100
s 0.7 (.759(0.069) 0.759 3100

Table 5. Bayes estimates when m' = 105: g, =1 a2=1.5; p;=0.3; p.=0.7.

Parameter True values Mean (SD) Median Sample
m 105 110(14.28) 111 1415
" I 0.842(0.120) 0.841 1215
s 0.444 0.457(0.159) 0.444 1215
s 0.3 0.425(0.0105) 0.419 1195
p 0.7 0.752(0.089) 0.754 1195

6. CONCLUDING REMARKS

In this paper. we have derived the posterior distributions of the
change point. the variance ratio, and the magnitude of the shift in the
autocorrelation parameters of a first-order autoregressive process subject
to one change in both the error variance and the autocorrelation coeffi-
cient at an unknown time point. We also performed some numerical stu-
dies via the Gibbs sampler. We showed how inferences can be made
readily by using the Gibbs sampler. The change-point was easily detected
when the difference between the variances was moderate to large. As the
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k sample: 3300
015 =

0.05 =
0.0 |-

Figure 5. Posterior distribution of the change-point m. (View this art in color at
wiww.dekker.com.)

magnitude of the difference between the variances decreased for fixed
autocorrelations, the mass function of the change-point became wider
around the true value thus making detection of the change-point increas-
ingly difficult. The mass function of the change-point also exhibits a
wider range with an increased difference in the autocorrelation param-
cters for fixed variances. This demonstrates that the detection of the
structural change-point is sensitive to changes in both the variance and
the autocorrelation of the time series. We would like to add that change
point problems are encountered in a wide variety of disciplines in the
sense that a physical entity might experience structural change as it
evolves in time. In economics, an economic policy that was once ineffec-
tive may become effective due to a new government program (such as
price support) or a major disturbance to the economy (such as an oil
embargo or a terrorist action) or a new fiscal policy (such as changes
in taxes and government expenditures). In finance, Hsu (1982) gives an
example on the stock-market returns based on the Dow-Jones industrial
index. In biology, the emphasis may be in detecting the time point in life
of an organism at which a change in growth pattern occurs (e.g., see
Kivchi et al., 1995). Friede et al. (2001) studied change point estimators
applied in dose-response trials for the detection of the lowest plateau
dose. Many other researchers have investigated this problem in many
other fields.

APPENDIX: BUGS CODE

Model Change-Point;
Const

# Number of Observations
N
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# known parameters
eta.alpha
eta.beta
rho.mu
rho.precision
mean.mu
mean.precision

var

¥[N]. »0. mu[N]. eta2]. sigma[2]. rho[2], m, mean, JIN ], punif [N];

data in “filename.dat™; #data file
inits in “filename.in™; # initial values file
{ for (i in 2:N) {
muli ]| < —rho[J[{]] ¥[i— 1]+ mean’ (1 —rho[J[i]]):

3[i] ~ dnorm{mu[i], etalJ[{]])

Jlil< =1+ step(i — (m+10.5))

}
for (jin 1:2) { eta]/] ~ dgamma (eta.alpha, eta.beta);
# sigma[ j] < —1.0/sqrt(etal/])

}

mu[l] < —rho[l] 0 + mean" (1 — rho[l])
# Priors specification
m ~ deat(punif []); # uniform prior over change-point observation
rho[l] ~ dnorm (rho.mu, rho.precision);
rho[2] ~ dnorm (rho.mu, rho.precision);
mean ~ dnorm (mean.mu, mean.precision);
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