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Abstract

Approximations of the critical values for change-point tests are obtained through permutation methods. Both,
abrupt and gradual changes are studied in models of possibly dependent observations satisfying a strong invariance
principle, as well as gradual changes in an i.i.d. model. The theoretical results show that the original test statistics and
their corresponding permutation counterparts follow the same distributional asymptotics. Some simulation studies
illustrate that the permutation tests behave better than the original tests if performance is measured by the�- and
�-error, respectively.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

A series of papers has been published on the use of permutation principles for obtaining reasonable
approximations to the critical values of change-point tests. This approach was first suggested by Antoch
and Hušková[1] and later pursued by other authors (cf. Hušková[7] for a recent survey). But, so far, it
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has mostly been dealt with abrupt changes and independent observations. In many practical applications,
however, smooth (gradual) changes are more realistic, so are dependent observations.

In this paper, we shall discuss the use of permutation principles in the three models of a gradual change
in the mean of i.i.d. observations, an abrupt change in the mean or variance of a stochastic process resp.
a gradual change in the mean of a stochastic process under strong invariance.

1.1. Gradual change in the mean of independent, identically distributed (i.i.d.) observations

Hušková and Steinebach[7] investigated the following model:

Xi = � + d

(
i −m

n

)�

+
+ ei, i = 1, . . . , n, (1)

wherex+ = max(0, x); �, d = dn, andm = mn�n are unknown parameters, ande1, . . . , en are i.i.d.
random variables with

Eei = 0, 0< varei = �2(<∞), E|ei |2+�<∞ for some �>0. (2)

The parameter� is supposed to be known.
Note that—in contrast to abrupt changes—the biggest difference in the mean here is notd, but

d
(
n−m
n

)�
, and thus depends onn, mand�.

One is interested in testing the hypotheses

H0 : m= n vs. H1 : m<n, d 	= 0.

The following test statistic, which is based on the likelihood ratio approach in case of normal errors
{ei}, has been used:

T (1)n = 1

�̂n
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�
+(Xi −Xn)
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�
)2
)1/2 ,

where�̂n denotes a suitable estimator of�. Asymptotic critical values for the corresponding test can be
chosen according to the following null asymptotics (cf. Hušková and Steinebach[8]):

Theorem 1. LetX1, X2, . . . be i.i.d. r.v.’s withvarX1=�2>0, andE|X1|2+�<∞ for some�>0.Then,
for all x ∈ R, asn → ∞,

P
(
�nT

(1)
n − �n�x

)
→ exp

(−2e−x
)

,

where�n = √
2 log logn and�n = �n(�) is as follows:

(1) for �> 1
2:

�n = 2 log logn+ log

(
1

4�

(
2� + 1

2� − 1

)1/2
)

;
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(2) for � = 1
2:

�n = 2 log logn+ 1

2
log log log logn− log(4�);

(3) for 0< �< 1
2:

�n = 2 log logn+ 1 − 2�

2(2� + 1)
log log logn+ log

(
C

1/(2�+1)
� H2�+1√

�22�/(2�+1)

)
,

withH� as in Remark12.2.10of Leadbetter et al.[11] (e.g.H1 = 1,H2 = 1/
√

�), and

C� = −(2� + 1)
∫ ∞

0
x�((x + 1)� − x� − �x�−1)dx.

Moreover, �̂n is assumed to be an estimator of� satisfying�̂n − � = oP ((log log n)−1) asn → ∞.

1.2. Abrupt change in the mean or variance of a stochastic process under strong invariance

This model has been considered by Horváth and Steinebach[6]. Suppose one observes a stochastic
process{Z(t) : 0� t <∞} having the following structure:

Z(t)=
{
at + bY (t), 0� t�T ∗,
Z(T ∗)+ a∗(t − T ∗)+ b∗Y ∗(t − T ∗), T ∗< t�T , (3)

wherea, b, a∗, b∗ are unknown parameters, and{Y (t) : 0� t <∞} resp.{Y ∗(t) : 0� t <∞} are (unob-
served) stochastic processes satisfying the following strong invariance principles:

For everyT >0, there exist two independent Wiener processes{WT (t) : 0� t�T ∗} and {W ∗
T (t) :

0� t�T − T ∗}, and some�>0, such that, forT → ∞,

sup
0� t�T ∗

|Y (t)−WT (t)| = O(T 1/(2+�)) a.s. (4)

and

sup
0� t�T−T ∗

|Y ∗(t)−W ∗
T (t)| = O(T 1/(2+�)) a.s. (5)

Moreover, we assumeY (0) = 0 andY ∗(0) = 0. It should be noted that only weak invariance has been
assumed in Horváth and Steinebach[6], instead of the strong rates of (4) and (5), which are required
for later use here. Moreover, the processes{Z(t)}, {Y (t)}, and{Y ∗(t)} could be replaced by a family of
processes{ZT (t)}, {YT (t)}, and{Y ∗

T (t)}, T >0, since the asymptotic analysis is merely based on the
approximating family of Wiener processes{WT (t)} and{W ∗

T (t)}, respectively.
One is interested in testing the hypothesis of “no change”, i.e.

H0 : T ∗ = T ,

against the alternative of “a change in the mean atT ∗ ∈ (0, T )”, i.e.

H
(1)
1 : 0<T ∗<T and a 	= a∗,
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resp. “a change in the variance atT ∗ ∈ (0, T )”, i.e.

H
(2)
1 : 0<T ∗<T and b 	= b∗, but a = a∗.

Basic examples satisfying conditions (3)–(5) are partial sums of i.i.d. random variables and renewal
processes based on i.i.d. waiting times, but also sums of dependent observations (for details we refer to
Horváth and Steinebach[6]).

It is assumed, that the process{Z(t) : t�0} has been observed at discrete time pointsti = ti,N = i T
N

,
1�i�N = N(T ). Let �Zi,T = Z(ti) − Z(ti−1) and�̃Zi,T = Z(ti) − Z(ti−1) − �ZT . The following
statistics will be used:

MT = max
1�k�N

{
1√
T

1

b̂T

∣∣∣∣∣
k∑
i=1

(�Zi,T − �ZT )

∣∣∣∣∣
}

, (6)

where�ZT = 1
N

∑N
i=1 �Zi,T , and

b̂2
T = 1

T

N∑
i=1

(�Zi,T − �ZT )
2,

resp.

M̃T = max
1�k�N

{
1√
T

1

ĉT

∣∣∣∣∣
k∑
i=1

(�̃Z
2
i,T − �̃Z

2
T )

∣∣∣∣∣
}

, (7)

where�̃Z
2
T = 1

N

∑N
i=1 �̃Z

2
i,T , and

ĉ2
T := 1

T

N∑
i=1

(
(�Zi,T − �ZT )

2 − 1

N

N∑
l=1

(�Zl,T − �ZT )
2

)2

.

Remark 2. The statisticM̃T uses a slightly different variance estimatorĉ2
T than the one given in Horváth

and Steinebach[6]. It possesses, however, the same asymptotic behavior, since the ratio of the two
normalizations converges in probability to 1 under the null hypothesis, and to some positive constant under
the alternative (cf.Theorem 4.5.2 in Kirch[9]).This modification is necessary for applying the permutation
method below, since, under the alternative, the permutation statistic (corresponding to the statistic used
in Horváth and Steinebach[6]) does not converge to sup0� t�1 |B(t)|, but toc sup0� t�1 |B(t)|, c >0,
c 	= 1 in general, wherec is the asymptotic ratio of the two variance estimators. Here{B(t) : 0� t�1}
denotes a Brownian bridge.

The following null asymptotics hold under the above conditions (cf. Horváth and Steinebach[6]):

Theorem 3. If N =N(T ) → ∞ andN = o(T 1−2/(2+�)) asT → ∞, then, underH0,

MT
D→ sup

0� t�1
|B(t)|,

where{B(t) : 0� t�1} is a Brownian bridge.
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Theorem 4. If N =N(T ) → ∞ andN = o(T 1/2−1/(2+�)) asT → ∞, then, underH0,

M̃T
D→ sup

0� t�1
|B(t)|,

where{B(t) : 0� t�1} is a Brownian bridge.

1.3. Gradual change in the mean of a stochastic process under strong invariance

This model has been considered by Steinebach[14]. Suppose one observes a stochastic process{S(t) :
0� t <∞} having the following structure:

S(t) :=
{
at + bY (t), 0� t�T ∗,
S(T ∗)+ a∗(t − T ∗)+ b∗Y ∗(t − T ∗), T ∗< t�T , (8)

wherea, b, b∗ and{Y (t)}, {Y ∗(t)} are as in model 1.2 above,a∗(t − T ∗)= a(t − T ∗)+ d̃(t − T ∗)1+�,
d̃= d̃T is unknown,�>0 is known. Again, the biggest difference in the mean here depends onT , T ∗ and
�, similarly as in the first model (1.1). Note that, instead of (4), Steinebach[14] assumed the following
weak invariance principle for the process{Y (t) : 0� t <∞}, namely that, for everyT >0, there is a
Wiener process{WT (t) : 0� t�T ∗} such that

sup
1� t�T ∗

|Y (T ∗)− Y (T ∗ − t)−WT (t)|/t1/(2+�) = OP(1) (T → ∞). (9)

The reason is that small approximation rates were required near the change-pointT ∗, but only in a
weak sense, whereas we need strong approximations for our permutation principles below. Here, too, the
processes{Z(t)}, {Y (t)}, and{Y ∗(t)} could be replaced by a family of processes{ZT (t)}, {YT (t)}, and
{Y ∗
T (t)}, T >0.
One is now interested in testing the null hypothesis of “no change in the drift”, i.e.

H0 : T ∗ = T

against the alternative of “a smooth (gradual) change in the drift”, i.e.

H1 : 0<T ∗<T, d̃ 	= 0.

Basic examples fulfilling the conditions above are again partial sums of i.i.d. random variables and renewal
processes based on i.i.d. waiting times (cf. Steinebach[14] for more details). As in model 1.2, we assume
that we have observed{S(t) : t�0} at discrete time pointsti = iT /N, and set�Si,T = S(ti)− S(ti−1).

The following test statistic is used:

T
(2)
N =

√
N

T b̂2
T

max
1�k<N

∣∣∣∑N
i=1 (i − k)

�
+(�Si,T − �SN)

∣∣∣(∑N−k
i=1 i2� − 1

N

(∑N−k
i=1 i�

)2
)1/2 , (10)

where�ST = 1
N

∑N
i=1 �Si,T , andb̂2

T = 1
T

∑N
i=1(�Si,T − �ST )

2.
Steinebach[14] assumed a slightly different weight, which is asymptotically equivalent to the one used

above. However, it turns out, that the above weight gives much better results for the permutation statistic,
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which is due to the fact, that it is the maximum-likelihood statistic under Gaussian errors. The results
obtained in Steinebach[14] remain valid.

Remark 5. The magnitude ofd̃ is completely different from that ofd in the first model. However,
d := d̃(1 + �)T 1+�/N is comparable to it, which can easily be seen via the mean value theorem.

Similar to Theorem 1, the following null asymptotic applies (cf. Steinebach[14]):

Theorem 6. If (9) holds,N =N(T ) → ∞ andN = O(T ) asT → ∞, then, underH0, for all x ∈ R:

P(�NT
(2)
N − �N �x) → exp(−2e−x),

where�N = √
2 log logN and�N = �N(�) is as in Theorem1 (with N replacingn).

2. Rank and permutation statistics in case of a gradual change under i.i.d. errors

In order to derive distributional asymptotics for the permutation statistics, we shall make use of the
following theorem for the corresponding rank statistics. In the case� = 1, it was proven by Slabý[13].

Theorem 7. Let R = (R1, . . . , Rn) be a random permutation of(1, . . . , n), and an(1), . . . , an(n) be
scores satisfying

1

n

n∑
i=1

(an(i)− an)
2�D1, (11)

and

1

n

n∑
i=1

|an(i)− an|2+��D2, (12)

whereD1, D2 and� are some positive constants, andan = 1
n

∑n
i=1 an(i). Then, for fixed�>0 and all

x ∈ R, asn → ∞
P(�nTn(R)− �n�x) → exp(−2e−x),

where

Tn(R)= 1

�n(a)
max

1�k<n

∣∣∑n
i=1 (i − k)

�
+(an(Ri)− an)

∣∣(∑n−k
i=1 i

2� − 1
n

(∑n−k
i=1 i

�
)2
)1/2 .

Here�2
n(a)= 1

n

∑n
i=1(an(i)− an)

2, the variance ofan(R1), �n = √
2 log logn and�n = �n(�) is as in

Theorem1.

In the proof of this theorem we apply the following weak embedding:
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Theorem 8. Letan(1), . . . , an(n) be scores satisfying(11)and(12).Then, on a rich enough probability
space, there is a sequence of stochastic processes{�̃n(k) : 1�k�n} (n= 1,2, . . .) with

{�̃n(k) : 1�k�n} D=
{

1√
�2
n(a)

k∑
i=1

(an(�n(i))− an) : 1�k�n
}

,

where(�n(1), . . . , �n(n)) is a random permutation of(1,2, . . . , n), �2
n(a) := 1

n

∑n
i=1 (an(i) − an)

2,

an = 1
n

∑n
i=1 an(i), and there is a fixed Brownian bridge{B(t) : 0� t�1} such that, for 0�	<min(

�
2(2+�) ,

1
4

)
,

max
1�k<n

(
k(n− k)

n

)	
n√

k(n− k)

∣∣∣∣ 1√
n

�̃n(k)− B(k/n)

∣∣∣∣= OP(1).

The proof goes along the lines of Theorem 1 of Einmahl and Mason[4], by replacing the Hájek-Rényi
inequality (cf.[4, p. 110]) resp. Lemma 13 there with the following lemmas:

Lemma 9. LetM(0) = 0, M(1), . . . ,M(m), m�1, be a mean0, square-integrable martingale, and
a(1)� · · · �a(m)�0 be constants. Then, for 1<s�2 and
>0,

P

(
max

1� i�m
ai |M(i)|> 


)
�2s−1 1


s

m∑
i=1

asi E|M(i)−M(i − 1)|s .

Proof. Confer Lemma 9 in Häusler and Mason[5], or Lemma 5.1.2 in Kirch[9] together with
Einmahl[3]. �

Lemma 10. Let an(1), . . . , an(n) be scores with
∑n

i=1 an(i) = 0, and(�n(1), . . . , �n(n)) be a random
permutation as in Theorem8.Then, for 1�i�n and1�s�2,

E

∣∣∣∣∣∣
i∑

j=1

an(�n(j))

∣∣∣∣∣∣
s

�2 min(i, n− i)
1

n

n∑
j=1

|an(j)|s .

Proof. Confer Lemma 5.1.3. in Kirch[9] and Mason[12]. �

Now we have the tools to prove Theorem 7:

Proof (Theorem 7). First note that

n

n−k∑
i=1

i2� −
(
n−k∑
i=1

i�

)2

= (n− k)

n−k∑
i=1

i� − 1

n− k

n−k∑
j=1

j �

2

+ k

n−k∑
i=1

i2�

�k
∫ n−k

0
x2� dx = k

1

2� + 1
(n− k)2�+1. (13)
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Now, from Theorem 8 with	 = 0, uniformly in k ∈ [1, n/2]:
1

�n(a)

k∑
i=1

(an(Rn−i+1)− an)= √
nB

(
k

n

)
+ OP

(√
k(n− k)

n

)

= √
nB

(
k

n

)
+ OP(

√
k).

Since
{√
nB
(
k
n

) : k = 0, . . . , n
} D= {W(k)− k

n
W(n) : k = 0, . . . , n

}
, where{W(t) : t�0} is a standard

Wiener process, we conclude from the law of the iterated logarithm

1

�n(a)
max

n−log n<k<n

∣∣∑n
i=1 (i − k)

�
+(an(Ri)− an)

∣∣(∑n−k
i=1 i

2� − 1
n

(∑n−k
i=1 i

�
)2
)1/2

= 1

�n(a)
max

1<k< log n

∣∣∣∑k
l=1(l

� − (l − 1)�)
∑k−l+1

i=1 (an(Rn−i+1)− an)

∣∣∣(∑k
i=1i

2� − 1
n

(∑k
i=1i

�
)2
)1/2

= OP

 max
1<k< log n

∣∣∣∑k
l=1(l

� − (l − 1)�)
(
W(k − l + 1)− k−l+1

n
W(n)

)∣∣∣(∑k
i=1i

2� − 1
n

(∑k
i=1i

�
)2
)1/2



+ OP

 max
1<k< log n

∣∣∣∑k
l=1(l

� − (l − 1)�)
√
k − l + 1

∣∣∣(∑k
i=1i

2� − 1
n

(∑k
i=1i

�
)2
)1/2


= oP

(√
log log n

)
.

Hence it suffices to investigate the maximum overk ∈ [1, n− log n]. Let

T̂n := max
1�k�n−log n

∣∣∑n
i=1(i − k)

�
+(Xi − 1

n

∑n
l=1Xl)

∣∣(∑n−k
i=1 i

2� − 1
n

(∑n−k
i=1 i

�
)2
)1/2

resp.

T̃n := max
1�k�n−log n

∣∣∑n
i=1(i − k)

�
+(�̃n(i)− �̃n(i − 1))

∣∣(∑n−k
i=1 i

2� − 1
n

(∑n−k
i=1 i

�
)2
)1/2

be the corresponding test statistics based on i.i.d.N(0,1) random variablesXi resp. on the distributionally

equivalent versions ofan(Ri). We chooseXi such thatB
(
k
n

)= 1√
n

(∑k
i=1Xi − k

n

∑n
i=1Xi

)
,with {B(t)}

denoting the Brownian bridge of Theorem 8.
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By the same application of the law of the iterated logarithm as above,

max
n−log n�k�n

∣∣∑n
i=1(i − k)

�
+(Xi − 1

n

∑n
i=1Xi)

∣∣(∑n−k
i=1 i

2� − 1
n

(∑n−k
i=1 i

�
)2
)1/2 = oP

(√
log log n

)
.

Since�nT̃n−�n= (�nT̂n−�n)+ �n(T̃n− T̂n), and since Theorem 1 implies that�nT̂n−�n has a limiting
Gumbel distribution, it suffices to show that�n(T̃n − T̂n) = oP(1). We setYin := �̃n(i) − �̃n(i − 1) −
(Xi −Xn), whereXn = 1

n

∑n
i=1Xi, andSn(l) :=∑l

i=1Yin.Then,

|T̃n − T̂n|

� max
1�k�n−log n

√√√√ n

n
∑n−k

i=1 i
2� −
(∑n−k

i=1 i
�
)2

∣∣∣∣∣
n∑
i=1

(i − k)
�
+Yin

∣∣∣∣∣
� max

1�k�n−log n

√√√√ n

n
∑n−k

i=1 i
2� −
(∑n−k

i=1 i
�
)2

n−k∑
l=1

|Sn(l + k − 1)|(l� − (l − 1)�)

� max
1�k<n

(
k(n− k)

n

)	
n√

k(n− k)

∣∣∣∣ 1√
n

�̃n(k)− B

(
k

n

)∣∣∣∣
× max

1�k�n−log n
n	

n−k∑
l=1

((l + k − 1)(n− l − k + 1))1/2−	√
n
∑n−k

i=1 i
2� −
(∑n−k

i=1 i
�
)2

(l� − (l − 1)�),

where 0< 	<min
(

�
2(2+�) ,

1
4

)
as in Theorem 8. This theorem also implies

max
1�k<n

(
k(n− k)

n

)	
n√

k(n− k)

∣∣∣∣ 1√
n

�̃n(k)− B

(
k

n

)∣∣∣∣= OP(1),

which means, that it suffices to show

max
1�k�n−log n

n	
n−k∑
l=1

((l + k − 1)(n− l − k + 1))1/2−	√
n
∑n−k

i=1 i
2� −
(∑n−k

i=1 i
�
)2

(l� − (l − 1)�)

= o((log log n)−1/2).

The latter rate can be obtained through a straightforward calculation, taking (13) into account together
with the following estimate:

n

n−k∑
i=1

i2� −
(
n−k∑
i=1

i�

)2

�c�n(n− k)2�+1 for all n�n�, (14)

wherec�>0 andn� depends only on�. This completes the proof. For details we refer to Kirch[9],
Corollary 5.2.3. �
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We are now ready to study the following permutation statistic:

T (1)n (R)= 1

�̂n
max

1�k<n

∣∣∑n
i=1 (i − k)

�
+(XRi −Xn)

∣∣(∑n−k
i=1 i

2� − 1
n

(∑n−k
i=1 i

�
)2
)1/2 ,

whereR= (R1, . . . , Rn) is a random permutation of(1, . . . , n).We consider the conditional distribution
of T (1)n (R) given the original observationsX1, . . . , Xn, i.e. the randomness is only generated by the
random permutationR = (R1, . . . , Rn).

The following theorem proves that this statistic conditionally on the given observations has a.s. the
same asymptotic behavior—both under the null hypothesis and under the alternative—as that ofT

(1)
n

under the null hypothesis (cf. Theorem 1).

Theorem 11. LetX1, . . . , Xn be observations satisfying(1)and(2).Moreover, let |d |= |dn|�D.Then,
for all x ∈ R, asn → ∞,

P (�nT
(1)
n (R)− �n�x |X1, . . . , Xn) → exp(−2e−x) a.s.,

where�n, �n = �n(�) are as in Theorem1.

Proof. It is sufficient to verify the assumptions of Theorem 7 withan(i)=Xi , i=1, . . . , n. First we have

Xn = � + en + dnn
−�−1

n∑
l=1

(l −mn)
�
+.

Hence

1

n

n∑
i=1

(Xi −Xn)
2�

1

n

n∑
i=1

(ei − en)
2 + 2dnn

−� 1

n

n∑
i=1

(i −mn)
�
+ei

− 2dnn
−�−1

n−mn∑
l=1

l�
1

n

n∑
i=1

ei .

It is enough to show that the second term converges to 0 a.s., because then, by the strong law of large
numbers,

lim inf
n→∞

1

n

n∑
i=1

(Xi −Xn)
2�var e1 a.s.

Now, by partial summation,

n∑
i=1

(i −mn)
�
+ei = Sn(n−mn)

�
+ −

n−1∑
i=1

Si((i + 1 −mn)
�
+ − (i −mn)

�
+), (15)
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whereSi :=∑i
j=1 ej , and, from the law of the iterated logarithm,

1

n�+1

n−1∑
i=1

Si((i + 1 −mn)
�
+ − (i −mn)

�
+)

= O

(
1

n�+1

n−1∑
i=1

i3/4((i + 1 −mn)
�
+ − (i −mn)

�
+)
)

= o(1) a.s.,

where the last estimate follows via the mean value theorem. Using (15) together with the strong law of
large numbers, we get indeed, asn → ∞,

dn

n�+1

n∑
i=1

(i −mn)
�
+ei

= dn(n−mn)
�
+

n�

Sn

n
− dn

n�+1

n−1∑
i=1

Si((i + 1 −mn)
�
+ − (i −mn)

�
+) → 0 a.s.

On the other hand, for suitable constantsc andC, andn�n0,

1

n

n∑
i=1

|Xi −Xn|2+�

= 1

n

n∑
i=1

∣∣∣∣∣ei − en + dnn
−�

(
(i −mn)

�
+ − 1

n

n∑
l=1

(l −mn)
�
+

)∣∣∣∣∣
2+�

�c
1

n

n∑
i=1

|ei |2+� + c|en|2+� + c d2+�
n n−2�−��−1

n−mn∑
i=1

i2�+��

+ c d2+�
n n−2�−��−2−�

(
n−mn∑
l=1

l�

)2+�

�C a.s.

An application of Theorem 7 now completes the proof.�

3. Permutation statistics for changes of stochastic processes under strong invariance

Next we study models 1.2 and 1.3. For model 1.2, we first need to investigate the asymptotic behavior
of the corresponding rank statistic:

Theorem 12. Let (R1, . . . , Rn) be a random permutation of(1, . . . , n), andan(1), . . . , an(n) be scores
satisfying the following conditions:

n∑
i=1

an(i)= 0,
1

n

n∑
i=1

a2
n(i) → 1, (16)
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and

1

n
max

1� i�n
a2
n(i) → 0. (17)

Then, asn → ∞,

max
1�k�n

1√
n

∣∣∣∣∣
k∑
i=1

an(Ri)

∣∣∣∣∣ D→ sup
0� t�1

|B(t)|,

where{B(t) : 0� t�1} denotes a Brownian bridge.
Proof. It follows from Theorem 24.2 in Billingsley[2]. �

Lemma 13.

(1) LetX1n, . . . , Xnn be independent r.v.’s withEX4
in�D<∞ for all i, n. Then

1

n

n∑
i=1

(Xin − EXin) → 0 a.s. (n → ∞).

(2) Let {Wn(t): t�0}, n ∈ N, beWiener processes and f be a positive function ofn, then

Wn(f (n))= O(
√
f (n) log n) a.s. (n → ∞).

Proof. (1) It follows immediately from Markov’s inequality.
(2) Cf. Kirch [9], Theorem 10.0.2. �

In the sequel we assume that there is a 1-1-correspondence betweenN andT , which is necessary to
get a countable triangular array inN, and, in turn, allows us to use the preceding lemma.

Moreover, we assumeT ∗ = �T , 0< ��1, andN = o(T 1−2/(2+�)). LetN∗ = �NT ∗
T

� = �N(1 + o(1))
and

�Yi =



b

(
Y

(
i
T

N

)
− Y

(
(i − 1)

T

N

))
, i�N∗,

b

(
Y (T ∗)− Y

(
N∗T
N

))
+ b∗Y ∗

(
(N∗ + 1)T

N
− T ∗

)
, i =N∗ + 1,

b∗
(
Y ∗
(
i
T

N
− T ∗

)
− Y ∗

(
(i − 1)

T

N
− T ∗

))
, i�N∗ + 2.

(18)

Lemma 14. (1) It holds, asN → ∞,

�Y = 1

N

N∑
i=1

�Yi = O

(√
T log N

N

)
a.s.
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(2) (a)For s = 2,3,4, asN → ∞,

N(s−2)/2

T s/2

N∑
i=1

(�Yi)
s → EW(1)s(�bs + (1 − �)(b∗)s) a.s.,

whereW(1) has a standard normal distribution.
(b) For 	>0, asN → ∞,

N(	−2)/2

T 	/2

∑N

i=1
|�Yi − �Y |	 =O(1) a.s.

(3) For 	>0,asN → ∞,

N(	−2)/2

T 	/2 max
1� i�N

|�Yi − �Y |	 = o(1) a.s.

Proof. The proof makes use of (3)–(5) in combination with Lemma 13 (for details confer Kirch
[9, Theorem 10.0.1]). �

We are now prepared to investigate the following permutation statistics:

MT (R)= max
1�k�N

{
1√
T

1

b̂T

∣∣∣∣∣
k∑
i=1

(�ZRi,T − �ZT )

∣∣∣∣∣
}

,

and

M̃T (R)= max
1�k�N

{
1√
T

1

ĉT

∣∣∣∣∣
k∑
i=1

(�̃Z
2
Ri,T

− �̃Z
2

T )

∣∣∣∣∣
}

.

Here again,R = (R1, . . . , Rn) denotes a random permutation of(1, . . . , n).

Theorem 15. Let {Z(t) : t�0} be a process according to model(3). Let T ∗ = �T , 0< ��1,
N = o(T 1−2/(2+�)), and in(2) alsoa = a∗. Then, for all x ∈ R, asT → ∞,

(1) P(MT (R)�x |Z(t),0� t�T ) → P

(
sup

0� t�1
|B(t)|�x

)
a.s.

(2) P(M̃T (R)�x |Z(t),0� t�T ) → P

(
sup

0� t�1
|B(t)|�x

)
a.s.,

where{B(t) : 0� t�1} is a Brownian bridge.
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Proof. First note that, for the increments of{Z(t)}, we have

�Zi,T =



a
T

N
+ �Yi, i�N∗,

a

(
T ∗ −N∗ T

N

)
+ a∗

(
(N∗ + 1)

T

N
− T ∗

)
+ �YN∗+1, i =N∗ + 1,

a∗ T
N

+ �Y ∗
i , i�N∗ + 2,

with �Yi as in (18).
Now, for the proof of (1), consider the scoresaN(i)= (1/b̂T )

√
N/T (�Zi,T − �Zi,T ), i = 1, . . . , N.

Obviously,
∑N

i=1 aN(i)=0 and 1/N
∑N

i=1 a
2
N(i)=1, which means that it is sufficient to verify assumption

(17) of Theorem 12.
In the sequel,c andC denote suitable constants which may be different in different places. We first

consider the case�<1 anda 	= a∗. Here, for sufficiently largeT ,

b̂2
T = 1

T

N∑
i=1

�Z2
i,T − N

T
�T Z

2

= 1

T

N∑
i=1

�a2
i − N

T
�a

2 + 1

T

N∑
i=1

(�Yi)
2 − N

T
(�Y )2 − 2

1

T
(aT ∗ + a∗(T − T ∗))�Y

+ 2ab

N
Y

(
N∗ T

N

)
+ 2a∗b∗

N

(
Y ∗(T − T ∗)− Y ∗

(
(N∗ + 1)

T

N
− T ∗

))
+ 2

T

(
a

(
T ∗ −N∗ T

N

)
+ a∗

(
(N∗ + 1)

T

N
− T ∗

))
�YN∗+1

�c
T

N
a.s., (19)

where

�ai =



a
T

N
, i�N∗,

a

(
T ∗ −N∗ T

N

)
+ a∗

(
(N∗ + 1)

T

N
− T ∗

)
, i =N∗ + 1,

a∗ T
N
, i�N∗ + 2,

and �a = 1
N

∑N
i=1 �ai = 1

N
(aT ∗ + a∗(T − T ∗)). The last inequality in (19) follows from the

fact that the first terms are the dominating ones. Indeed, since�<1, a 	= a∗, for T sufficiently
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large,

1

T

N∑
i=1

�a2
i − N

T
�a

2

�a2 T

N2 N
∗ + a∗ T

N2 (N −N∗ − 1)− a2 (T
∗)2

TN
− (a∗)2 (T − T ∗)2

TN
− 2aa∗T ∗(T − T ∗)

T N

= (1 + o(1))

(
a2 T

N
�(1 − �)+ (a∗)2 T

N
�(1 − �)− 2aa∗ T

N
�(1 − �)

)
− (a∗)2T

N2

= (1 + o(1))

(
T

N
�(1 − �)(a − a∗)2

)
− (a∗)2 T

N2 �c
T

N
a.s. (20)

Next we prove that the other terms are of smaller order and hence are negligible. Lemma 13(2) gives

2ab

N
Y

(
N∗ T

N

)
+ 2a∗b∗

N

(
Y (T − T ∗)− Y

(
(N∗ + 1)

T

N
− T ∗

))
= 2ab

N
WT

(
N∗ T

N

)
+ 2a∗b∗

N

(
W ∗(T − T ∗)−W ∗

(
(N∗ + 1)

T

N
− T ∗

))
+ O

(
T 1/(2+�)

N

)

= O

(√
T log N

N

)
a.s. (21)

SinceT ∗ −N∗T/N�T/N and(N∗ + 1)(T /N)− T ∗�T/N, we also get∣∣∣∣ 2T
(
a

(
T ∗ −N∗ T

N

)
+ a∗

(
(N∗ + 1)

T

N
− T ∗

))
�YN∗+1

∣∣∣∣
�

2

N
(|a| + |a∗|)

(
|b|
∣∣∣∣W(T ∗)−W

(
N∗ T

N

)∣∣∣∣+ |b∗|
∣∣∣∣W ∗
(
(N∗ + 1)

T

N
− T ∗

)∣∣∣∣)
+ O

(
T 1/(2+�)

N

)
= O

(√
T log N

N

)
a.s. (22)

Lemma 14 further implies

1

T

N∑
i=1

(�Yi)
2−N

T
(�Y )2−2

1

T
(aT ∗+a∗(T − T ∗))�Y = O

(
1 + log N

N
+

√
T log N

N

)
a.s.,

which proves (19). Note that

�ai − �a =


(a − a∗)T − T ∗

N
, i�N∗,

(a − a∗)ϑT − T ∗

N
, i =N∗ + 1,

(a∗ − a)
T ∗

N
, i�N∗ + 2,
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for some 0�ϑ�1, hence

max
1� i�N

(�ai − �a)2 =


(
T − T ∗

N
(a − a∗)

)2

, T ∗�T/2,(
T ∗

N
(a − a∗)

)2

, T ∗>T/2.

On combining (19), Lemma 14 (1) and Lemma 14(2(a)) we finally get (17), since

1

N
max

1� i�N
a2
N(i)�2

1

T b̂2
T

max
1� i�N

(�ai − �a)2 + 2
1

T b̂2
T

max
1� i�N

(�Yi − �Y )2

�
2

c

1

N
(a − a∗)2 + 2

c

N

T

(
1

T

N∑
i=1

(�Yi)
2 − N

T
(�Y )2

)
→ 0 a.s. (23)

On the other hand, if� = 1 ora = a∗, we obtain from Lemma 14,

b̂2
T = 1

T

N∑
i=1

(�Zi,T − �T Z)
2 = 1

T

N∑
i=1

(�Yi)
2 − N

T
(�Y )2

→ �b2 + (1 − �)(b∗)2�c >0 a.s., (24)

for T sufficiently large. Using Lemma 14 (3), we arrive at (17), i.e.

1

N
max

1� i�N
a2
N(i)= 1

b̂2
T T

max
1� i�N

(�Yi − �Y )2 → 0 a.s., (25)

which completes the proof of (1).
For the proof of (2), consideraN(i)= (1/

√
T ĉT )((�Yi −�Y )2− (1/N)∑N

l=1(�Yl−�Y )2). It suffices
again to verify the assumptions of Theorem 12.

Sincea = a∗, we get 1
N

∑N
i=1 a

2
N(i)= 1. Similarly as above, Lemma 14 gives

N

T 2

N∑
i=1

(�Yi − �Y )4 → 3(�b4 + (1 − �)(b∗)4) a.s.,

and

(̂bT )
2 =
(

1

T

N∑
i=1

(�Yi)
2 − N

T
�Y

2

)2

→ (�b2 + (1 − �)(b∗)2)2 a.s. (26)

From Jensen’s inequality we conclude

lim
T→∞

N

T
ĉ2
T = lim

T→∞

(
N

T 2

N∑
i=1

(�Yi − �Y )4 − (̂b2
T )

2

)
= 3(�b4 + (1 − �)(b∗)4)− (�b2 + (1 − �)(b∗)2)2

�2(�b4 + (1 − �)(b∗)4)>0 a.s.
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So, an application of Lemma 14 results in

1

N
max

1�k�N
a2
N(k)= 1

T ĉ2
T

max
1�k�N

((
�Yk − �Y

)2 − 1

N

N∑
i=1

(�Yi − �Y )2
)2

�C

 N
T 2 max

1�k�N
(�Yk − �Y )4 + 1

N

(
1

T

N∑
i=1

(�Yi − �Y )2
)2→ 0 a.s.,

which completes the proof of (2).�

Finally we turn to model 1.3 and investigate the permutation analogue of (10), i.e. the statistic

T
(2)
N (R)=

√
N

T b̂2
T

max
1�k<N


∣∣∣∑N

i=1 (i − k)
�
+(�SRi,T − �SN)

∣∣∣(∑N−k
i=1 i2� − 1

N

(∑N−k
i=1 i�

)2
)1/2

 .

The following asymptotic applies:

Theorem 16. Let {S(t) : t�0} be a process according to model(8). AssumeT ∗ = �T , 0< ��1, and
N

√
log N = o(min(T 1−2/(2+�), T 1/2+�)). Then, for all x ∈ R, asT → ∞,

P (�NT
(2)
N (R)− �N �x |S(t),0� t�T ) → exp(−2e−x) a.s.,

where�N, �N = �N(�) are as in Theorem1 (with N replacing n).

Proof. First note that, for the increments of{S(t)}, we have

�Si,T =


�Yi, i�N∗,

�YN∗+1 + d̃

(
(N∗ + 1)T

N
− T ∗

)1+�

, i =N∗ + 1,

�Y ∗
i + d̃

((
iT

N
− T ∗

)1+�

−
(
(i − 1)T

N
− T ∗

)1+�
)
, i�N∗ + 2.

In case of the null hypothesis, i.e. for� = 1, we can immediately verify the assumptions of
Theorem 7 foran(i) := √

(N/T )�Si,T by using Lemma 14.
On the other hand, in case of�<1,we usean(i) := (N/T 1+�)�Si,T .First, via the mean value theorem,

N1+�

T (1+�)(2+�)

 N∑
i=N∗+2

∣∣∣∣∣
(
i
T

N
− T ∗

)1+�

−
(
(i − 1)

T

N
− T ∗

)1+�
∣∣∣∣∣
2+�

+
∣∣∣∣(N∗ + 1)

T

N
− T ∗

∣∣∣∣(1+�)(2+�)
)

= O

(
N1+�

T (1+�)(2+�)
N
T (1+�)(2+�)

N2+�

)
= O(1),
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which, together with Lemma 14, gives

1

N

N∑
i=1

∣∣∣∣ NT 1+�
�Si,T − N

T 1+�
�Sn

∣∣∣∣2+�

= O(1) a.s.

In order to verify the second assumption of Theorem 7, we first realize, by using partial summation,
the mean value theorem and Lemmas 13 resp. 14, that

N

T 2+2�

(
N∑

i=N∗+2

�Yi

((
iT

N
− T ∗

)1+�

−
(
(i − 1)T

N
− T ∗

)1+�
)

+ �YN∗+1

(
(N∗ + 1)T

N
− T ∗

)1+�
)

= N2

T 2+2�
�Y

(
(T − T ∗)1+� −

(
N − 1

N
T − T ∗

)1+�
)

− N

T 2+2�

N−1∑
k=N∗+2

(
bY (T ∗)+ b∗Y ∗

(
k
T

N
− T ∗

))((
(k + 1)

T

N
− T ∗

)1+�

−2

(
k
T

N
− T ∗

)1+�

+
(
(k − 1)

T

N
− T ∗

)1+�
)

− N

T 2+2�

(
bY (T ∗)+ b∗Y ∗

(
(N∗ + 1)

T

N
− T ∗

))

×
((

(N∗ + 2)
T

N
− T ∗

)1+�

− 2

(
(N∗ + 1)

T

N
− T ∗

)1+�
)

= o(1)+ O

(
1

T 1+�

N∑
k=N∗+1

∣∣∣∣bY (T ∗)+ b∗Y ∗
(
k
T

N
− T ∗

)∣∣∣∣
)

= o(1)+ O

(
N

√
log N

T 1/2+�

)
+ O

(
NT 1/(2+�)

T 1+�

)
= o(1) a.s. (27)

Next we have

N

T 2+2�

 N∑
i=N∗+2

((
i
T

N
− T ∗

)1+�

−
(
(i − 1)

T

N
− T ∗

)1+�
)2

+
(
(N∗ + 1)

T

N
− T ∗

)2(1+�)


�
1

N
(1 + �)2

N−1∑
i=N∗+1

(
i

N
− �

)2�

�
1

N
(1 + �)2

∫ N−1

N∗

( x
N

− �
)2�

dx

= (1 + o(1))
(1 + �)2

2� + 1
(1 − �)2�+1,
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which shows that

d̃2N

T 2+2�

 N∑
i=N∗+2

((
i
T

N
− T ∗

)1+�

−
(
(i − 1)

T

N
− T ∗

)1+�
)2

+
(
(N∗ + 1)

T

N
− T ∗

)2(1+�)


− d̃2N2

T 2+2�

(
1

N
(T − T ∗)1+�

)2

�(1 + o(1))
(1 − �)2�+1

2� + 1
(�2 + �(2� + 1)). (28)

On combining (27), (28) and Lemma 14, we get indeed, for largeT ,

N

T 2+2�

N∑
i=1

(�Si,T − �Sn)
2�c(�)

with somec(�)>0, which completes the proof.�

4. Simulations

So far, we have only proven that the permutation principle is asymptotically applicable for processes
satisfying models 1.1 to 1.3. Now we want to describe the results of some simulation studies to get an
idea, how good the permutation method is in comparison to the original method. However, we abstain
from giving the results in the i.i.d. case here due to limitation of space. The results are very similar to
those of the gradual change, in particular for the case of partial sums.

4.1. Change in the mean of a stochastic process under strong invariance

The following simulations are based on partial sums of normally distributed random variables (with
variance 1) (cf. Horváth and Steinebach[6, Example 1.1],), and on a Poisson process (cf. Horváth and
Steinebach[6, Example 1.2]). More specifically, we simulated the increments of the partial sums as i.i.d.
r.v.’s, and the increments of the Poisson process were taken at times 1,2, . . . (instead ofi T

N
, i=1, . . . , N ,

since this means only a scaling of the underlying r.v.’s). Other than that, we used the following parameters:

(1) N = 100, 200
(2) N∗ = 1

4N , 1
2N , 3

4N

(3) d := a∗ − a = 0,1,2,3,4

HereN∗ is the change-point, and we are in the case of the null hypothesis ford = 0.
Due to similarity of results and limitation of space we present only a small part of the simulation study

in Figs. 1and2 and just show some graphs for the sake of visualization. For Tables containing simulated
critical values for the null hypothesis as well as permutational quantiles, we refer the interested reader to
Kirch and Steinebach[10]. In the latter preprint, we also discuss the i.i.d. case and give simulated�-resp.
�-errors for both methods, the asymptotic and the permutational one.
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Fig. 1. QQ-Plots ofMT (underH0) againstMT (R) for N = 100,N∗ = 75.
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Fig. 2. Size-power-curves ofMT (R) with respect to the asymptotic distribution and with respect to the permutation distribution
for N = 100,N∗ = 75.

Since we were interested in getting a better impression of how well the permutational distribution fits
the real null distribution, we created quantile-quantile-plots of the one against the other. More precisely,
we did the following:

(1) Exact distribution: Determine the empirical distribution function ofMT (underH0) based on 10 000
samples of lengthN.

(2) Permutation distribution: Determine the empirical distribution function ofMN(R) (under particular
realizations ofH0 orH1) based on 10 000 permutations.

(3) Draw a QQ-plot of the null distribution from step 1 against the permutation distributions from step
2. Different colors represent different changes in the mean.

The results are to be found inFig. 1.
We realize, that the permutation distribution fits the null distribution very well. Moreover, the result

does not depend on the alternative.
Next we were interested in how well the test performs—and also how well it performs in comparison

to the asymptotic one. For this reason we created size-power-curves of both methods under the null
hypothesis and under alternatives.
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We created these curves using the following algorithm:

(1) Simulate processZ of lengthN according to model (3).
(2) Calculate the empirical distribution function of the permutation statisticMT (R) based on 10 000

permutations.
(3) CalculateM =MT (Z), i.e. the value of the statistic for our sampleZ.
(4) Calculate thep-value ofMwith respect to the asymptotic distribution, i.e.P

(
sup0� t�1 |B(t)|>M).

(5) Calculate thep-value of M with respect to the permutation distribution from step (2), i.e.
P(MT (R)>M).

(6) Plot the empirical distribution function of thep-values from step (4) resp. (5) based on 1000 repetitions
in the interval(0,0.2).

We did this for samples under the null hypothesis and various alternatives, for partial sums as well as
Poisson processes.

What we get is a plot that shows the actual�-errors resp. 1− (�-errors) on they-axis for the chosen
quantiles on thex-axis, i.e. a plot that demonstrates very well the power of the test. So, the graph for the
null hypothesis should be close to the diagonal (which is given by the dotted line), and the alternatives
should be as steep as possible.

The results are presented inFig. 2.
On comparing the asymptotic quantiles with the simulated null quantiles we realize, that they are too

small. This is also confirmed by the size–power curves. Even though both methods apparently perform
well, we do have a better fit under the permutation method. Under the null hypothesis (d = a∗ − a = 0),
the solid line (representing the permutation method) fits better to the dotted line (the one we wish to get).
Moreover, under alternatives the lines representing the permutation method are also steeper, which means
that the power of this test is better than the power of the asymptotic one.

Moreover, we were interested in the standard deviation of the critical values obtained by the permutation
method. Under the null hypothesis (Poisson process,N= 100), we got a standard deviation of 0.01 for
the 90%-quantile and of 0.019 for the 99%-quantile; for the partial sums the standard deviation was even
smaller. The results are comparable for different parameters. As before, we used 1000 repetitions of step
(1) to (4) of the first simulation above.

Computing time is not a problem here. For example, the calculation of the permutation quantiles for a
series of length 100 takes approximately 3 s, and for length 200 approximately 5 s, using a Celeron with
466 MHz and 384 MB RAM and the software package R, Version 1.2.3.

4.2. Gradual change in the mean of a stochastic process under strong invariance

The following simulations are based on partial sums of normally distributed r.v. (with variance 1) (cf.
Steinebach[14, Example 1.1]) and on a Poisson process (cf.[14, Example 1.2]). More precisely, we
simulated the increments of the partial sums as i.i.d. r.v.’s, and the increments of the Poisson process
were taken at times 1,2, . . . (instead ofi(T /N), i=1, . . . , N , as above). The following parameters were
chosen:

(1) N = 100, 200
(2) N∗ = 1

4N , 1
2N , 3

4N

(3) d = 0, 1
4,

1
2,1,2,4
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HereN∗ is the change-point, and the null hypothesis is given ford=0.The parameterdhas been rescaled
as in Remark 5. More precisely, the increments of the change were chosen as(d/(1+�)N �)((i−N∗)1+�

+ −
((i − 1)−N∗)1+�

+ ). Note that the latter expression depends onT only throughN.
As in Section 4.1 we created QQ-Plots of the simulated null distribution vs. various permutation

distributions in order to get an idea on how well the approximation fits. The results can be found
in Fig. 3.

We realize that the matches (and thus the critical values) are quite good, but decline, if�<1, as the
change becomes more obvious. On the other hand this leads to a greater power of the test, since the critical
values are only too small if we are already under an alternative.

Moreover we have some kind of “step behavior” for the Poisson process. Apparently there are several
permutations leading to the same maximal value (i.e. the value of the statistic). This, however, does not
seem to influence the accuracy of the quantiles as will be shown by the size-power-curves. Remember
that there are 10 000 points in the plot.

Note that here (in contrast to the i.i.d case) the consistency of the test is not guaranteed, since the
estimator forb is unbounded under the alternative (which violates condition (2.4) of Steinebach[14]).

This is why we were also interested in the power of the test. As in Section 4.1 we created size-power-
curves of the asymptotic method as well as the permutation method. Note that for� = 0.25 we do not
know the asymptotic quantiles, sinceH0.25 is not known.

The results can be found inFig. 4.
First of all we realize, that the test gives good results for� = 0.25, where we do not have the asymp-

totic test available. Also for� = 0.5 the permutation test performs quite well, while the�-errors of the
asymptotic one are far too high. For�>1 both methods perform well, although the power under the
permutation method is always greater than the power under the asymptotic method. The plot on(0,1)
also shows, that the asymptotic curve (in contrast to the permutational one) is too high between 0.15
and 1. However, this is not a problem for the test, since one would hardly choose any critical value in
that range.

We also notice that the power declines with increasing�; for �=2 it is almost impossible to distinguish
between any alternatives. However this is not surprising, since for� = 2 (andN∗ = 3

4N ) we have an
effective mean difference of approximatelyd/16, which is not very much.

When we used̃d, instead ofd, andT = N (which changes̃d slightly), the critical values decreased
significantly. Nevertheless, this did not seem to affect the permutation method at all—apparently the
permutation quantiles were still smaller than the value of the test statistic for the unpermuted observations.
With the asymptotic method, however, we only obtained good�-errors for smaller̃d ’s, but observed a
sudden jump in the�-errors (up to 100%) as soon asd̃ got larger. This jump, e.g., occurred atd̃ = 2 for
the 90%-quantile with� = 0.5, N = 100,200.

Again, we were also interested in the standard deviation of the critical values obtained by the permutation
method. Under the null hypothesis (Poisson process,N =100,�=1), we got a standard deviation of 0.28
for the 90%-quantile and of 0.96 for the 99%-quantile; for the partial sums the standard deviation was
even smaller. As before, we used 1000 repetitions of step (1) to (4) from the first simulation.

For our simulations we used again the software package R, Version 1.2.3. On a Celeron with 466 MHz
and 384 MB RAM the calculation of the permutation quantiles takes approximately 10 s in the case of
100 observations, and 30 s in the case of 200 (using 10 000 permutations).
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