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Abstract

Approximations of the critical values for change-point tests are obtained through permutation methods. Both,
abrupt and gradual changes are studied in models of possibly dependent observations satisfying a strong invarianc
principle, as well as gradual changes in ani.i.d. model. The theoretical results show that the original test statistics and
their corresponding permutation counterparts follow the same distributional asymptotics. Some simulation studies
illustrate that the permutation tests behave better than the original tests if performance is measured &ydhe
p-error, respectively.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

A series of papers has been published on the use of permutation principles for obtaining reasonable
approximations to the critical values of change-point tests. This approach was first suggested by Antoch
and Huskovdl] and later pursued by other authors (cf. HuSkiRl&or a recent survey). But, so far, it
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has mostly been dealt with abrupt changes and independent observations. In many practical applications,
however, smooth (gradual) changes are more realistic, so are dependent observations.

In this paper, we shall discuss the use of permutation principles in the three models of a gradual change
in the mean of i.i.d. observations, an abrupt change in the mean or variance of a stochastic process resp
a gradual change in the mean of a stochastic process under strong invariance.

1.1. Gradual change in the mean of independent, identically distributed (i.i.d.) observations

Huskova and Steinebagf] investigated the following model:

_'u-}—d( m) +e;, i=1...,n, (1)
no /4

wherexy = max0, x); u, d = d,, andm = m, <n are unknown parameters, aed ..., ¢, are i.i.d.
random variables with

Ee; =0, O<vare; =c’(<00), Elei|*™ <00 forsomes 0. 2)

The parametey is supposed to be known.

Note that—in contrast to abrupt changes—the biggest difference in the mean hereds Imatt
d(*=")", and thus depends anmandy.

One is interested in testing the hypotheses

Ho:m=n vs. Hy:m<n, d#0.

The following test statistic, which is based on the likelihood ratio approach in case of normal errors
{e;i}, has been used:

n . y L —_—
T =1 100 G — k)X — X

1/2'
o, 1<k<n < nek . 2
Yo i = (S i)
i=1

wherea, denotes a suitable estimatorofAsymptotic critical values for the corresponding test can be
chosen according to the following null asymptotics (cf. HuSkova and Steing8pch

Theorem 1. LetX1, Xo, ... bei.i.d. rv's withvar X1 =¢2 > 0, and E| X1|2% < oo for some’ > 0. Then
forall x € R, asn — oo,

P (aT® = B, <x) > exp(-2¢7),

wherew, = /2 log Togn and g, = 8, (y) is as follows
(1) fory> 3

. 1/2
B, =2 log Iogn+|og(1 <2/+1> );

2y—1
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1.
(2) fory=3:
1
B,=2log logn + > log log log logn — log(4n);

1.
(3) forO<y<3:

1/(2y+1)
1-2 O Y Hy,
B, =2log logn + m log log logn + log (W) :

with H, as in Remark 2.2.10of Leadbetter et a[11] (e.g H1 = 1, H> = 1//=), and

o0
C=—Z+1 / X ((x 4+ 1)7 — x7 — px" 1) d.
0

Moreover 4, is assumed to be an estimatorco$atisfyings,, — ¢ = op((log log n)™1) asn — oo.
1.2. Abrupt change in the mean or variance of a stochastic process under strong invariance

This model has been considered by Horvath and Stein€lédcBuppose one observes a stochastic
procesgZ(t) : 0<t < oo} having the following structure:

at + bY (1), O<r<T™,

Z(’):{Z(T*)+a*(z—T*)+b*Y*(t—T*), r*<i<T, ©

wherea, b, a*, b* are unknown parameters, afid(z) : 0<¢ < oo} resp.{Y*(¢) : 0<t < oo} are (unob-
served) stochastic processes satisfying the following strong invariance principles:

For everyT > 0, there exist two independent Wiener procegs€s(s) : 0<r<T*} and{W7 (1) :
0<t<T — T*}, and some > 0, such that, fol" — oo,

sup |Y(t) — Wr(t)| =O(TY@)  as. (4)
0<r<T*
and
sup  |Y*(r) — Wi(n)| =O(TY @)y as. (5)
0<r<T-T*

Moreover, we assumg(0) = 0 andY*(0) = 0. It should be noted that only weak invariance has been
assumed in Horvath and Steinebd6l instead of the strong rates of (4) and (5), which are required
for later use here. Moreover, the procesgég)}, {Y (¢)}, and{Y*(¢)} could be replaced by a family of
processes$Zr (1)}, {Yr (1)}, and{Y; (1)}, T >0, since the asymptotic analysis is merely based on the
approximating family of Wiener processgé (1)} and{W;(¢)}, respectively.

One is interested in testing the hypothesis of “no change”, i.e.

Ho:T*=T,
against the alternative of “a change in the meafi‘at (0, 7)", i.e.

Hl(l):0<T*<T and a # a”,
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resp. “a change in the varianceZt € (0, T)”, i.e.
H? :0<T*<T and b#b*, buta=a"

Basic examples satisfying conditions (3)—(5) are partial sums of i.i.d. random variables and renewal
processes based on i.i.d. waiting times, but also sums of dependent observations (for details we refer to
Horvath and SteinebadB]).

It is assumed, that the process(r) : r >0} has been observed at discrete time paintst; y = i%,
1<i<N=N(T). LetAZ,r = Z(t;) — Z(ti—1) andAAZ,;T = Z(t;) — Z(ti—1) — AZ7. The following
statistics will be used:

k
Z(AZ, r—AZ7) } (6)

i=1

1 1
M7 = max —_— =
T 1</<<N{«/T bT

whereAZr = & 3", AZ; 7, and

1 o .,
—Z Zit —AZ7)",
i=1

’ﬂ

resp.

} , ()

2

Z(AZ @)

Mr = max
1<k<N T °or

whereAZ = L YN | AZZ, and

N
> ((Az r—AZr)? - = Z(AZI r—AZr) )

i=1 =1

~2
T

N| -~

Remark 2. The statisticd/; uses a slightly different variance estima?férthan the one given in Horvath

and Steinebackg]. It possesses, however, the same asymptotic behavior, since the ratio of the two
normalizations converges in probability to 1 under the null hypothesis, and to some positive constant under
the alternative (cf. Theorem 4.5.2 in Kirf9]). This modification is necessary for applying the permutation
method below, since, under the alternative, the permutation statistic (corresponding to the statistic used
in Horvath and SteinebadB]) does not converge to sglp, . 1 |B(?)|, but tocsupy <, <1 [B(#)[, ¢ >0,

¢ # 1in general, where is the asymptotic ratio of the two variance estimators. H@&@) : 0<r<1}

denotes a Brownian bridge.

The following null asymptotics hold under the above conditions (cf. Horvath and Steinfjgch
Theorem 3. If N = N(T) — oo andN = o(T1%/2+9) asT — oo, then under Ho,

Mr 3 sup [B(),

0<r<1

where{B(t) : 0<t <1} is a Brownian bridge
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Theorem 4. If N = N(T) — oo andN = o(TY2-1/(2+9)y asT — oo, then under Ho,

~ g
Mr— sup |B(1)],
0<r<l

where{B(r) : 0<r <1} is a Brownian bridge
1.3. Gradual change in the mean of a stochastic process under strong invariance

This model has been considered by Steineljadh Suppose one observes a stochastic procsss:
0<t < oo} having the following structure:

_ fat+by @) 0<r<T*,
5@ = {S(T*) Fa*(t —TH + b Yt —T*), T*<i<T, ®

wherea, b, b* and{Y (1)}, {Y*(¢)} are as in model 1.2 above*(t — T*) = a(t — T*) + d(r — T*)**7,
d =dr is unknowny > 0 is known. Again, the biggest difference in the mean here depenfis bhand
v, similarly as in the first model (1.1). Note that, instead of (4), Steinefib¢hassumed the following
weak invariance principle for the procegs(r) : 0<t < oo}, namely that, for every” > 0, there is a
Wiener procesgWy (¢) : 0<t < T*} such that

sup |Y(T*) = Y(T* —1) = Wr(0)|/tY®) =0p(1) (T — o). 9)

1<t <T*
The reason is that small approximation rates were required near the changé&-homit only in a
weak sense, whereas we need strong approximations for our permutation principles below. Here, too, the
processes$Z(r)}, {Y(t)}, and{Y*(z)} could be replaced by a family of process&s (¢)}, {Yr ()}, and
{Y;(}, T>0.
One is now interested in testing the null hypothesis of “no change in the drift”, i.e.

Ho:T*=T
against the alternative of “a smooth (gradual) change in the drift”, i.e.
H1:0<T*<T, d#0.

Basic examples fulfilling the conditions above are again partial sums of i.i.d. random variables and renewal
processes based oni.i.d. waiting times (cf. Steinefib¢gHor more details). As in model 1.2, we assume

that we have observed () : 1 >0} at discrete time pointg =i7 /N, and setAS; r = S(#;) — S(ti—1).

The following test statistic is used:

N _
N ‘Z‘:l (i — k) (ASiT — ASN)‘
TIS/Z) = |—=5 Mmax : (10)

72 12
Thy 1Sk<N [ N_k .2 1 (x~N—k ;)2
2t 17—y =

WhereA_ST = % ZlNzl ASZ',T, andg% = % ZzNzl(ASi,T — A_ST)Z.
Steinebaclil4] assumed a slightly different weight, which is asymptotically equivalent to the one used
above. However, it turns out, that the above weight gives much better results for the permutation statistic,
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which is due to the fact, that it is the maximume-likelihood statistic under Gaussian errors. The results
obtained in Steinebadi4] remain valid.

Remark 5. The magnitude ofl is completely different from that of in the first model. However,
d :=d(1+y)T7/N is comparable to it, which can easily be seen via the mean value theorem.

Similar to Theorem 1, the following null asymptotic applies (cf. Steineljadh:

Theorem 6. If (9) holds N = N(T) - ccandN = O(T) asT — oo, then underHp, forall x € R:
PanT? — By <x) — exp—2¢ ),

wherexy = /2 Tog log N and 8, = B (7) is as in Theoreni (with N replacingn).

2. Rank and permutation statistics in case of a gradual change under i.i.d. errors

In order to derive distributional asymptotics for the permutation statistics, we shall make use of the
following theorem for the corresponding rank statistics. In the gasé, it was proven by Slabfi 3].

Theorem 7. LetR = (R4, ..., R,) be a random permutation afl, ..., n), anda,(d), ..., a,(n) be
scores satisfying

1 n _
=Y (an(i) — @y)®= Dy, (11)
n i=1
and
1 n . s
=D lan(@) —a@n[**< Dy, (12)
i=1

whereD1, Do and are some positive constanenda, = % > I 1 an(i). Then for fixedy > 0 and all
x € R, asn — o0

P(fann(R) - ﬁn <x) - ex[x_zefx),
where
n . _ '}) . _ —
i 1301 G — k) (an(R) — @)

12"
O'n(a) 1<k<n Zn_k 2 1 n—k . 2
i=11! a\2ui=1!

Heres2(@) = 1 Y7, (a.(i) — @,)?, the variance ofa, (R1), %, = /2 log Togn andp, = §,,(y) is as in
Theoreml.

Tn(R) =

In the proof of this theorem we apply the following weak embedding:
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Theorem 8. Leta, (1), ..., a,(n) be scores satisfyin@ 1) and(12). Then on a rich enough probability
spacethere is a sequence of stochastic proce$sbgk) : 1<k<n} (n=1,2,...) with

(T (k) : 1<k<n}2{ Z(anm(z)) ~a,): 1<k<n}

Vai(@

where (n,(1), ..., m,(n)) is a random permutation ofl, 2, ..., n), 62(@) = L 37, (a,(i) — @,)?,
ay, = %Z?:l ay (i), and there is a fixed Brownian bridgeB(r) : 0<t <1} such thatfor 0<v < min

5 1
22+0)° 4)>

max (K=K 1, (k) — B(k
Km( - ) S 'f 2(6) = B(k/n)

The proof goes along the lines of Theorem 1 of Einmahl and M&oby replacing the Hajek-Rényi
inequality (cf.[4, p. 110) resp. Lemma 13 there with the following lemmas:

=0Op(D).

Lemma 9. Let M(0) = 0, M(1), ..., M(m), m>1, be a mear0, square-integrable martingajeand
a(l)>--->a(m)>0Dbe constants. Thefor 1 <s<2andl1>0,

ism

1 m
-1 . . ;
P (lmax a; | M@)| >z> <2 = Z A E\M3) — MG — 1)

Proof. Confer Lemma 9 in H&ausler and Mas¢s], or Lemma 5.1.2 in Kirch[9] together with
Einmahl[3]. O

Lemma 10. Leta, (1), ..., a,(n) be scores witty_"_; a,(i) = 0,and (n, (1), ..., n,(n)) be a random
permutation as in Theore® Then for 1<i <n and1<s <2,

. K
i

1 n
E : coo L S
Zamn(])) <2mint,n i)~ Zmnun
j=1 j=1
Proof. Confer Lemma 5.1.3. in Kirc[@] and Masor{12]. O

Now we have the tools to prove Theorem 7:

Proof (Theorem J. First note that

n—k n—k n—k 1 n—k 2 n—k

i=1

n—k
. 1 :
>k / x%dx = n — k)2, (13)
0 2y+1
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Now, from Theorem 8 withh = O, uniformly ink € [1, n/2]:

1 k - . \/m
on () ; (an(Ry—i+1) — @n) = /nB (;) +Op ( - )

=/nB (S) + Op(k).

Since{nB (%) :k=0,...,n} Z {Wk) — W) : k=0,...,n}, where{W () : t >0} is a standard
Wiener process, we conclude from the law of the iterated logarithm

1 1301 G — k) (an(R) — @)
0, (@) n—log n<k<n ne . 2\ /2
(Zictim - H(zte)’)
1 S = 0= D) S @ (Raisn) — @)
- 0,(8) l<l£rl?(§§}n 2\ 1/2
(Zlei?/ - %(Zf:lio )
S - - D) (W =1+ 1) - W)
=Op |, max N
(Zf:lizy - %(Zf:l”) )
‘Z, (=D (
+Op

1<k<|og n (Zi:]_iz“/ B 5(25211. /) >1/2
o0 (viag Togn).

Hence it suffices to investigate the maximum over [1, n — log n]. Let

201G — k)X — 230 X))

? = max
" 1<k<n—log n Nk 1 nk o 2 1/2
(Zi:ll - Z(Zi:l”) )
resp.
5o X =LA G) — TG - D)

1<k<n—logn k 1/2
Y% — ‘(Z? 1”)

be the corresponding test statistics based on M(@, 1) random variableX; resp on the distributionally
equivalent versions af, (R;). We chooseX; such thats (%) = % (Z X =AY X, ) , With {B(1)}
denoting the Brownian bridge of Theorem 8.
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By the same application of the law of the iterated logarithm as above,

"G —k) (X -1y X,
max Ll -0 (X — Z’_ll 12)| = 0p< log log n) .
n—logn<k<n ek . 2 n—k o N\ 1/
D1 (Zi:l”)
Sinces, T, — —p,= (anT —B,) +an(T ~T, n), and since Theorem 1 implies th:a,tT — B, has alimiting

Gumbel distribution, it sufflces to show thﬁ;t(T — T ) = op(l). We setY;, := I1,(i) — (i — 1) —
(X; — X)), whereX, = = lel X;,andS,(]) := lel Y:».Then,

|Tn_Tn|

n

f(i — k)" Yin

i=1

< max

1 | —
<k<n— Ogn\nzn 2/_(Zn 1l/)

—k
n
<. max Z 10 +k = DI = =17
o vt (o)

< max (k(n —P\ Ly (k) — B k)
S i<k<n n k(n — T " ;
n— 7 1/2—v
§ max " (+k—Dn—-1—-k+12) @ — (1 — 1),

1<k<n—logn k 2
! ny iy i%— Zn 1 ”)

) as in Theorem 8. This theorem also implies

k‘

Il
iR

0
2(2+9)’ 4

max (k(”_k)>v " 'iﬁ (k)—B(E)‘—o (1)
1<k<n n Vk(n —k) \/ﬁ " n =P

which means, that it suffices to show

where O<v <min (

;\,

n—

I+k—1mn—1—k+ 1)
o (I + )(n +1)) @ — (1 — 17

/ \/ Zn —k . i2 Zn ]I_{l/)z

12,

max
1<k<n—log n

[|
[N

=0((log logn)~
The latter rate can be obtained through a straightforward calculation, taking (13) into account together
with the following estimate:
n—k n—k 2
n Z i (Z i7> >cyn(n — k)zy'"l for all n>n,, (14)
i=1 i=1

wherec, >0 andn, depends only on. This completes the proof. For details we refer to Kiféf,
Corollary 5.2.3. O
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We are now ready to study the following permutation statistic:

TOR) = 1 ax 21 (= L (Xr — X))
n a'n 1<k<n n—k . 1 ok 2 1/2°
(i)

whereR = (R1, ..., R,) isarandom permutation @1, . . ., n). We consider the conditional distribution
of Tn(l)(R) given the original observation¥, ..., X,, i.e. the randomness is only generated by the
random permutatioR = (R1, ..., Ry).

The following theorem proves that this statistic conditionally on the given observations has a.s. the

same asymptotic behavior—both under the null hypothesis and under the alternative—asiﬁjrét of
under the null hypothesis (cf. Theorem 1).

Theorem 11. Let X, ..., X, be observations satisfyir{@) and(2). Moreover let|d | =|d,| < D. Then
forall x € R, asn — oo,

P, TV(R) — B, <x | X1, ..., X,) — exp(—2¢%) a.s.,
wherew,, B, = p,(y) are as in Theoren.

Proof. Itis sufficient to verify the assumptions of Theorem 7 wiftii) = X;,i =1, ..., n. First we have

n
7n =u+e, + dnniyil Z (- mn)i-
=1

Hence

1« 1« 1«
=) Xi=X0P22 ) (e =@+ 2dun ™ = Y (= ma)e;
i=1 i=1 i=1

n -

n—nmy 1

n
—2d,n771 Z R Zei.
=1 n i=1

It is enough to show that the second term converges to 0 a.s., because then, by the strong law of large
numbers,

R -
lim inf = E (X; — X,)?>vare; a.s.
=

Now, by partial summation,

n—1

Y oG —mp)lhei=Sn—mp)y =Y Si(li +1—mp) — @ —m)L), (15)
i=1 i=1
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wheres; := 2921 ej, and, from the law of the iterated logarithm,

1 = o )
—1 2 SiG 1=l — (= m)l)
i=1

n—1
=0 (n,_]:H- Z i3 +1— mp) — (i — m,,)b) =01 as.,

i=1

where the last estimate follows via the mean value theorem. Using (15) together with the strong law of
large numbers, we get indeed,/as> oo,

dn n . )
L 2 ma)e
i=1

d _ Y Sn dn n-1 N "
_ h(n mn)+ on . ZSi((i +1-— mn)i — @ _mn)i) —- 0 a.s.
i=1

n’ n nt

On the other hand, for suitable constanendC, andn >ng,
1« —
= X = X P
n “
i=1

1 & 1 &
= - i —en+dy - | — ny__ [ — ny
n;e en + dpn ((z M) n;( m)+>

1 n n—my
<c> Z lei 240 4 e, |20 4 ¢ d2Hon =201 Z ;2079
n

i=1 i=1

249
n—my
+cd3+5n—2‘/—5"/—2—‘><2 1“/) <C as.
=1

2+6

An application of Theorem 7 now completes the prodf]

3. Permutation statistics for changes of stochastic processes under strong invariance

Next we study models 1.2 and 1.3. For model 1.2, we first need to investigate the asymptotic behavior
of the corresponding rank statistic:

Theorem 12. Let(Ry, ..., R,) be arandom permutation @1, . .., n), anda, (1), ..., a,(n) be scores
satisfying the following conditions
2”: (i) =0, Z az(i) — 1, (16)
n n

i=1 i=1
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and

1 5.
o 121ia<Xn a, (i) — 0. a7

Then asn — oo,

k

> an(Ri)

i=1

g
— sup |B(@)l,
0<r<1

1
max —

1<k<n /n

where{B(¢) : 0<r <1} denotes a Brownian bridge

Proof. It follows from Theorem 24.2 in Billingslej2]. O
Lemma 13.

(1) Let X1, ..., Xu, be independent ris with EX# <D < oo for all i, n. Then

1 n
- Z(Xm —EXip) > 0 a.s. (n— o0).
—
(2) Let{W,(z):t>0}, n € N, be Wiener processes and f be a positive function,ahen

W,(f(n))=0G/f(n)logn) a.s. (n— 00).

Proof. (1) It follows immediately from Markov’s inequality.
(2) Cf. Kirch[9], Theorem 10.0.2. O

In the sequel we assume that there is a 1-1-correspondence beétveeet?’, which is necessary to
get a countable triangular array M, and, in turn, allows us to use the preceding lemma.
Moreover, we assumg* = 0T, 0< 0<1, andN = o(T1~%/@+9)) | et N* = | M= | = 0N (1 + 0(2))

and
T ) T .
b<Y (l—)—Y((l—l)—)), i <N¥,
N N

AY; = b(Y(T*)—Y(NNT)>+b*Y*(W—T*), i=N*+1 (18)

o (v (L) ov (a-nDor)) e

Lemma 14. (1) It holds asN — oo,
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(2) (@)Fors=2,3,4, asN — oo,

NG=2)/2 N
Z (AY)® — EWQ)* 0 + (1 — 0 (") a.s.,

s/2
T i=1

whereW (1) has a standard normal distribution

(b) Forv>0, asN — oo,

NO—2)/2

—rr l:1|AY,-—H|":O(1) a.s.

(3)Forv>0,asN — o0,

NO—2)/2
— 1Lnla\x IAY; — AY|' =0(1) a.s.

Proof. The proof makes use of (3)-(5) in combination with Lemma 13 (for details confer Kirch
[9, Theorem 10.0.3] O

We are now prepared to investigate the following permutation statistics:

k
1 _
Mr((R) = ,Max { Z(AZR,»,T —AZ7)

and
M7 (R)= max { ! Z(AZR . AZT)}
1<k<N | JT o1
Here againR = (R1, ..., R,) denotes a random permutation(@f . . ., n).

Theorem 15. Let {Z(¢t) : r>0} be a process according to mod€). Let T* = 0T, 0<0<1,
N =o(T1-22+9) andin(2) alsoa = a*. Thenforall x € R, asT — oo,

(1) PM7(R)<x|Z(t),0<t<T) — P( sup |B(t)|<x) a.s.
0<r«l

) P(Mr(R)<x|Z(1),0<t<T) — P( sup IB(I)|<X) a.s.,

0<r«l

where{B(t) : 0<t <1} is a Brownian bridge
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Proof. First note that, for the increments £ (r)}, we have

T . *
aﬁ—i-AYi, ISN7,
T T .
AZir=1{a T*—N*ﬁ +a* (N*+1)N_T* + AYy+y1, i=N*+1,
a N—i_ i l/ + ’

with AY; as in (18).

Now, for the proof of (1), consider the scores(i) = (1/13T)«/N/T(AZ,-,T —AZir),i=1...,N.
Obviously,Zf\’:l ay(@)=0and YN Zf-vzl alzv(i)zl, which means that itis sufficient to verify assumption
(17) of Theorem 12.

In the sequelc andC denote suitable constants which may be different in different places. We first
consider the caseé< 1 anda # a*. Here, for sufficiently largd’,

1 & N__
72 2 -—
bo== % AZlp - —ArZ
Tl:l T
1 Y N__ N 1
_ 2__ N2 VAV o * * RN AY
—7;&1[ - X;AYI) +(BY)? =27 @T* +a*(T — T*)AY
2ab T 2a*b* T
— — YT —T* —Y*[(N*+1)— —T*
N ( N) ( =1 (( Y ))
2 *
T\ (N +1)——T AYNs 11
>cﬁ a.s., (19)
where
a%, léN*,
T T
Aa; = a(T*—N*N>+a*((N*+1)N—T*), i=N*+1,
T
ar i>N*+2,

andAa = L3N Aa; = L (aT* + a*(T — T%). The last inequality in (19) follows from the
fact that the first terms are the dominating ones. Indeed, sined, a # a*, for T sufficiently
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R e e e N T
_ 2T g1 o)+ @2 Lot — ) — 200 Lot — o)) — @2
= (1+ o(1)) <a 0= 0+ (@)? 01— 0) — 2aa*-0(1 0)) 3
T § Lo T T
= (14 0(1) <N9(1_ 0)(a—a )2> —(a )2ﬁ>cﬁ a.s. (20)

Next we prove that the other terms are of smaller order and hence are negligible. Lemma 13(2) gives

2ab (TN L 200 (o (s D g
W () Cas)

N N
2 (T 22 (e oy —we (v ek 7)) 20 Y
-~ 7 N N N N
o) (—V TNIO g N) a.s. (21)

SinceT* — N*T/N<T/N and(N* + 1)(T/N) — T*<T/N, we also get

2 T T
‘7 (a (T* — N*N> —|-Cl>X< <(N* + l)N — T*)) AYN*—i—l

<2 * <b‘WT* W(N*Z>' b* W*(N* 1yl T*)D
< Ual+ e L 1bHWAT™) — N )| T N+ D+ -

1/(2+9) /T Toa N
+O(T ):O(M> a.s.

N N

(22)

Lemma 14 further implies

N N 1
Z (AYi)Z—?(H)Z—ZT(aT*+a*(T —T*)AY =0 (1
i=1

Lo N, VT N) as.,

1
T N N

which proves (19). Note that

T—-T
(@ —a*) Y i<N*,
T, l:N*+1,

(a* —a)—, I>N*42,
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for some <9< 1, hence

T —T* 2
< N (a — a*)) , T*<T/2,
max (Aq; — Aa)? = 5
1<i<N T*
<W(a — a*)) s T* > T/2

On combining (19), Lemma 14 (1) and Lemma 14(2(a)) we finally get (17), since

1 1 1 5
v 1n}zix aN(z)<2 7;2 123\Lx (Aa; —Aa) +27T r\rlzix (AY; — AY)

21 2 2 2
On the other hand, if = 1 ora = a*, we obtain from Lemma 14,

1Y 1Y N
== ) (AZir —ArZ)P =2 ) (AY)* — — (AY)?
=1 i=1

1=
— 0%+ (1L —0)(b"?=c>0 as., (24)
for T sufficiently large. Using Lemma 14 (3), we arrive at (17), i.e.
1 1
~ 1@2)3} aN(t) _AzT lmax (AY; —AY)?> >0 a.s., (25)

which completes the proof of (1).

For the proof of (2), considery (i) = (1/v/Ter) (AY; —AY)? — (1/N) Y[ (AY; — AY)?). It suffices
again to verify the assumptions of Theorem 12.

Sincea = a*, we get% >N a? (i) = 1. Similarly as above, Lemma 14 gives

— Y _(AY; - AV)* > 3(0b* + (1— 0)pHh  ass.,
i=1

and
2

N
(br)?= (% > (AY)?— gﬁz> = (00° + 1 -0 (®")?? as. (26)
i=1

From Jensen’s inequality we conclude

Jlim g’c‘%: lim ( i Z(AY N A )2)

i=1
=3(0b* + (L — 0)(b*)*) — (0b% + (1 — 0)(b*)?)?
>2(0b* + (1—0)(bH*H >0 a.s.
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So, an application of Lemma 14 results in

2

Z| =

N

1 2 1 —

2 2

max k) = —= max AY, — AY) — — AY; — AY

l<k<NaN( ) T2 <k<N<( ¢ ) N ;( l ) )
1=

N _ 1(1 N\

<Cc | = AY, — A+ —| = AY; — AY)?

C | 7z ,max (AY ) +N(T ;( ; )) —0 as
1=

which completes the proof of (2).0

Finally we turn to model 1.3 and investigate the permutation analogue of (10), i.e. the statistic

(X4 G~ kL ASk 1 — AS)|
- VL
(ot - 4 (2t )’)

The following asymptotic applies:

77 (R) =

——— max
T '}5% 1<k<N

Theorem 16. Let {S(¢) : >0} be a process according to mod@). Assumel™* = 07, 0< (<1, and
N/Tog N = o(min(T1~%/(2+9) 71/247)) Thenforall x € R, asT — oo,

PayTP(R) — By <x|S(),0<1<T) - exp(—2¢ %) a.s.,
whereay, fy = By (y) are asin Theoren (with N replacing 1.
Proof. First note that, for the increments {f(¢)}, we have
AY; i<N¥*,

~((N*+1T 14y
AYN*+1+d<%—T*> , i=N*+1,

A /(iT L i — 1T Iy
AY,-*+d<(lW—T*> —(%—T*) , i=N*+2

In case of the null hypothesis, i.e. fér= 1, we can immediately verify the assumptions of
Theorem 7 fow, (i) := /(N/T)AS; r by using Lemma 14.
Onthe other hand, in casebk 1, we useaz, (i) := (N/T1+"V)AS,-,T. First, viathe mean value theorem,

i——1*) —(i-1n=—T*
N N

A+ (2+6) Nl+6 T(1+",') (249)
) =0 ( N ) =0(1),

AS,',T =

N1+ N 2+9

T @+)(2+9)
i=N*+2

+‘(N* + DN —T*

T (14 (2+6) N2+
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which, together with Lemma 14, gives

240

AS, =0(1) as.

mASi,T - m

Zl e
i1

In order to verify the second assumption of Theorem 7, we first realize, by using partial summation,
the mean value theorem and Lemmas 13 resp. 14, that

14y (l _ 1)T 14y (N* + l)T 1+y
* *
T2+2” ( NZ*+2 a << *> - < v > +AYN*+1< v )
l
N2 1+ N-1 * 1+
T2+2/AY ((T %7 — <TT - T )
N-1 1+y
- Z (bY(T)+bY (kN—T (k+1)N—T

k=N*+2
T 1+",' T 1+'}'
2lk——-T* k—1)— —T*
( N ) " <( N )

N % * vk * T %
_m<bY(T)+bY ((N +1)N_T>)

* T * e * r * i
X(((N +2)N_T) —2<(N +1)N_T) )
bY(T*) +b*Y* kT T*

(T*) + ( v )‘

Nlog N NTY@+0)

N

1
=0(1)+0 (Tm >

k=N*+1

Next we have

N 14y 1+y 2 2(1+y)

i=N*+2
N-1 : 2y N-1 \

1 I A X 2y

>=@492 Y (= -0) >2@+? (——9>d

N( +7) | <N ) N( +7) " N X
i=N*+1
(1 +/)

-1+ 0(1)) (1 0)2+1,
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which shows that

5 2
d2N N T § 14y . T i 1+y i} T . 2(14y)
T2+2 _;+2((’N_T) —((z—l)N—T> +<(N +1)N—T)
1=
d?N? (1 TR (1— 02+t

On combining (27), (28) and Lemma 14, we get indeed, for ldrge
N N
w777 2 (ASir — ASp)?=>c(0)
i=1

with somec(6) > 0, which completes the proof.J

4. Simulations

So far, we have only proven that the permutation principle is asymptotically applicable for processes
satisfying models 1.1 to 1.3. Now we want to describe the results of some simulation studies to get an
idea, how good the permutation method is in comparison to the original method. However, we abstain
from giving the results in the i.i.d. case here due to limitation of space. The results are very similar to
those of the gradual change, in particular for the case of partial sums.

4.1. Change in the mean of a stochastic process under strong invariance

The following simulations are based on partial sums of normally distributed random variables (with
variance 1) (cf. Horvath and Steinebdéh Example 1.1), and on a Poisson process (cf. Horvath and
Steinebaclie, Example 1.2)]. More specifically, we simulated the increments of the partial sums as i.i.d.
r.v.’s, and the increments of the Poisson process were taken at tides 1(instead ofl i=1....N,
since this means only a scaling of the underlying r.v.’s). Other than that, we used the following parameters:

(1) N =100, 200
1 1 3
B)d:=a*"-a=0,1234

Here N* is the change-point, and we are in the case of the null hypothesis=$db.

Due to similarity of results and limitation of space we present only a small part of the simulation study
in Figs. 1and2 and just show some graphs for the sake of visualization. For Tables containing simulated
critical values for the null hypothesis as well as permutational quantiles, we refer the interested reader to
Kirch and Steinebacfi0]. In the latter preprint, we also discuss the i.i.d. case and give simulatesp.
p-errors for both methods, the asymptotic and the permutational one.
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Fig. 2. Size-power-curves a7 (R) with respect to the asymptotic distribution and with respect to the permutation distribution

for N =100,N* = 75.

Since we were interested in getting a better impression of how well the permutational distribution fits
the real null distribution, we created quantile-quantile-plots of the one against the other. More precisely,

we did the following:

(1) Exact distribution: Determine the empirical distribution functiordff (underHp) based on 10 000

samples of lengtiN.

(2) Permutation distribution: Determine the empirical distribution functiom@f(R) (under particular
realizations ofHy or H1) based on 10 000 permutations.
(3) Draw a QQ-plot of the null distribution from step 1 against the permutation distributions from step
2. Different colors represent different changes in the mean.

The results are to be found Fig. L

We realize, that the permutation distribution fits the null distribution very well. Moreover, the result

does not depend on the alternative.

Next we were interested in how well the test performs—and also how well it performs in comparison
to the asymptotic one. For this reason we created size-power-curves of both methods under the null

hypothesis and under alternatives.
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We created these curves using the following algorithm:

(1) Simulate procesa of lengthN according to model (3).

(2) Calculate the empirical distribution function of the permutation statigtigR) based on 10 000
permutations.

(3) CalculateM = My (Z), i.e. the value of the statistic for our samgle

(4) Calculate th@-value ofM with respect to the asymptotic distribution, ile(sup)g, <11B(®)|> M).

(5) Calculate thep-value of M with respect to the permutation distribution from step (2), i.e.
P(M7r(R) > M).

(6) Plotthe empirical distribution function of tipevalues from step (4) resp. (5) based on 1000 repetitions
in the interval(0, 0.2).

We did this for samples under the null hypothesis and various alternatives, for partial sums as well as
Poisson processes.

What we get is a plot that shows the actuadrrors resp. - (-errors) on they-axis for the chosen
guantiles on the-axis, i.e. a plot that demonstrates very well the power of the test. So, the graph for the
null hypothesis should be close to the diagonal (which is given by the dotted line), and the alternatives
should be as steep as possible.

The results are presentedhig. 2

On comparing the asymptotic quantiles with the simulated null quantiles we realize, that they are too
small. This is also confirmed by the size—power curves. Even though both methods apparently perform
well, we do have a better fit under the permutation method. Under the null hypotthesis(— a = 0),
the solid line (representing the permutation method) fits better to the dotted line (the one we wish to get).
Moreover, under alternatives the lines representing the permutation method are also steeper, which mear
that the power of this test is better than the power of the asymptotic one.

Moreover, we were interested in the standard deviation of the critical values obtained by the permutation
method. Under the null hypothesis (Poisson proclss,100), we got a standard deviation of 0.01 for
the 90%-quantile and of 0.019 for the 99%-quantile; for the partial sums the standard deviation was even
smaller. The results are comparable for different parameters. As before, we used 1000 repetitions of stej
(1) to (4) of the first simulation above.

Computing time is not a problem here. For example, the calculation of the permutation quantiles for a
series of length 100 takes approximately 3 s, and for length 200 approximately 5's, using a Celeron with
466 MHz and 384 MB RAM and the software package R, Version 1.2.3.

4.2. Gradual change in the mean of a stochastic process under strong invariance

The following simulations are based on partial sums of normally distributed r.v. (with variance 1) (cf.
Steinebach14, Example 1.])]and on a Poisson process ((f4, Example 1.2] More precisely, we
simulated the increments of the partial sums as i.i.d. r.v.’s, and the increments of the Poisson process
were taken attimes, 2, . .. (instead of (T/N), i =1, ..., N, as above). The following parameters were
chosen:

(1) N =100, 200
1 1 3

(3)d=0,%.3.124
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HereN* is the change-point, and the null hypothesis is givefei0. The parameted has been rescaled

asin Remark 5. More precisely, the increments of the change were chaggilas y) N7) ((i — N*)f’ —

((Gi—1) — N*)f”"). Note that the latter expression dependg amly throughN .

As in Section 4.1 we created QQ-Plots of the simulated null distribution vs. various permutation
distributions in order to get an idea on how well the approximation fits. The results can be found
in Fig. 3

We realize that the matches (and thus the critical values) are quite good, but degliad,, ifis the
change becomes more obvious. On the other hand this leads to a greater power of the test, since the critica
values are only too small if we are already under an alternative.

Moreover we have some kind of “step behavior” for the Poisson process. Apparently there are several
permutations leading to the same maximal value (i.e. the value of the statistic). This, however, does not
seem to influence the accuracy of the quantiles as will be shown by the size-power-curves. Remember
that there are 10 000 points in the plot.

Note that here (in contrast to the i.i.d case) the consistency of the test is not guaranteed, since the
estimator fob is unbounded under the alternative (which violates condition (2.4) of Steing¢b&jgh

This is why we were also interested in the power of the test. As in Section 4.1 we created size-power-
curves of the asymptotic method as well as the permutation method. Note that{0:225 we do not
know the asymptotic quantiles, Siné® o5 is not known.

The results can be found kig. 4.

First of all we realize, that the test gives good results)fer0.25, where we do not have the asymp-
totic test available. Also foy = 0.5 the permutation test performs quite well, while therrors of the
asymptotic one are far too high. Fpr- 1 both methods perform well, although the power under the
permutation method is always greater than the power under the asymptotic method. The(pldt)on
also shows, that the asymptotic curve (in contrast to the permutational one) is too high betifeen 0
and 1. However, this is not a problem for the test, since one would hardly choose any critical value in
that range.

We also notice that the power declines with increasirigr y = 2 it is almost impossible to distinguish
between any alternatives. However this is not surprising, since fo2 (andN* = %N) we have an
effective mean difference of approximatelyl6, which is not very much.

When we used, instead ofd, and7 = N (which changed slightly), the critical values decreased
significantly. Nevertheless, this did not seem to affect the permutation method at all—apparently the
permutation quantiles were still smaller than the value of the test statistic for the unpermuted observations.
With the asymptotic method, however, we only obtained go@drors for smallee’s, but observed a
sudden jump in thg-errors (up to 100%) as soon dgjot larger. This jump, e.g., occurreddi 2 for
the 90%-quantile with = 0.5, N = 100, 200

Again, we were also interested in the standard deviation of the critical values obtained by the permutation
method. Under the null hypothesis (Poisson prockss, 100,y = 1), we got a standard deviation of 0.28
for the 90%-quantile and of 0.96 for the 99%-quantile; for the partial sums the standard deviation was
even smaller. As before, we used 1000 repetitions of step (1) to (4) from the first simulation.

For our simulations we used again the software package R, Version 1.2.3. On a Celeron with 466 MHz
and 384 MB RAM the calculation of the permutation quantiles takes approximately 10 s in the case of
100 observations, and 30 s in the case of 200 (using 10 000 permutations).
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Fig. 3. QQ-Plots ofr,i,z) (under Hp) againstT,fz)(R) for N = 100, N* = 75. (a) Partial sumy = 0.25, (b) Poisson process,
y=0.25, (c) partial sumy = 0.5, (d) Poisson process= 0.5, (e) partial sumy =1, (f) Poisson process= 1, (g) partial sum,
y =2 and (h) Poisson processs= 2.
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