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ASYMPTOTICS OF SOME ESTIMATORS AND 

SEQUENTIAL RESIDUAL EMPIRICALS 


IN NONLINEAR TIME SERIES1 


Michigan State University 

This paper establishes the asymptotic uniform linearity of M- and 
R-scores in a family of nonlinear time series and regression models. It also 
gives an asymptotic expansion of the standardized sequential residual 
empirical process in these models. These results are, in turn, used to 
obtain the asymptotic normality of certain classes of M-, R- and minimum 
distance estimators of the underlying parameters. The classes of estima- 
tors considered include analogs of Hodges-Lehmann, Huber and LAD 
(least absolute deviation) estimators. Some applications to the change 
point and testing of the goodness-of-fit problems in threshold and ampli- 
tude-dependent exponential autoregression models are also gwen. The 
paper thus offers a unified functional approach to some aspects of robust 
inference for a large class of nonlinear time series models. 

1. Introduction. This paper establishes asymptotic uniform linearity of 
M- and R- scores and an asymptotic expansion of the standardized randomly 
weighted sequential residual empirical process in a family of nonlinear time 
series and regression models. These results are then used to derive the 
large-sample distributions of certain classes of M-, R- and minimum distance 
(M.D.) estimators in these models. Section 2 gives some applications of these 
results to the estimation, goodness-of-fit testing and the change point prob- 
lems in some threshold and amplitude-dependent exponential autoregression 
(EXPAR) models. 

More precisely, let m A p A q 2 1be fixed integers, n 2 m be an integer, 
fl be an open subset of the m-dimensional Euclidean space Rm, R = R1, t' 
denote the transpose of a p X 1vector t E RP and lltll its Euclidean norm. 
Let F be a distribution function (d.f.) on R; { E ~ ,  i = 1,2, .. . } be independent 
and identically distributed (i.i.d.) F random variables (r.v.'s); {Zni, i = 

1,2, ...,n} be q-dimensional observable independent r.v.'s taking values in 
Rq, independent of {E,}; and Yo := (Xo,. . . , be an observable r.v., 
independent of both { E ~ ,i = 1 ,2 , .. . }  and {Z,,, i = 1,2, .. . ,n}; and let 3, := 

a-field{Yo;Znl},%i := a-field{Yo;E ~ ,1I j < i; Znk ,  1I k I i}, 2 I i In. 
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381 M- AND R-ESTIMATORS IN NONLINEAR TIME SERIES 

In a pth-order nonlinear time series model considered here, one observes 
an array of the process {X,,, i = 1,2, .. . ,n} satisfying the relation 

for some 0 E 0, where Yno := Yo, Y n , , - l  := (Xn,,- , , .. . ,Xn,i-p)', and h is a 
known function from 0 x RP x R4 to R that is measurable in the last p + q 
coordinates so that hn,(t) := h(t,Yn,,_,,Zni) is %,-measurable, t E 0, 1I 
i I n. The r.v.'s {Z,,} may represent regression or trend variables in these 
models. 

The above models include classes of nonlinear regression (NLR) models 
and nonlinear autoregression (NLAR) models. In NLR models, h(0, y, z) = 

y(0, z), and in NLAR models, h(0, y, z) = H(0, y), where y (HI  is a known 
function from 0 x R4 (fl x RP) to R that is measurable in the last q ( p )  
coordinates. In NLR models, {Z,,} represent the known design variables that 
can be either random or nonrandom. Upon choosing h(0, y, z) = H(0, y) + 
y(0,z) in (1.1), one obtains a class of models where autoregression and 
regression is present in an additive and nonlinear fashion, rather an impor- 
tant class of models in statistics and econometrics. A class of submodels this 
paper shall focus on in some detail is the family of NLAR models where 
Xni= Xi satisfies 

where { E ~ ,  i = 0, f- 1,f- 2,. . . I  are i.i.d. F. 
Jennrich (1969) and Wu (1981) study the asymptotics of the least squares 

estimator (LSE) in NLR models. Hannan (1971) contains a similar study 
when the errors are generated by a stationary time series. See the mono- 
graph by Seber and Wild (1989) and references therein for more on NLR 
models. Tong (1983, 1990) discuss numerous useful examples of NLAR mod- 
els and the asymptotics of the LSE in some of these models. 

Hwang and Basawa (1993) study the local asymptotic normality of a 
variant of the model (1.Q where Zni = Z,, with {Z,} being i.i.d. r.v.'s, not 
necessarily observable, and where {Xi} are assumed to be stationary. They 
also discuss the asymptotics of some likelihood based tests in (1.1) and of the 
one-step MLE for a class of NLAR models (1.2). 

The two examples we shall focus on in some detail are a self-exciting 
threshold first-order autoregression tSETAR(2; 1,I)] and EXF'AR models. The 
former is obtained from (1.2) upon taking 

(1.3) m = 2, p = 1and H(0 ,  y)  = 8 ,y++ 8,y-, Y E R, 0 E (0,1)', 

while the choice of 

m = 3, p = 1and H(0 ,  y)  = (8, + 8, exp(-8,y2)}y, 
( 1.4) 

y E R,O E ( - 1 , l )  X R X (O,w), 

in (1.2) gives the latter model. Here, x t := max{O, x}, x-:= x+- x, x E R. A 
general class of SETAR and EXPAR models of Tong (1990) are also included 
in (1.2). 
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To proceed further, fix a 8 E fl and let P," denote the probability distribu- 
tion of (Yo, X,,, . . . ,X,,) under (1.1) when 8 is the true parameter value. 
About h we shall assume the following: 

(hl) There exists a vector of functions h,  from fl x R P  x Rq to R m  such 
that hni(t) := h,(t, Y,, ,-,,Z,,) is 3,-measurable, t E fl, 1I i I n, and satis- 
fies the following: V a > 0, k < w, s E n, 

lim sup P," 

n l s i s n ,  I l t - ~ l l s k n - ' / ~  Ilt - 4 


Note that there is no loss of generality in assuming the 3,-measurability 
of h,, in (hl). Also, the differentiability of h(t, y, z) in t ,  for all y and z, alone 
need not imply (hl). An example that illustrates this point is when m = 1= p 
and h(t, y, z )  = t2y. This h, even though differentiable in t ,  does not satisfy 
(hl) unless m a ~ { n - ~ / ~ I X , -  ,I; 1I i I n} tends to 0 in probability. The above 
examples (1.3) and (1.4) are shown to satisfy (hl) in Section 2 provided the 
errors have finite variance and positive Lebesgue density. 

We now define various processes and scores that are useful for inference in 
these models. From now on the dependence of X,,, h,,, etc., on n will not be 
exhibited, for convenience. Thus, we shall write Xi for X,, and so on. Let I) 
and cp be bounded nondecreasing real-valued functions on R and (0, I), 
respectively; Rit  denote the rank of Xi - h,(t) among {Xj - hj(t), 1Ij I n), 
1I i I n, t E n ;  and G be a d.f. on R. Define 

Z(u, t)  := n-l i2  x h i ( t )  I(R,, I nu), 
1 

Here, and in the sequel, the index i tin the summation and the maximum 
varies from 1to n, unless specified otherwise. The M-, R- and M.D.-estima- 
tors of 0 to be considered are, respectively, 

The name R-estimator for 0, is borrowed from linear regression with known 
design where its analogue is a measurable function of the residual ranks 
only. But here S is a measurable function of observations and the residual 
ranks; strictly speaking, 0, is thus not a rank estimator in the same sense as 
in the linear regression setup. 
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Analogues of the above estimators and their asymptotic distribution theory 
in linear regression and autoregression (LRAR) models appear in JureEkovA 
(1970, Huber (1981), Bustos (1982), Koul (1992) and Koul and Ossiander 
(1994), among others. Asymptotically efficient estimators at  various error 
distributions can be obtained from these classes of estimators in these 
models. Well-known examples of M-estimators are obtained by choosing 
+(x) = xI(lxl Ik) + c sgn(x)I(lxl > k), k a constant, or + ( x )  = sgn(x), 
thereby giving the Hubedk) and the least absolute deviation (LAD) estima- 
tors, respectively. A useful example of an R-estimator is obtained by choosing 
q(u) = u, thereby giving the Hodges-Lehmann type estimator which is 
known to be asymptotically efficient at the logistic errors in LRAR models. An 
interesting example of an M.D.-estimator is obtained upon taking G(u) = u. 
Koul (1992) and Koul and Ossiander (1994) observed that this estimator is 
asymptotically more efficient than the Hodges-Lehmann type (LAD) estima-
tor in an LRAR model with double exponential (logistic) errors. It was also 
noted that a large class of estimators {6,,1 are asymptotically more efficient 
than the least squares estimator at  heavy tail distributions in these models. 

In view of these desirable properties, it is only natural to investigate the 
large-sample distributions of the above three classes of estimators for the 
class of models given in (1.1) and (hl). One of the goals of this paper is to do 
precisely that. We shall now state additional assumptions and the results to 
that effect. In what follows, llgllm := sup{lg(x)I; x E R} for any g :  R to R; 
N, := {tE 0; lltll I b), 0 < b < m; op(l) [Op(l)] stands for a sequence of r.v.'s 
that converges to 0 (is bounded) in probability under P,".,E," stands for 
expectation under P,"', and all limits are taken as n + a,unless specified 
otherwise. With 0 E 0 fixed throughout, consider the following assumptions. 

(F) F has a uniformly continuous density f which is positive a.e. 

(h2) n-' C, hi(0)hi(O) = 2, + op(l), where 2, is a positive-definite matrix. 

(h3) 
i 

h , ( ~ )=n-'I2 max 11 1 op(l) .  

(h6) For every a > 0, there exists a 6 > 0 and an N < m, such that 

P sup n-'I2 x l l h i ( e  + n-l12t) - h , ( ~+ n-'12s)I I a )  n 1- a ,  
l i t - s i l l  6 i 

for all n > N. 



384 	 H. L. KOUL 

REMARK1.1. 	 doesIf the underlying process and h are such that {hi(€))) 
not depend on n and is stationary and ergodic, then the distribution of Yo 
will depend on 8 and the following hold: conditions (h2)and (h3 )are implied 
by 

while (h4) is equal to 

( h s 2 )  E,llh1(8 + n - l 1 2 t )  - h l ( 0 ) 1 1 2 
= o ( l ) ,  t E f l ,  

and assumption (h5) is implied by 

( h s 3 )  n 1 ' 2 ~ , I h 1 ( 8+ n - l 1 2 t )  - h1(0)II = 0 ( 1 ) ,  t E f l ,  

where E ,  denotes the expectation under the stationary distribution. 
Tong (1990) contains various sufficient conditions for a nonlinear autore- 

gression model to be stationary and ergodic. Some of these are discussed in 
Section 2 for examples (1.3) and (1.4) mentioned above. 

We shall now state a lemma which is basic to the proof of the asymptotic 
uniform linearity of the above scores. Let 

d, , ( t )  := hi(O + n- '12 t )  - hi (€)), h,,(t) := h i ( 8  + n - l 1 2 t ) ,  

(1.5)  	 I s i s n ,  
v ( y ,t ) := n-l12 C h n i ( t ) ~ ( y  + d n i ( t ) ) ,  

i 


W ( y , t )  := V ( y , O  + n - l 1 2 t )  - v ( y , t ) ,  y E [W, t E a. 

LEMMA1.1. Suppose (1.1) and (h1)-(h6) hold. Then,  for every y at which 
F is continuous and for every 0 < b < m, 

I f ,  i n  addition, (F) holds, then, for every 0 < b < w,  

(1.7)  	 sup I IW(y , t )  - k Y , 0 ) l l  = o p ( l )  

and 

where the supremum i n  (1.7) and (1.8) is over ( Y , t )E [W x Nb. 
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The result (1.8) directly follows from (1.7) and (F). Proofs of (1.6) and (1.7) 
appear in Section 3, soon after Lemma 3.2. To state other results, we also 
need 

q := i$ : R to R, nondecreasing right continuous, 

cD := { c p :  [0,  11to R, nondecreasing right continuous, q(1) - q(0) I I}. 

We are now ready to state the asymptotic uniform linearity result of the 
M-scores. 

THEOREM1.1. In addition to (1.1), assume that (F) and (h1)-(h6) hold. 
Then, for every 0 < b < m, 

(1.9) sup ( ~ M ( o  - - =+ n- l I2 t )  M(O) ~ , t / ~ d + ( lop( l ) .  
Q E T , ~ E N , ,  

The result (1.9) follows from (1.8), the fact that l F d $  = $(m) for all $ E q 
and that 

~ ( t )- M(s) = n-'I2 [h , ( t )  - h,(s)]  a(-) 
i 

uniformly in t,s in fl and $ E !P, with probability 1. 
To use (1.9) in establishing the asymptotic normality of 6,, one must first 

ensure that lln1i2(6, - 0)11 = 0,(1). In view of the fact that IIM(0)I = OP(1), a 
sufficient condition for this is as follows: 

(B1) For every E > 0, 0 < a < w, there exists an  N, and a k (depending on 
E and a )  such that 

inf i ~ ( o + n - ' / ~ t ) l > a )  V n > N , .2 1- E ,p4t > k  

A condition that, in turn, implies (Bl) is given by (MI) below. 

1.1. 
that lfd $ > 0 and 

COROLLARY In addition to the assumptions of Theorem 1.1, assume 

(MI) e'M(0 + n-1/2re) is monotonic in r E R, V e E Rm,llell = 1, n 2 1, 
a.s. 

Then, V $ E q, 
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and 

where v(4, F )  := /42d F / ( / f d ~ ) ~  

REMARK1.2. AS mentioned above, (MI) implies 1ln'/~(6, - 0)ll = 0,(1). 
This and (1.9) together then imply (1.10) in a routine fashion. The claim (1.11) 
follows from (1.10) and the CLT for martingales as given in Corollary 3.1 in 
Hall and Heyde (1980). 

The assumption (MI) is, for example, always satisfied by those models 
where h of (1.1) or H of (1.2) is linear in parameters and nonlinear in the 
remaining arguments. Tong (1990) contains numerous examples of these 
types of nonlinear time series models. It is a useful condition when 4 is not 
differentiable as is the case for the Huber(k) and the least absolute deviation 
estimators. 

If y!i is twice differentiable and {hi) are differentiable and satisfy certain 
additional integrability conditions, then using standard arguments ci, la 
Cram&, one can verify (Bl) directly. See, for example, Tjostheim (1986) in 
connection with the maximum likelihood and the least squares estimators in 
nonlinear times series models of the type (1.2). Obviously, this method does 
not work if 4 is not differentiable. 

The following corollary gives an analogue of Corollary 1.1for the least 
absolute deviation estimator under weaker conditions. Its proof uses (1.6) and 
a routine argument. 

COROLLARY Assume (1.1) and (h1)-(h6) hold. In addition, if (MI) 1.2. 
with $(x) = sgn(x) holds and if the d.f. F has density f i n  an open neigh- 
borhood of 0 such that f is positive and continuous a t  0, then 
n1/2(6,,, - 0) *N(0, L;'/4f2(0>>. 

To state analogous results for R- and M.D.-scores and estimators, we need 
to define 

Z(U) := n-1/2 (hi(0)  - 5 u) -~ * ( O ) ) [ I ( F ( E ~ )  u] ,  
1 
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THEOREM1.2. In addition to (1.1), (F), (hl)and (h3)-(h6), assume that 


for some positive-definite matrix re.Then, for every 0 < b < m, 

sup 0 + n - 1 / 2 t )- r8tq(~)Il(1.12) J ~ L ( U ,  4 ( u )  - = o p ( l ) ,  
O s u s l , t e N b  

and 

(1.14) sup I K ( ~  ~ ( t ) lo p ( l ) ,+ n - 1 / 2 t )- = 
G c @ , t e N b  

where ~ ( s )  := l,lll4(u)+ rOq(u)sll2 dG(u),  s E Rq. 

REMARK1.3. Note that (1.14) follows from (1.12) trivially, while (1.13) 
follows from (1.12) and the  fact that  S ( t )  = h * ( 0 ) ~- / Z ( u ( n  + l ) / n ,t)d cp(u). 
The result (1.13) gives the asymptotic uniform linearity o f  the S-score, while 
(1.14) gives the asymptotic uniform quadraticity of the dispersion K. The 
proof of (1.12) uses (1.7) in  a crucial way and appears i n  Section 3. 

COROLLARY (a )  In addition to the assumptions of Theorem 1.2, assume 1.3. 
that 

( S l )  e 'S (0  + n - 1 / 2 r e )  is monotonic in  r E R, e E Rm, llell = 1, n 2 1, a s . ,  

and that 
-

( cpl) cp = 0 for all sufficiently large n 2 1 

Then 

and 

(1.16) n1 /2 (bR- 0 )  -N , ( o , r i b ( c p , F ) ) ,  

where ~ ( 9 ,F )  := l (p2(u) du/{lfdcp(F)12. 

COROLLARY (a )  In addition to the assumptions of Theorem 1.2, assume 1.4. 
that, for some 0 < g E L2([0,  11, G) ,  

( K l )  l;e1Z(u,  0 + n - l l 2 r e ) g ( u )  dG(u)  is monotonic in  r E R, V e E Rm, 
llell = 1, n 2 1, a.s. 
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Then 

and 

(1.18) n'/2(6,, - 0)  -N,(O,r i l m ( G ,  F ) ) ,  

where 

REMARK1.4. Assumptions (Sl) and (K1) ensure the n1/2-consistency of 
the R- and M.D.-estimators, respectively. They may be replaced by any other 
assumptions that will imply an analogue of (Bl) for R- and M.D.-scores. In 
any case, (1.13) and (1.14) together with 6 1 )  and (K1) yield (1.15) and (1.17) 
in a routine fashion, while (1.16) and (1.18) follow from these results and the 
CLT for martingales as given in Corollary 3.1 in Hall and Heyde (1980). See, 
for example, Koul (1992), Sections 5.4 and 7.4, for the type of argument 
needed. 

Akin to (MI), conditions (S1) and (K1) are always satisfied by those models 
where h of (1.1) or H of (1.2) is linear in parameters and nonlinear in the 
remaining arguments. See Section 2 for illustrations. 

Next, we shall give an asymptotic expansion of the sequential residual 
empirical process. We, in fact, prove a somewhat general result of broader 
applicability from which this will follow. To that effect, let {g,,, 1I i I n) be 
an array of r.v.'s, with gni being %,-measurable and independent of s i ,  
1I i I n. Define, for y E R, t E a, u E [0, 11, 

where [ X I  - the greatest integer in x. Write Tg(y, t)  and so on for Tg(y, t ,  1) 
and so on. Also, all probability statements in the following theorem are 
understood to be under the joint distribution of {Yo,Xi,g,,, 15 i I n}. We 
have the following result. 
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THEOREM1.3. (a)  I n  addition to (1.1), (F )  and (h1)-(h3), assume the 
following: 

1 / 2  

( g l )  n = g + o p ( l ) ,  g apositiuer.v 
i 


Then the process {Fg(y ,  O ) ,  y E R l  is eventually tight,  and ,  for every 0 < b < co, 

and 

(1.21)  sup l ~ ~ ( y ,  - T g ( y ,  0 )  - t r n - l ~ g , i h i ( 0 )  =0 + n - ' I 2 t )  f ( y ) I o p ( l ) ,  
y , t  i 

where the supremum is  over (y ,  t )E R x Nb. 
(b) I n  addition to (1.11, (F) ,  (hl)and (h3) ,  assume that the following hold: 

Then,  for every 0 < b < cc, 

and 

sup T g ( l , o  + n 1 2 t ,  u )  - i , ( y , O ,  u )  

(1.23) 
y , t , u  

[ n u ]  

- t t n - I  x g n , h i ( @ ) f ( Y )= o p ( l ) ,l 
where now the supremum is  over ( y ,  t ,u )  E R X Nb X [ O ,  11. 
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A proof of the above theorem also appears in Section 3. Now let 

F,(y, t ,  u) := n-' 
[znu1 

I (Xi  - h,(t)  2 y ) ,  
i = l  

[nu1  

v ( y , t ,  u) := n-' z F ( y  + h,( t )  - h,(O)), 
i =  1 


W ( y , t , u )  := n ' /2 [Fn(y , t ,u )  - v ( y , t , u ) ] ,  y E R , t  E 0 0 5 u 5 1. 

Upon choosing g,, = 1in Theorem 1.3, one obtains a n  analogous result for 
F,. Because of its importance we state it as a separate result, though a t  the 
cost of some repetition. Note that  in this case (g1)-(g4) are trivially satisfied 
while (g5) and (g6) are, respectively, equal to 

(h8) z E ; [ h i ( 8  + n ' / 2 s )  - hi(0)IZ= OP(1), s E 0, 
i 


We are now ready to state the following corollary. 

COROLLARY1.5. (a) Assume that (1.1), (F), (hl)  and (h3) hold. Then, 
V O < b < m ,  

(1.24) sup Iw(y,  0 + n-1/2t) - w ( ~ ,8)  1 = op( l ) .  
y,t 


If, in addition, 

(h9) 	 n-'  X lI'i(0) l l  = OP(l)> 
i 


then, V 0 < b < cc, 

sup 1 t ' / ~ [ ~ , ( ~ , 8  ~ , ( ~ , 8 ) ]+ n-1/2t)  -

(1.25) 	 y,t 

i 


where the supremum here and in (1.24) is over (y, t )  E R x Nb. 
(b) Assume that (1.1), (F), (hl), (h3*) and (h8) hold. Then V 0 < b < m, 

(1.26) 	 sup I w ( ~ , O  + n l i 2 t ,  U ) - W ( y , 8 ,  u)l = op( l )  
y,t,u 

and 

sup In1/2[Fn(y,0 + n-1 /2 t ,u )  - ~ , ( y , ~ , u ) ]  

where now the supremum is over (y,  t ,  u) E R x Nb x [O,l]. 
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From (1.25) we readily obtain the following corollary. 

COROLLARY In addition to (1.1), (F), (hl), (h3) and (h9), assume that 1.6. 
there exists an estimator 0 such that 

Then 

Perhaps it is worth mentioning that the underlying time series need not be 
stationary for the validity of all of the above results. The next section 
discusses some applications of these results to estimation, goodness-of-fit 
testing and the change point problems in SETAR and EXPAR models. The 
procedures discussed for the change point problem are similar to those 
discussed in Bai (1994) for ARMA models. 

2. Applications. In what follows, (Hj) and so on stand for (hj) and so on, 
with h replaced by H and (1.1) replaced by (1.2). Also, (Ff)  stands for 
condition (F), where now the density f is assumed to be positive everywhere. 
This condition is needed to ensure the stationarity and ergodicity of the 
processes considered here. To begin with, we shall focus on the: 

SETAR(2; 1 , l )  model of (1.2) a n d  (1.3). Here 0 = (O,, 02)', H,(t) = trWi, 
where W, = (X:,, Xr-,)'. Hence, Bi(t)  = W,, and (HI) and (H4)-(H6) are 
trivially satisfied. Moreover, with R,,, denoting the rank of E, - rn-1/2erW, 
among {sj- rn-1/2e'Wj, 1Ij In}, 

where T(U) = l tgdG. Consequently, @ nondecreasing implies (MI), while 
(Sl) and (Kl) follow from cp being nondecreasing and Theorem 2.7E, of HAjek 
(1969). 

From Tong (1990), page 130, and Chan, Petruccelli, Tong and Woolford 
(1985), it follows that if E s 2  < cc and (F+) hold, then the SETAR(2; 1 , l )  
process specified at (1.2) and (1.3) is stationary and ergodic, and E,X: < m. 



392 H. L. KOUL 

Hence, by the ergodic theorem, (h2), (h3) and (h7) hold with 

where pLL,+:= E,(X,'), p i  := E,(X;). We summarize the above discussion in 
the following corollary. 

COROLLARY Assume that in the SETAR(2; 1 , l )  model (1.2) and (1.31, 2.1. 
(F+)holds and that EE' < m. Then the following hold: 

n1/2(0,-0) -N,(O, t ; 'v(+,F))  foreuery + tP, 

(2.1) n1i2(0, - 0) N 2 ( 0 , 1 p ( q , F ) )  foreueryq t @, 

Since v ,  p and p functionals also appear in LRAR models, the above 
statement about the efficiency comparisons also holds for the above 
SETAR(2; 1 , l )  model. 

Next, consider the problem of testing the goodness-of-fit hypothesis Ho: 
F = F, against the alternatives H,: F z F,, where Fo is a known d.f. on R, 
assumed to satisfy (I?:).The Kolmogorov test would reject H, for large 
values of D, := n1/211~n- Follx, where now fin(.) = F,(., 0), with 0 a n  estima- 
tor of 0 satisfying (1.28). Then from the above discussion and (1.29) we 
readily obtain that  

Dl, =IIw + n1'2(0 - 0 ) ' ~ f O / I X+ o,(l), 

where W(.) = n1/2[F,,(., 0) - F,(.)]-the empirical of the i.i.d. r.v.'s-and p := 

( P;, 
On the other hand, recall, say, from Koul(19921, Section 7.2, that  in  AR(p) 

models the analogous test satisfies D, = llW l l z  + o,(l), provided the mean of 
Fois 0. Thus, unlike in the AR models, even if F, has zero mean, the D,-test 
is not asymptotically distribution free (A.D.F.) in general in the SETAR(2; 1 , l )  
model. 

Next, let F,, F, be two d.f.'s with F, # F,. Consider the change point 
problem where one wishes to test H z :  E,, E,, . . . , E, are i.i.d. F ,  F not 
necessarily known, against the alternative HI: s,, E,, . . . , sj are i.i.d. Fl and 
sj+,, sj+,, . . . , E, are i.i.d. F,, for some 15 j < n. To describe a test procedure 
for this problem, let 0 be an  estimator of 8 based on {Xi; 0 4 i 4 nl and 
satisfying (1.28). Also, let $,,,, EL,, denote the residual empiricals based on 
the first [nu]  residuals Xi - OIWi,15 i 4 [nu] ,  and the last n - [nu]  resid- 
uals Xi  - 0 , [ n u ]  + 1 5 i 4 n ,  respectively, u E [O, 11. The 
Kolmogorov-Smirnov type test of this hypothesis is based on 9,:= 

sup,, .I gn(y, ull, where 

grt(y,  u) := ( [nuI /n){ '  - ( [ n ~ l / n ) } n " ~ { ' n u ( ~ )  -fiq1-,(y)}, 
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Now, for the sake of brevity, write W(y, u) for W(y, 0, u) of (1.23). From 
(1.27), assuming that E s 2  < and the common F of HX satisfies (F+), we 
readily obtain that uniformly in y and u, under H,*, 

[nu1  
U) = ( 1  - U) + n112(6- O ) ' n l  zWi f ( y ) ]  U) ~ ( y ,  

i =  1 

From the ergodic theorem it follows that, under H,*, 

wi - u p  - 0, sup n 5 wi - ( 1  - u ) p  - 0, a s .  
i =  1 u i = l + [ n u l  

Hence, one readily obtains that, under HX, 

gn= SUPIW(Y, u) - uW(Y, 1)I + o,(l). 
Y , U  

Thus, i t  follows, from Bickel and Wichura (19711, that gn* sup{/G(s, u>l, 
(s, u) E [0, 112}, where G is a continuous Gaussian process on [O, 11' with 
Cov{G(s, u), G(t, u)} = ( s  A t - st)  . (u A u - uu). Consequently, the test 
based on gnis A.D.F. for H,*against H,. Clearly, a similar conclusion can be 
obtained for any other test of HX based on {gn(y ,  u); y E R, u E [O, 111, 
n 2 1. 

The results of the previous section are general enough to allow one to 
obtain similar conclusions in the SETAR(2; p ,  p )  model where, for known 
(d ,  r), 15 d 5 p ,  r E R, 

P P 

H(O,Y,-,) = zajXi-jI(X,-, 5 r )  + zbjXi-jI(Xi-, > r ) ,  
j=1 j=1 

with 0 := (a,, a,, . . . ,a,, b,, b,, . . . ,b,)'. This is a version of the model in 
Tong (1990), (3.25), page 107. Under max{Cf= ,lajl, Cf, , I  bjl) < 1, (I?:) and 
E l ~ l< CC, this model is strictly stationary and geometrically ergodic. 

Next, consider the SETAR(2;1 , l )  + regression model obtained from (1.1) 
upon choosing m = 3, p = 1 = q {Zni} to be known constants and 
h(0, y, z)  = 0, y + +  0, y -+  O,z, y, z E R, 0 E (0,1)2 X R. The observations 
are no longer stationary now, but Theorems 1.1to 1.3 can still be applied. 
Note that here hi(@)= (W;, Zni)'. Suppose 

n-l12 maxlXi-,I = o,(l) and n-'/, maxlZ,,l = o(1) 
i i 
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Then conditions (h1)-(h9) are satisfied as are (MI), (S1) and (K1) so that all 
the results of the previous section are applicable under (F). It is perhaps 
worth mentioning that even in this relatively simple model these results are 
new. 

Next, consider the EXeAR model of (1.2) and (1.4). Assume E c 2  < 
and (I?+). Then it follows from Tong (1990), page 130, that this model is 
stationary and ergodic, and E,X; < a.Because xk exp(- ax2 )  is a smooth 
function of a with all derivatives bounded in x, for all k r 0, (Hsl)-(Hs3), 
(H6) and (H9) are easily verified here with 

plim n-' C a i ( 0 )= E , H , ( ~ )= v ,  say. 
z 

Moreover, by stationarity, the left-hand side of (H8) is bounded above by 

Thus, all asymptotic uniform linearity results of the previous section are 
valid. 

Consider, for example, the goodness-of-fit problem of testing H,: F = F,, 
versus the alternatives HI: F # F,, where F, is as above. Then, with Dn, 6 
and f, having the same meaning as in the SETAR example, from (1.29) we 
readily obtain that 

Now, if additionally, F, is such that the stationary distribution is symmetric 
around 0, then v = 0 and the Dn-test would be A.D.F., but not in general. 

Similarly, because of the fact 

[nu1  

sup rz-' ( H i ( * )  E , f i l (H))  a.s.,1 11 - 0 
U i =  1 


the conclusion obtained about the change point problem in the SETAR 
example is also valid here with obvious modifications. 

Now, consider the estimation of 0 when 6, is known. Then, using argu- 
ments similar to those in the above SETAR model, one can verify that (MI), 
(S1) and (K1) are also satisfied. Thus, here the asymptotic normality results 
about M-, R- and M.D.-estimators of 8,  and 82 are valid. For example, we 
have the following result. 
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COROLLARY Suppose that the EXPAR model (1.2) and  (1.4) with a2.2. 
known 0, holds. In  addition, suppose that E c 2  < cc and (I?+) holds. Then the 
asymptotic normality conclusion of (2.1) hold here also with 2, = 

E,H,,(o)H;,(o), r, = X, - v,v;, where 

Conditions (MI), (S1) and (Kl) are not satisfied when estimating 19,. The 
difficulty in estimating 0, is similar to that  of estimating a scale parameter. 
However, one can prove a Cram& type result for M-estimators when $ is 
smooth. See Tjostheim (1986) for the case $(x) = x. 

3. Proofs. An important tool needed for the proofs of (1.61, (1.7) and 
(1.12) is a general result obtained in Koul and Ossiander (1994). For the sake 
of completeness, we restate it here. Let ( f l , d ,  P ) be a probability space. For 
each integer n 2 1, let (qni, tn i ,  ynYni), an14 i I n, be array of trivariate 
r.v.'s defined on ( a , & )  such that {qni, 1I i I n} are i.i.d. r.v.'s with d.f. F 
and %i is independent of (y,,, tni), 1I i I n. Furthermore, let {dni) be an  
array of sub a-fields such that  dnicdni+,, 1I i I n, n 2 1; (Y,', tnl) is dnl-
measurable; the r.v.'s {qnl, . . . ,qnj-,;(yni, tni), 1I i Ij} are dnj-measurable, 
2 Ij 4 n; and qnj is independent of dnj,1Ij I n. Define, for an x E R, 

n 

Vn(x) := n-' C ~ n i I ( ~ n iIx + [ni), 
i =  1 

n 

V,*(X) := n - l  C yniI(qniI x ) ,  
i =  1 

n 


J n ( x )  := n-' C E{yniI(qni4 x + tni)I d n i }  

i =  1 


n 

= n-l  C yniF(x+ tn i ) ,  
i =  1 


n 

J:(x) := n-' C yniF(x) ,  
i =  1 

The following lemma is obtained from Theorem 1.1and Corollary 2.3 of Koul 
and Ossiander (1994). 
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LEMMA3.1. In  addition to the above, assume that the following hold: 

/ n \ 1 / 2  

(Al)  n y i  = y + op( l ) ,  y apositive r e v .  
i =  1 


(A2) n - l i 2  max Iynil = op( l )
l s i n  

Then, for every y a t  which F is continuous, 

If, in addition, (F) holds, then the processes {Un} and {U;} are eventually 
tight in the uniform metric and 

(3.3) IIUn - U,*llm= op( l ) .  

Now recall the notation from (1.5) and let 

(3.4) W*(y, t )  := n - 1 / 2 x h n i ( t ) [ ~ ( ~ iIy)  - F(y)], y E R, t E Rm. 
i 


Let hnij,  V,,Wj and so on denote the j t h  component of h,,,V, W and so on, 
1a i a n,  1aj a m. Note that  if in (3.1) we take 

(3.5) y n  h n j  nz E.1 3  6 , d n l  s) ,  &' ,nz nz,7 . = n z I ,( ~ 9 .  

then under (1.1) and (hl), Un(y) and U;(y) are, respectively, equal to Wj(y, s) 
and W ' ( y ,  O), for all y E R and s E Rm,1a j a m. We now state and prove 
the following result. 

LEMMA3.2. Assume that (1.1), (F) and (h1)-(h6) hold. Then, V 0 < b < m, 

PROOF.Fix a b E (0, m). In this proof the indices i,  t in sup,,, and y in 
sup vary over 1I i a n, t E Nb, y E R. Observe that  by (hl), V a > 0, 
3 nl ,  3 V n > n,, 

2 1 - a .  
Hence, from (h3), we readily obtain 

(3.8) SUP Idni(t) I = op(1)
i , t  

This verifies (A3) for the lniof (3.5). 
Next, by (h2) and (h4), we readily obtain that  ( n - l ~ , h ~ , , ( s > > ~ / ~  = qj(6>+ 

op(l), s E n, 1Ij I m, where ~ ~ ( 6 )  is the j t h  diagonal term of Z,, so that  
(Al) is verified for the yni of (3.5) for every s E a,1aj a m. Finally, because 
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for all s E f l ,  1 4j 4 m, 

n-'I2 max I hnij(s)I a n- l I2  max 1 hnij(s) - hij(0) 1 + n-'I2 max 1 hij(0) 1 ,
i i i 

(A21 is implied by (h3) and (h4) for the y,, of (3.5), for every s E a ,  1Ij I m. 
Hence (3.3) readily enables one to conclude that 

To complete the proof of (3.61, because of the compactness of N,, i t  suffices 
to show that V a > 0, 3 6 > 0 and no < a,3 V s E N,, 

where D( y, t) = W( y, t )  - W*( y, t). 
For the sake of brevity, let a,(y, t )  := 4 y + dni(t))- F ( y  + dni(t)), 

y E R, t E 0 ,  14 i 4 n,  and write a i (y)  for a,(y,O). Then 

W( y ,  t )  = Ch.i(t)  a i (y ,  t ) ,  W*(y,  t )  = n-l12 
i C ' n i ( t ) a i ( ~ )i 

and 

~ ( y , t )- D ( ~ , s )= n-l12 C [',,('I - hni(s)]  [ a i ( ~ , t )  - &icy)] 
i 

+ n-1 /2  C ' n i ( s ) [ a i ( ~ , t )  - a i ( ~ , s ) ]  
i 


= D I ( Y , s , ~ )+ D , ( y , s , t ) ,  say, y E R , s , ~ E O .  

To prove (3.101, i t  thus suffices to prove its analogue for Dl  and D,. But (h6) 
obviously implies this for Dl because I a i (y ,  t )  - a,(y)l I 1for all i ,  y and t. 

We proceed to prove an  analogue of (3.10) for D,. Let D2j denote the j t h  
component of D,. Write h j s  = h i - hzj(s) and DZj= D& - D,, 
where D$ correspond to the DZj with {hnij(s)} replaced by {hAj(s)}. Thus, by 
the triangle inequality, i t  suffices to prove an  analogue of (3.10) for D&, 
l a j s m .  

Now fix an a > 0, s E N,and S > 0. Let A n i  := n-1/2(~llhi(0)11+ 2ba)  and 

A, := sup ldni(t)  - dni(s) l5 A,,, 15 i a n 
t € N , ,  l l t -~1156 

From (3.71, it follows that 
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Next, define, for y, a E R, 1I j I m, 

9 & ( y ,s ,  a) := n l " '  Ch,iij(s) [ ~ ( qI y + dni(s)+ ah,,) 
i 

-F (Y  + dni(s) + a ~ n i ) ]  

By definition, dni(s)+ ah,, is Fni-measurable, a E R, 1I i I n. Moreover, 
by (h3) and (3.8), 

max I d,,(s) + ahn iI 
I 

The rest of the argument being the same as for (3.9), one more application of 
(3.3) with tni= d,,(s) + ahni ,and the other entities as in (3.5), yields that 

Now, using the nonnegativity of {h:ij(s)) and the monotonicity of the 
indicator function and the d.f. F,we obtam, that an A,, V t E Nb,\It- sll I 6 ,  

By (F) and the fact that xf I I XI,x E R, the last term in this upper bound is 
no larger than 

which, in view of (h2) and (h4), can be made smaller than a with arbitrarily 
large probability for sufficiently large n by the choice of 8.  This together with 
(3.11) and (3.13) completes the proof of an analogue of (3.10) for D,, and 
hence of (3.6). 

PROOFOF LEMMA1.1. Rewrite W ( , y , t ) - W ( y , O ) = W ( y , t ) - W * ( y , t ) +  
U(y, t), where U(y, t) := W*(y,t) - W(y, 0) = n-1/2~, [h , i ( t>- h,,(O>lai(y). 
Thus, in view of (3.6), it suffices to prove 

(3.14) - s u ~ l I U ( ~ , t ) \ \= o,(l). 
y , t  

Fix a 1I j I m and a t E Nb.Let yni= hnij(t)- hnij(0).Write yni = y; -
y; so that the j th  component of U is rewritten as U, = U,+ - U,- ,where 
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Because y,: is %,-measurable, 1I i 5 n, from (h4) we obtain 

Next, fix an a > 0, andlet  -a = y o  < y, < ... < y, = be a partition of R 
such that [F(y,) - F(y,- ,)I 5 a ,  i = 0,1, ...,r .  Then, once again using the 
monotonicity of the indicator and F ,  we obtain 

s u p I ~ , ' ( ~ , t ) I4 2 max I ~ , ' ( ~ ~ , t ) l+ a n 1 i 2  
Y O s k s r  

ClyniI' 
i 

This, (3.151, (h5) and the arbitrariness of a enables one to conclude that 

s u ~ l I U ( ~ , t ) I I= ~ ~ ( l ) ,  E N b .  
Y 

To obtain the uniformity with respect to t ,  we need to show that an analogue 
of (3.10) holds for U(y, t)-processes. But this is implied by (h6), because 

U(y ,  t )  - U(y ,  s)  = n-'l2 [h,,(t) - h,,(s)] 
i 

This completes the proof of (3.141, and hence that of (1.7) of Lemma 1.1.The 
proof of (1.6) uses (3.2) and is similar to the above proof. 

Our proof of (1.12) uses (1.7) and the tightness of the residual empirical 
process in the uniform metric which follows from Theorem 1.3(a). Therefore, 
we shall first prove Theorem 1.3. In the sequel all probability statements are 
understood to be under the joint distribution of {Yo,Xi,g,,, 14 i 4 n} when 
8 is the true parameter. 

PROOFOF THEOREM1.3(a). The proof of Theorem 1.3(a) follows from 
Lemma 3.1 applied to yni = g,,, and the other entities as in (3.5), and by an 
argument similar to the one used in the proof of Lemma 3.2, 

Our proof of Theorem 1.3(b) is facilitated by the following two lemmas. 
Recall the definitions of {A,,} from (3.11) and let uni = dni(s)+ aA,,, a E R, 
llsll I b. 

LEMMA3.3. Under (F), (h1)-(h3) and (gl), for some K < 30 and for all 
a > 0, 

lim sup P supn-'I2 g n i [ F ( y  + uni) - F ( x  + u,,,)] 1 5 ~ a )= 1, 
n x , 3 J  i 

a E R, llsll I b, 
where the supremum is taken over the set {x,y E R; IF(y) - F(x)l I n-1/2a}. 

PROOF. Let u, = maxi u,,, r, := sup{lf(y) - f(x>l; IF(Y) - F(x)l I 
n-1/2a}, 0, := sup{If(z) - f(v)I; I Z  - U I  4 u,}. From (F) and (3.121, 7, = o(l), 
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w, = =op(l). Also, from (h2)-(h4) and (gl), we obtain that  n - 1 / 2 C i J g n i ~ n i J  
OP(1). Lemma 3.3 follows from these observations and the inequality 

LEMMA3.4. Let F be a continuous strictly increasing d.  f., (si} be i.i.d. F, 
a > 0, n 2 1, N := [N1"2a-11 and {yj} be ,the partition of IF8 such that 
F(yj) = j/N, 1a j I N, yo = - m ,  yN+l= m. Then, under (g41, 

[ nu1 

(3.16) sup n-'I2 x gA [I(&, I yj+,) - I(ci I yj) - ( 1 / ~ ) ]= op(l), 
u ,J i =  1 

where the supremum is taken over 0 s u s 1, 0 Ij I N + 1. 

PROOF.We shall give the proof of (3.16) only for the case of g,fi, the other 
case being exactly similar. Let 5:= u-field{&,;1Ij I i}. Fix a 0 I j I N + 1, 
and let 

Note that {Pni, 5+-1; 1I i I n} is a mean-zero martingale. By Doob's and 
Rosenthal's inequalities [Hall and Heyde (19801, pages 15 and 231, 

But, because g;, I Jg,,l, for all i ,  

Observe that these bounds do not depend on j. Therefore, 

where C ( a )  is a constant depending on C and a ,  and where the last equality 
follows from (g4) and the definition of N. This proves (3.16). LI 
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PROOFOF THEOREM1.3(b). Since (1.23) follows from (F) and (1.22), it 
suffices to give the proof of (1.22). 

PROOFOF (1.22). Write g,, = g,fi- g i i ,  and Vf (y, t, u) and V-( y, t ,  u) for 
the difference inside the absolute value in the 1.h.s. of (1.22) with g,, replaced 
by g,t, and gLi, respectively. By the triangle inequality, it suffices to prove 
(1.22) for V+ and V-. Since both g,'l and d,,(t) are %,-measurable, by (F), 
(g4), (3.8) and the dominated convergence theorem, we obtain that, 
v (y, t ,  u) E [W X Nb X [O, 11, 

Now, fix an a > 0, an s E Nb and S > 0. Let A, be as in (3.11). Define, for 
a E R, ( y , t , u )  E R X Nb X [O,lI, 

Arguing as in the proof of Lemma 3.2, we obtain that on the set A,, V t E Nb, 
Ilt - sll I 8, 

But by (F), the last term in the above bound is a t  the most equal to 

which, in view of (g4) and (g5), can be made arbitrarily small by the choice of 
8, with probability tending to 1as n -+ m. Thus, to finish the proof of (1.22), it 
suffices, in view of the compactness of Nb, to show that 
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Now let N and {y;} be as in Lemma 3.4. Then, once again using the 
monotonicity of the indicator function and F ,  we obtain 

The last term in this upper bound is o,(l), by Lemma 3.4. The third term of 
this upper bound is at  the most a / ( l  - a)n-lC,lgnil, for all n, while, by 
Lemma 3.3, the second term is at  the most K a ,  for all sufficiently large n, 
with probability tending to 1. 

Now consider the first term. Let 

l = 5 [  I  Y + i ) - I ( 5Y )  - F(Y; + unL)+ F(yj)] , 
l s i s n ,  

k 


S,, := E l , , ,  1 1 k  s n .  
i = l  

Then U '(a, yj, s, k/n) = n-1/2S,,. Also, observe that for each n, {S,,,%,; 
1I k 5 n} is a mean-zero martingale array. Hence, as in the proof of Lemma 
3.4, by Doob's and Rosenthal's inequalities, we obtain 

P sup U k ( a ,  yj,s,  u)l > a 1, u  

a ,  yj, s ,  k/n) 1 > a 1 I Nn-' max E{s,j,)/a4, 
.i 

Because u,, is %,-measurable, we obtain, from (F), that 
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and, using the definitions of uni and Ani, 

for all 0 Ij N + 1. Also, because l inil< Ignil, E~E(L,~)" O(n), by (g4). 
From (g4)-(g6) and the definition of N, it thus follows that there exists an n* 
and a constant B, depending on I l  f llm,S, a and a ,  but not on n, such that 

P sup U'(a,  y,, s ,  u) 1 > a )  I B N ~ 'I B{a/ ( l  - a))n- ' /2 ,  n > n*,( j,u 
thereby completing the proof of (1.22). 

PROOFOF (1.12) OF THEOREM1.2. The proof of (1.12) uses (1.7) and 
representations similar to the ones used in AR models as in Koul and 
Ossiander (1992), Section 3. Use Corollary 1.3(a) above to obtain the tight-
ness of the residual empirical process as and when needed. 
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