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A NOTE ON SIGNED RANK TESTS FOR THE
CHANGEPOINT PROBLEM

JAMES A KOZIOL
The Scripps Research Institute, La Jolla

{ Received 24 March 1993; in final form 19 April 1995)

Summary. We consider two classes of signed rank statistics to test for smooth or abrupt changepoints in
sequences of independent random variables, We derive asymptotic null distributions and finite sampie
approximations for the two classes. We infer from a Monte Carlo power study that the signed rank statistics
may compare favorably with parameiricanalogues in detecting abrupt changes in a sequence of independent
normal random variables.
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Key words: Changepoint, weak convergence of stochastic processes, boundery crossing probabilities,
Bahadur efficiency.

L. INTRODUCTION AND SUMMARY

The problem of detecting a change in location or scale in a sequence of independent
observations has been extensively studied in the statistical literature; see Shaban
(1980} and Zacks {1983) for bibliographies. Rank tests have been proposed for this
problem, in order to provide procedures that may be robust against deviations from
parametric distributional assumptions, or insensitive to spurious outliers; such pro-
cedures have been reviewed by Wolfe and Schechtman (1984) and Csorgd and Horvath
(1987, 1988). The purpose of this note is to investigate two classes of signed rank
statistics in testing for a single abrupt change, or a smooth change (Lombard, 1987), in
the center of symmetry. We introduce these two classes, along with standard rank
statistic terminology, in Section 2. The first class in an extension of Pettitt (1979), and
the second class is a modification of the first, chosen primarily to provide a natural

~ estimate of the position of the changepoint. We derive limiting null distributions, and

provide finite sample approximations in Section 3, and compare relative performance
under abrupt and smooth change alternatives in Section 4. Interestingly, the two
classes of statistics have the same exact and limiting null distributions, and limiting
Bahadur or Pitman efficiency equalling one under abrupt or smooth changepoint
alternatives, yet can be distinguished on the basis of power with finite sample sizes. Also
in Section 4, we compare both classes to a parametric score-like statistic suggested by
Pettitt (1980) and further studied by James, James, and Siegmund (1987). We bricfly
discuss two-sided versions of the test statistics in Sectien 5, and conclude with a number
of remarks.
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The changepoint formulation assumed in this note, namely, that the initial center of
symmetry is known, commonly occurs in statistical process control. More particularly,
the motivation for this work arose from a series of experiments recently undertaken in
the Division of Sleep Disorders of Scripps Clinic to assess the effectiveness of low-
energy emission therapy (LEET), a non-pharmacologic approach, in the treatment of
persistent psycho-physiologic insomnia (Erman’ et al, 1990a, 1990b; Pasche e al,
1990). In typical experiments, patients with chronic insomnia were randomly assigned
to active treatment or placebo groups; treatment consisted of the intrabuccal emission
of low intensity 27 mHz amplitude-modulated electromagnetic fields, given as a_20-
minute treatment in the late afternoon three times per week for a four-week study
period. Statistically independent assessments of sleep latency were pesformed on each
group at baseline, and nightly over the course of the study. A plausible alternative to
lack of efficacy of LEET is a changepoint, whereby LEET would induce an improve-
ment in sleep latency at some time over the course of the study. One means of analysis of
the data arising from these experiments is the methodology described in this note, as
knowledge of baseline differences between the active and placebo groups may be
restructured into knowledge of the initial Jeve! of symmetry. See Koziol et al. (1993) for
~ further details. _

A mote generalized formulation of the changepoint problem would lead to tests for
parameter changes at unknown times in linear regression models. In the nonparametric
context, this has been studied by P. K. Sen (1977, 1978, 1980) and Hulkova (1986, 1989)
among others. Kim and Siegmund (1989) and MacNeill and colleagues (1991, 1993)
also consider this problem, form different perspectives. Indeed, the asymptotic distribu-
tion theory advanced in this paper can be readily established through weak conver-
gence arguments (e.g., P. K. Sen) or strong convergence results (Cs6rgé and Horvath).

2. SIGNED RANK STATISTICS FOR THE CHANGEPOINT PROBLEM

Suppose X,,X,,...,X, is a sequence of independent random variables, with

X~ F(x—8,), where F[)is absolutely continuous with density function f symmetric -

about 0. The changepoint problem may be formulated as a test of the null hypo-
thesis

Hyif,=0,=-.8
versus either a one-sided alternative of a single abrupt change,
' Hy 0= =6,<8, ==0, 2.1)
or a one-sided alternative of a smooth change,
Hypi 0= =8, <0, +8<6, +24
<<tk —k)A=0,= =0, k <k, (22

where

A= (Bk, - 8);,)/‘“(1 - k1):
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and the changepoints k, k,, and k, are unknown. Suppose that the initial level 6, is
known, and without loss of generality is equal to zero. We then base tests of the
changepoint hypothesis on the signed rank statistics

7
V=1 sgn(X))a,(RY),
i=1
where sgn(X,)=+1 (~1)  X,>(<)0, R’ is the rank of {X, among

| X 1L [X2l,...,1X,), and the score function a, is related to a square integrable, absolute-
_ ly continuous, skew-symmetric generating function o by

a"(i)=¢(%+%;i—])’ i=12,...,n
Under H,, we may readily show (Hajek and Sidak, 1967) that
E(V,)=0,
Var(V,) = w2 j,

and
Cov{V,, Vi) =Var(V,), 1<igj<a,
where
2 =1 - 2z ! 22 1 l 2
W, =n Z[a,,(i)] —1 0| =+=t|dt =3
i=1 0 22
Define

Z () =(nwl) 12V, t=jm j=1,...n,
Z, =0,
and extend Z, to a function_al Zyon[0,17 by
Zy(0) = Zpey + (Nt = [NODNZ 1,

Ot

From Sen (1981, Theorem 5.3,1), Z,, converges weakly under {H, } in the Skorohod
topology on D[0, 17 to the Brownian motion process Z on [0, 1].

In a generalization of Pettitt (1979), Koziol (1987) introduced the statistic L,
defined as

+
L/ = maxV,,
I1<jsn

for assessing H,,,. The limiting null distribution of (n wg,) "ML} isthatolsup, , ., Z(2),
and is given by

Pr( sup Z(t}s;c):Z(I)(c)—l, c=0;

o=t

here, ® denotes the standard normal cumulative distribution function.
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Let us next introduce a different test statistic, denoted M., for assessing H,,, as

follows:
M] = max (V,,—V,)=V,— mn V.

1€j€n 165N

The motivation for M should be clear: under H,,, the rank process Z, determined by

the ¥, is centered about 0, whereas, under either alternative H,, or H,,, the rank

process will begin to drift positively subsequent to the first changepoint. Moreover,
M should give a better indication of the location of the changepoint than L.

Under the null hypothesis, note that L" and M.’ have the same nuil distribution.

This follows from their distributional invariance with respect to reversal of the time

order of the data under H,,,.
From the continuous mapping theorem {Billingsiey, 1968), the limiting null distribuy-

tion of (nw2)™ 2 M is that of Z(1)—infy¢,, Z(1), and is given in the following
lemma.

Lemma,

Pr {Z(l) — inf Z{6)< c} =20(c)—1, c=0
D€r€1

Progf. This lemma is well-known, and may be proved by a number of techniques,
Koziol (1991) gives an elementary proof based upon first principles from Billingskey
(1968, Section 11). Alternatively, note that Z(1} — Z{t) has the same distribution as
Z(1 —1), and so the maxima of Z(1) — Z(r} and Z(t) have the same distribution,

L, and M} thus have the same limiting null distributions. We turn to comparison of
the operating characteristics of these two statistics in the following sections.

3. FINITE SAMPLE NULL DISTRIBUTION RESULTS

Note that the null distributions of L, and M, can be determined exactly by
enumeration of all possible configurations of signs and signed ranks; however, given 2".
r! such configurations with sample size n, the cost of this approach becomes prohibitive
as r increases. We thus carried out a simulation experiment in order to determine how

large the sample size must be before the asymptotic critical values provide reasonable .

approximations.

The simulation experiment, conducted on a VAX 11,750, consisted of drawing 10000
random sampies of size n, for n = 10(10)200, from the uniform { — 1, 1) distribution using
IMSL subroutine GGUBT, then finding the 50th, 75th, 90th, 95th and 99th percentiles
of the empirical distributions of L.} and M. We used both Wilcoxon scores, with
generating function ¢(u) = 2u — 1, and guantile normal scores, with generating func-
tion @(u)=®" ! (i/n+ 1) (van Eeden, 1963). The empirical percentiles of M are
depicted in Figure 1. The related results for L are quile similar, as one might expect,
hence are not shown. '

Clearly, even for reasonably large sample sizes, the use of the asymptotic critical
values will resnlt in tests that are somewhat conservative, As in Joe, Koziol, and Petkau
(1981), we therefore fit equations of the form E, ,= A, — B exp(— C,n'?} using
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Figure 1 Estimated critical values for M, under H , using Wilcoxon scozes {Panel A) or quantile normal
scores {Panel B). The.dashed lines indicate the asympiotic eritical values; the solid lines are smoothed
empirical values, as £xplained in the text. .

Table 1 Coefficients for finite sample critical value smacthing equations E, ,=4,~B,exp(~C,N"%)

Statistic Percentile Scores* 4, B, C,
L* .50 W 6745 1648 1174
N 1737 1174
15 w 1.1503 1994 1454
N 1617 1132
90 w 1.6445 2578 1662
N 982 1279
95 W 1.9600 2993 1807
N 2255 1342
99 W 2.5758 4272 1679
N 4560 1708
M* 50 w 5745 1676 1190
N 1610 A116
75 w 1.1503 .1898 1354
N 1350 1007
90 w 1.6445 2603 1622
N 1754 1212
R 95 W 1.9600 2670 1550
N 2155 1273
99 w 25758 4691 1924
N 5006 1897




330 J. A KOZIOL

nonlinear least squares to the empirical critical values E, , approximating the asym-
ptotic critical values A, for each percentile p, in order to smooth the simulation results

and to provide an interpolation formula for other sample sizes. {One might alternative-

ly use Siegmund’s (1985) approximation E, ,= A, — D, /n'>. However, since the
residual sums of squares from the Joe-Koziol-Petkau approximation were typically
smaller than the corresponding residual sums of squares lrom the Seigmund approxi-
mation {except at p =0.99}, only the JKP approximation is reported herein]. For
reference, these parameter values are given in Table 1.

4, POWER COMPARISONS

4.1, Asymptotics

Our basis for asymptotic comparison of L and M, is the following theorem, which
establishes the nature of the drift of the limiting Brownian motion process under
a sequence of contiguous alternatives.

Theorem. Let X,,i=1,...,n, be independent random variables with continuous distribu-

tions F(x — ;). Assume that F possesses almost everywhere an absolutely continuous -

density function f which is symmerric about 0, and with finite Fisher information I(f),
given by .

3
I(f)=j @alt, f)dt,

4]
where
—f'[F ']
SOF 0]’
Consider the sequence of local alternatives {H,,} and {H,,}, where 8,=n"128, 0> 0,

andkfn-1,0<v<lunder {H, |,k /n—1,,k;/n—=1,0<7, <1, < lunder {H, },as
n— 0. Then under {H,,}, .

@olt, )= o<i<l,

Zy02Z0 + 3l tel01), =12,

where
0 t<t _
Y@ ={( (4.1)
R c:) 8 j oo, Ndu, t<i<l
and
4] tsty
. _ (t—1,)%6 (!
2(1)= =t ), @(u)pq(u, f)du, Ty <tST,

[(Tz . J-I—(t—ﬁ}]ﬂjlw(u)(po{u, fdu, 1, <t<l,
@ Jo

C
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Proof. The proof is a slight modification to that of Theorem 5.3.3 of Sen (1981),
If we denote the joint distribution of (X ,...,X,) under H, as PP i<=1,2 so
that P{” refers to the null case, then it follows from Hijek and Sidak (1967, V1.1.3)
that {P} is contiguous to {P{®}. The tightness of {Zy} under {P} is established
from Sen (1981, Theorem 5.3.1), and the tightness of {Zy} under {P?} follows
from Sen (1981, Theorem 4.3.4). Lastly, the convergence of the finite-dimensional
distributions of {Z,} under {P®} to those of {Z + 7} follows from Sen (1981,
Theorem 5.3.3), and Hajek and Sidik (1967, Theorem VI.2.5). See also Huikova
(1970) for a more general representation, which may be used to establish
weak convergence under a wider class of contiguous alternatives than that considered
herein.

We may compare the asymptotic performances of L) and M against particular
classes of alternatives by using a criterion of efficiency introduced by Bahadur (1960). It
is straightforward to establish that both {L*} and {M,} are standard sequences
in Bahadur's terminology: They have the same limiting nuli distribution, and the
maximal drift of y,(r) under {H,,} is realized at y,(1). Hence, {L,}and {M; }in general
have the same approximate slopes under {H,,} and {H,}. Bahadur (1967) has further
emphasized that the most important property of a slope is its value in the immediate
vicinity of a null hypothesis. In this regard, both {L,;} and {M;} satisfy Wieand’s
(1976) condition, so that the limiting Bahadur efficiency of {Ly} relative to {M}},
namely one, equals its limiting Pitman efficiency. Hence, we cannot distinguish between
the two statistics on the basis of this asymptotic comparison, and might expect that
their performances with reasonable sample sizes typically encountered in practice
would be similar,

[In related work, Praagman (1988) investigated the exact Bahadur efficiencies
of max- and sum-type linear rank statistics for the two-sample changepoint
problem. Of particular note, he established that for each sum-type statistic, there is
a max-type statistic that is at Jeast as efficient in the Bahadur sense, uniformly over ali

changepoint alternatives, We refer the interested reader to Praagman (1988) for further
details.]

B. Finite samples

We conducted a limited simulation study to compare the relative performances
of L} and M} with finite sample sizes. We chose the abrupt changepoint setting
(21), with X,~N(6,1) 6,=6=magnitude of location shift =0.1(0.1)2.0,
n = 10{10)200, and t = k/n = 0.1{0.1)0.9. We used both Wilcoxon and quantile norma)
scores with both L and M. For further comparison, we included Pettitt's {1980)

statistic,
kS
P = max ( z ),
1spen T~ 8

where S;= X, + - + X ;- James, James, and Siegmund ( 1987) have shown that P’ is
a score-like test statistic, and has reasonable power in assessing H,, versus H
compared with the (modified) Likelihood ratio tests investigated therein. [Note that
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Pettitt’s procedure does not require knowledge of the initial center of symmetry in its
formulation, Nevertheless, it is not necessarily true that procedures which utilize the.
most prior information will outperform those that do not. See Wells {1990) for further

discussion.]

Fot each choice of n, we determined approximate x = 0.05 level critical values for
Ly and M, from the smoothing equations in Table 1. We similarly used the James,
James, and Siemund (1987) approximation for the exceedance probability of P},
namely, :

PriP! zb}=exp{—2n"'(b+p)2), p=0583,

for its approximate a = 0.05 level critical values. Then, for each set of n, 8, and 1, we used
IMSL routine GGNML on a VAX 11/750 to generate 1000 random samples of size -
n from the appropriate abrupt changepoint model, and thereafter determined the
empirical powers of L', M.}, and P, against that particular alternative. We briefly
summarize our findings here. ‘
From (4.1), the drift y,(¢) of the limiting Brownian motion process Z(t) under the
abrupt chahgepoint model increases with £ and (1 — 7). We utilize this fzct to amalga-
mate some of the simulation results in Figures 2—-4, where we depict the empirical
powers of L and M with uniform scores (LU, MU) or normal scores (LN, MN).
corresponding to pooled combinations of 8(1 — 1), for sample sizes n = 20, 50, 150,
Results for n = 100 and 200 were qualitatively quite similar, hence are omitted. _
As expected, power does increase with 6(1 — 1), and n. One might also anticipate
from (4.1) that the normal score versions of the test statistics should outperform the
uniform score versions, albeit slightly. [Recall from van Eeden (1963) that the efficiency
of the Wilcoxon signed rank statistic.relative to van der Waerden's normal score
statistic in the one sample setting with normally distributed data is 3/m.] This is indeed
the case, as may be seen in Figures 2-4. In each of these figures, approximating curves
ot smoothers (Cleveland, 1981} were fit separately to the normal scores and uniform
scores empirical powers; from these curves, the normal scores test always outperformed”
its uniform counterpart, though the difference was slight for small n. Lastly, one might’
mfer from comparison of the A and B panels of each figure that M seems somewhat.
more powerful than L in this hypothesis testing setting. Let ns address this issue i
a slightly different manner. o
In Figures 5 and 6, we depict the empirical powers of L, and M., both using
normal scores, and P, under the abrupt changepoint setting described earlier,
for representative choice of 8, 1, and n. One might conclude from these figures
that M, is indeed preferable to L} in this setting, with the power of L} evi- &
dently dropping off more rapidly than that of M as 1 increases. As James, Jame
and Siegmund (1987) had pointed out, the power function of P7 is not monotoné
in 7, but is maximal at about t = 0.5; in contrast, the powers of L} and M monotoni
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sense, none of the statistics demonstrates reasonable power in detecting late change
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Figure 4 Observed and smoothed empirical powers of L,* {(Panel A) and M, * (Panel B) under H., wi.th ‘

2 =10.03, n = 150, using Wilcoxon scores ([J) or normal scores ().

The hmttmg null distribution of L, is well known, being that of sup, ., |Z (r}| and ;

given by (Billingsley [1968], 11.13)

Pr{ sup |Z(r)]:§c}= i (= DH®[(2k + D] =B[(2%k — 1)c]}, c=0.

O=<irgl k=—a

The limiting null distribution of M, is that of max [Z(1)—inf,_, ., Z{t), supy .,

Z(t} — Z(1}], and is identical to that of lim L,, as shown in the following lemma.

Lemma.

Pr{max[Z(l)— inf  Z(z), sup Z(I}—Z(IHSC}

L ES -] 0gig!

z (= D@Lk + 1)e] - ®L(2k ~ 1)eT), ¢>0

A= -

Again, this letmmma may be proved by a variety of techniques, Koziol (1991) provides an
elementary proof based on first principles from Billingsiey ( 1968). Alternately, we may

argue as follows:
Set
Alty=Z(r)— Z(1).
Then
max{sup A(t), —inf A(1}] = max [sup A(1), sup — 4()] a

= sup max [Aft), — A(t})] = sup|A{1)],

which yields the lemma directly.

Analogously, we would further anticipate that the relative merits of L} and M}
assessing the one-sided changepoint models (2.1} and (2.2) should 31m11arly pertain t'
L, and M, in the two-sided setting,
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Figure § Empirical powers of Lt (o
(2 1) at alpha level 0.05. In panc[ AT
in Panel C, =09, and 0 =0.5 or 1.5.1

Cleve!ands (1981) LOWESS msthod, w: 1

upper smoother for each statistic corres
value.

FINAL REMARKS

Although we have not investigat

against the smooth change altern.
would be quantitatively similar
magnitude of the drift would be le
(2.2) compared with (2.1), the po
numerical calculations would be

It our limited simulation study,
P." were similar to those reportec
strength of L7 and M7 is their e
likelihood ratio tests of James,
information concerning the expe




THETA1-TAL)

A)and M,” (Panel B} under H“, with

ing that of sup, ., 1Z(2)|, and

1=®[(2k—1)e]}, c=0.

[Z(1)—ind, , ., Z(0), SUPp ¢/
#n in the following lemma.

Z(l)]Sc}

c>0

- I)C]},

iques. Kozicl (1991) provides an
sley (1968). Alternately, we may.

1
sup|A(t)],

zlative merits of L} and M} in
(2.2) should similarly pertain to

CHANGEPOINT PROBLEM

Q0

opQ
255

Figure 5 Empirical powers of L * (Q), M," (A} and P,*(01) under the abrupt changepoint model
{2.1) a1 alpha level 0.05. In panel A, =401 and 6=0.1 or 0.3; in Panel B, 1=05 and §=02 or 0.5;
in Panel C, =09, &nd 8 = 0.5 o7 1.5. The solid lines are smaoothers of the empirical power values, using
Cleveland's (1981) LOWESS method, with tension =, 5, Power increeses with 8, 5o that in each panel, the

upper smoother for each statistic corresponds to 1he larger value of 8, the lower smoother to the smaller
value, :

FINAL REMARKS

Although we have not investigated the relative performances of the signed rank tests
against the smooth change alternative (2.2), we nevertheless anticipate that our findings
would be quantitatively similar to those reported in Section 4. However, since the
magnitude of the drift would be less for fixed terminal @ and initial shift position r under
{2.2) compared with (2.1), the powers of L7, M, and P would accordingly decline;
nurmerical calculations wouild be useful for gauging the relative differences.

In our limited simulation study, M + appeared to dominats LY the characteristics of
P} were similar to those reported by James, James, and Siegmund (1987). A particular
strength of L and M} is their enhanced power for 1 near 0, where even the modified

likelihood ratio tests of James, James, and Siegmund (1987) are weak. If a priori
information concerning the expected position of the changepoint is available, it can
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profitably be utilized for selection of a test statistic sensitive to that alternative.
A further advantage of M, and P; is that they provide natural estimates and
confidence sets for the changepoint location. See Worsley (1986), Siegmund (1986,
1988), and James, James, and Siegmund {(1988) for further discussion.

References

[1] Bahadur R. R (1960). Stochastic comparison of tests. Anr. Maih. Statist. 31, 276-295.
{2] Bahadur R. R, {1967). Rates of convergence of estimates and test statistics. Ann, Math, Statist. 38,
303-324, -
- [3] Billingsley, P. {1968}, Convergence of Probability Measures. John Wiley, New York.
[41 Cleveland, W. S, (1981). LOWESS: A program for smoothing scatterplots by robust locally weighted
regression. American Statistician 35, 54. -
[5] Csérgd, M. and Horvath, L.{1987). Nonparametric tests for the changepoint problem. J. Starist. Plann.
Inf 17,19,
[6] Csdrgh, M. and Horvith, L. (1988). Nonparametric methods for changepoint problems. In; PR
Krishnaiah and CR Rao, eds. Handbook of Staristics, Morth-Holland, Amsierdam, 7, 403-425.
[7] Erman, M., Hajdukovie, R., Cohen, R., Pasche, B. and Mitter, M. (199Ca). A comparison of subjective
and objective sleep variables. Sleep Res. 19, 220.
[8] Erman, M,, Hajdukovic, R., Cohen, R., Pasche, B., Rossel, . and Mitler, M. {1990b). Efectiveness of
LEET in the treatment of insomnia. Sleep Res. 19, 221.
[91 Hajek, 1. and Sidak, Z. ( 1967). Theory of Rank Tests. Academic Press, New York.
[10] Huskova, M, (1970). Asymptotic distribution of simple linear rank statistics for testing symmetry.
Z. Wahrscheinlichkeitstheorie verw. Geb. 14, 308-322,
[11] Huskova, M. (1988). Adaptive procedures for detection of change. Statistics and Decisions 6, 137—148.
[12] Huskova, M. (1989). Nenparametric tests for shift and change in regression at an enknown time point.
in: P Hackl, ed. Analysis and Forecasting of Economic Structural Change. Springer-Verlag, Berlin,
71-85,
[13] James, B. James, K. L. and Siegmund, D. {1987). Tests for a change-point. Biometrika 74, 71-83.
[14] James, B. James, K. L. and Siegmund, D. (1988). Conditional boundary crossing probabilities with
applications to changepoint problems, Ann. Prob. 16, §25-839.
{15] Jandhyala, V. K. and MacNeill, I. B. {1991}, Tests for parameter changes at unknown times in linear
regressicn models. J. Statist, Plann. Inf 27, 291-318.
[16] Joe, H., Koziol, J. A. and Petkau, A, 1. (1981). Comparison of procedures for testing the equality of
survival distributions. Biometrics 37, 327-340.
[17] Kim, H. ), and Siegmund, D. {1989). The likelihood ratio test for a change-point in simple linear
fregression, Biomerrika 76, 409-423,
[18] Koziol,J. A.(1987). Anoteon non-parametric tests for the changepoint problem. Biom. J.29, 791-794:
[19] Koziol, 1. A. (1991). A note on signed rank tests for the changepoint problem. Unpublished technical
report. :
[20] Kozicl, J. A, Erman, M., Pasche, B, Hajdukovic, R. and Mitler, M. E.{1993). Assessinga changepoint
in a sequence of repeéated measurernends with appiication 10 a low-energy emission therapy sleep study.
J. Appl. Statise. 20, 393-400, :
[21] Lombard, F. (1987). Rank tests for changepoint problems. Biomerrika 74, 615624,
[22] Pasche, B., Erman, M. and Mitler, M. {1990). Diagnosis and management of insomnia. N. Engl. J. Med.
323, 486487,
(23] Pettitt, A. N. (1979). A non-parametric approach to the change-point problem. Appl. Stavist. 28, 126—
135

[24] Pettitt, A. N.(1980). A simpls cumulative sum type statistic for the change-point problem with zero-one
cbservations. Biometrika 67, 79-84.

[25] Pragman. K. (1988). Bahador efficiency of rank tests for the change-point problem. Ann. Statist. 14,
198-217.

[26] Sen, P. K. (1977). Tied-down Wiener process approximations for aligned rank order processes and
some applications. Ann, Statist. 5, 1107-1123.

[27] Sen, P. K. (1978). Invadance principles for tinear rank statistics revistics revisited. Sankhya. A, 40,
215-236.

[28] Sen, P. K. (1980). Asymptotic theory of some tests for 2 possible change in the regression slope
accurring at an unknown time point. Z. Wahrschein-lichkeitstheorie perw, Geb, 52, 203-218,

[29] Sen, P. K. (1981}, Sequential Nonparametrics. Johi: Wiley, New York.




338 J. A, KOZIOL

{30] Shaban, S, A.(1980). Changepoint problem and two-phase regression: An annotated bibliography. fns.
Statist. Rev. 48, §3-93.

[31] Siegmund, D. (1985). Sequential Analysis: Tests and Confidence Intervals. Springer-Verlag, New York.

[32] Siegmund, D. (1986). Boundary crossing probabilities and statistical applications. Ann. Statist. 14,
361-404.

[33] Siegmund, D. {1988). Confidence sets in changepoint problems. Int. Statist. Rev. 56, 31-44.

[34] Tang, 8. M. and MacNeill, I. B. (1993). The effect of serial correlation on tests for parameter change at
onknown time. Ann. Statist. 21, 552-575.

[35] van Eeden, C. (1963). The relation between Pittnan’s asymptotic relative efficiency of two tests and the
correlation eocfficient between their test statistics. Ann. Math. Statist. 34, 1442-1451.

[36] Wells, M. T. {1990}, The relative efficiency of goodness-of-fit statistics in the simple and composite
hypothesis-testing probiem. J. Am. Statisi. Assoc. 85, 459-453, .

[37] Wieand, H. S. (1976). A condition under which the Pitman and Bahadur approaches to efficiency
coincide. Ann, Srarist. 4, 10031011,

{38] Woalfe, D. A. and Schechtman, F. (1984). Nonparametric statistical procedures for the changepoint
problem, J, Starist. Plann. Inf. 9, 389-3096. )

[39] Worsley, K. I. (1986). Confidénce regions and tests for a changepoint in a sequence of exponential
family variables. Biomerrika 73, 91-104.

[40] Zacks, 3. (1983). Survey of classical and Bayesian approaches to the changepoint problem: Fixed
sample and sequential procedures of testing and estimation. In: MH Rizvi, IS Rustagi and DO
Sicgmund, eds. Recent Advances in Statistics, Academic Press, New York, 245-269,

James A. Koziol, Ph. D.
Department of Molecular and
Experimental Medicine

The Scripps Rescarch Institute
10666 North Torrey Pines Road
La Jolta, CA 92037

Seatistics 27 (1996) 339343
Reprints available directly from the P
Photocopying permitted by license or

TESTING FOR A -

Bu[,t
( Reveived 19

Sumpary. A test based on Spearmar
rankings are chosen randomly and un
is that rankings are biased due to orde
for complete rankings.

AMS .mbjéct classification: 62G10

Key words: Partial rankings, probabil

1. INTRODUCTION

The statistic D, introduced by
group of judges shows favorat

ranks in analyzing data permi

Suppose that a judge ranks ;
permutation of the integers
permutation group §.,.

Suppose than that there are
ing ranking ;= Cry(l),..omy(n
and uniformly distributed ranc
or not the rankings have mow
Verducci (1988) test the null h;
does not depend on the order

tend to give worse scores to th |

where v, = (n,..., 1% and the ¢ -

The test rejects the nuil hyp
for small values of D.

An incomplete analysis arise
number of objects. There are
testants are admitted to the ne

bias in ordering of these conte



