
Journal of Econometrics 86 (1998) 337—368

Test for partial parameter instability in regressions with
I(1) processes

Biing-Shen Kuo*
Graduate Institute of International Trade, National Chengchi University, Taipei 116, Taiwan

Received 1 December 1993; received in revised form 1 November 1997

Abstract

This paper derives the limiting distribution of LM-type tests for possible departure
from constancy in ‘subsets’ of cointegrating coefficients. In particular, models with
nonconstancy on intercept or stochastic trend coefficients are considered. It is found that
the limiting representations of these subset tests can be characterized as functions of
continuous-time martingales depending on the asymptotics of both the whole regressor
vector and the regressors whose coefficients are under tests. Critical values are computed
using large-sample approximation. Monte Carlo experiments are conducted to investi-
gate the finite sample size and power. The subset tests are found to dominate the joint test
when there is partial coefficient variation. ( 1998 Elsevier Science B.V. Published by
Elsevier Science S.A. All rights reserved.

JEL classification: C12; C15; C22; C52
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1. Introduction

The problem of regression parameter constancy has a long history in econ-
omics. In the context of independent and stationary data, there is a large
literature concerning the test statistics for structural change (e.g. Chow, 1960).
Recently, more attention has been given empirically to models with non-
stationary regressors, starting with the seminal paper of Engle and Granger
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(1987). The notion of cointegration delivers rich implications for long-run
relationships among integrated variables. This has given rise to the desire to
develop parameter constancy tests valid in the context of non-stationary but
cointegrating variables.

This article contributes to this new literature. Yet the focal point is testing for
the constancy of ‘partial’ cointegrating coefficients, which pertains to only
a subset of the coefficients in the model, using the terminology of Andrews and
Fair (1988). This is partly motivated by empirical considerations: economic
theory might suggest implications only for the constancy of a subset of the
cointegrating slope coefficients in the model. For instance, one might wish to
investigate the existence and stability of a long-run money demand function, as
demonstrated later as an illustrative example of the proposed tests. A long-run
money demand equation could be characterized empirically as a cointegrating
relation among real balances, real income, and interest rates, as suggested by
Stock and Watson (1993). To analyze the stability of the equation, researchers
would be interested in learning not only whether the entire equation is stable,
but also whether the individual cointegrating coefficient: the intercept, the
income elasticity or the interest semielasticity, varies over the sampling period.
The need for tests of this sort appears indisputably clear.

Like the classical Chow test for partial structural change, testing for the
stability of partial cointegrating coefficients is justified similarly. In the classical
regression model, when the F test rejects, one or more t ratios for individual
parameters may be large enough to explain the rejection. As an extension of this
procedure to the models with integrated processes, we need analogs of the ‘t
ratios’ of the classical model which allow us to test a particular subset of the
cointegrating coefficients. In principle, these subset tests should enable re-
searchers to find the subsets of cointegrating coefficients responsible for the
finding of model instability.

To make this extension, a class of the subset tests for constancy of cointegrat-
ing coefficients is developed here. It is built on the work of Hansen (1992a) which
deals with the joint test statistics. In particular, the models in which the
coefficients have nonconstancy of random walk or jump process on intercept or
on stochastic trends are considered. The test statistics are derived by the
Lagrange multiplier (LM) principle. Their stationary analogs are documented in
Nyblom (1989) for random variations and Andrews (1993) for structural breaks.
Using the fully modified estimator of Phillips and Hansen (1990), the limiting
distributions of the statistics are derived under the null of coefficient constancy.
Their asymptotic distributions are non-standard, free of nuisance parameters
and characterized as functions of continuous-time martingales. It should be
stressed that the asymptotics of these subset tests depend on those of both the
whole regressor vector and the regressors of cointegrating coefficients under test.
It is essential to know the nature of the regressors for correct application of the
tests.
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The advantages of the subset tests proposed are, in fact, deeper than their
usefulness in applications. Both joint and partial testing procedures can be
performed to test for the constancy of a subset of parameters. The obvious issue
is which procedure is better. The distributional theory of the test statistics does
not provide an answer to this question. However, from Monte Carlo simula-
tions, our subset tests are found to have reasonable power, and dominate the
joint test under the alternative that only partial parameters vary to the extent of
economic interest. Here some of the information contained in the joint test is not
informative but contaminates the estimation. This suggests that it might pay the
price of power loss when introducing redundant information into the test.

Intuitively, the test statistics make use of the properties of non-stationary
data. Under the alternative of coefficient variations, the partial sums of the
residuals behave as those in spurious regression (see Phillips, 1986), and con-
verge to random variables only after renormalization. As functions of the partial
sum of residuals, the test statistics hence are consistent. Several recent works
also employ this notion in constructing similar test statistics. Kiwatkowski et al.
(1992) applied it to testing for stationarity in a univariate time series. Quintos
and Phillips (1993) and Shin (1994) work on cointegrating models, and differ
from this paper in some ways. Their tests correspond to one of the test statistics
here, although signified differently. Their tests are Nyblom-styled and are to
detect a martingale specification for parameter variation. Neither paper pro-
posed tests for structural change of unknown timing. On the other hand, Shin
(1994) addressed the specific question of testing for the null of cointegration. His
test is equivalent to the Nyblom-styled test for intercept variation which is one
fully modified special case of our tests.

The remainder of the paper is organized as follows. Section 2 discusses the
estimation of a cointegration model. The test statistics for coefficient non-
constancy are described in Section 3. Section 4 is the core of the paper where the
limiting distributions of the tests are derived and their asymptotic critical values
are given. The results for gauging the small sample performance of the tests are
reported in Section 5, and a brief analysis of the stability of cointegration
relation in U.S. money demand is taken up in Section 6. Section 7 is the
conclusion. The proof of the main theoretical results are left to the Appendix.

2. The estimation for a cointegration model

2.1. The model

We will stay in a standard cointegrated regression model where the cointegra-
tion vectors remain stable over the sampling period.
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where the processes x
2t

and x
3t

are generated by
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is a sequence of stationary innovation vectors with zero mean, and the sequence
k
2t
, whose components are the power integer of time up to p, is used to describe

the time trend. That is, k
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"(t, t2,2,tp)@. Note that k
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the processes of stochastic trend regressors x
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. It is also assumed that
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2
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3
elements.

This model is fairly general and encompasses a wide spectrum of variants that
cover usual applications. In particular, when n

2
O0 or /

2
O0, it allows for the

presence of deterministic trends in regressors. This is a common characteriza-
tion for time series variables. The distribution theory, as will be shown later, can
be derived for the model with or without k

2t
.

2.2. Fully modified estimation

Our tests for partial parameter variation can be derived as LM tests in
correctly specified likelihood problems. To construct the suggested tests, the
model is estimated under the null of stable cointegrating coefficients.

We begin with defining the following matrices:
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These nuisance parameters are used to describe the nature of temporal and
long-run dependence among error series. X is usually referred to as long-run
covariance matrix.

340 B.-S. Kuo / Journal of Econometrics 86 (1998) 337–368



It is by now well known that the limiting distribution of OLS estimation of
Eq. (1) depends on X and K (see Park and Phillips, 1989) in complicated ways.
To overcome this problem, a number of estimators have been developed that
can lead to parameter-invariant theory of inference. These include the max-
imum-likelihood estimator of Johansen (1988) and the leads and lags estimator
of Saikkonen (1991) and Stock and Watson (1993). The solution adopted here is
the fully modified estimator of Phillips—Hansen. We shall briefly describe this
estimation technique.

In the first stage, the two-step Phillips—Hansen correction requires a consis-
tent estimate of X and K used as an input in the subsequent procedure.
Generally u

i
is likely to be serially correlated and heteroscedastic. It is

desirable to have estimates for X and K that are robust to these data properties.
To that end, the residuals uL @

t
"(uL @
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) are computed, in which ‘a’ signifies ‘2’

and ‘3’ taken together, uL
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is the least-squares residual obtained from regressing
(1), and uL

at
are the residuals from the regression of *x

at
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2t
. The

covariance matrices X and K are then estimated from uL
t

through a kernel.
Specifically,
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where w( ) ) is any kernel that gives a positive-semi-definite estimate such as the
Bartlett, Parzen, and quadratic spectral (QS). M is a bandwidth parameter
required to be sufficiently large as ¹ grows in order to obtain the consistency.
Andrews (1991), using an asymptotic mean-square error criterion, discussed the
optimal choice of this number where M is chosen such that M"O(¹1@3) for the
Bartlett kernel and M"O(¹1@5) for the Parzen and QS kernels, respectively, as
¹PR and MPR. Here consistent with our simulation setup and applica-
tion later, we shall assume that M3/¹"O(1).

With the consistent estimates for X and K, we now are able to display the fully
modified (FM) estimator of cointegration vector in the model above,
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Related to the LM approach adopted here, the scores corrected for bias in the
problem are defined as
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To develop the test statistics later, we also need the estimates for X
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3. Testing partial parameter variation

Following the standard model, two of the models allowing for partial change
in coefficients on either deterministic or stochastic trend regressors are introduc-
ed in order. The first model allows the coefficients on the intercept to vary over
time.

Model I: parameter change in intercept:
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Observe that the coefficient A
1t

is time-varying while those on x
2t

and x
3t

are
held constant. A parameterization of this sort models changes in the level in the
dependent variable.

Model II: parameter changes in stochastic trend regressors:
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where the coefficients on x
2t

are time-dependent. This is to entertain the change
in the cointegrating slope in the model, such as income elasticity or interest
semielasticity in a money demand function.

All the proposed tests have the same null hypothesis that the cointegrating
coefficients of interest are stable during the sampling period. That is,
H

0
: A

h, t
"A

h
. A

h
is constant, and A

h, t
stands for those parameters in Model I or

Model II that are considered to have the possibility of departure from constancy
(A

1t
in Model I, or A

2t
in Model II). Here and elsewhere, we use ‘h’ that takes

values ‘1’ or ‘2’ to signify those subscripts of the time-varying parameters in
Model I or Model II, respectively.

In common with the literature, two types of parameter instability which the
proposed tests are to detect will be considered here: random-walk variation and
a single jump of unknown timing. The former captures the notion of the
cointegrating coefficients moving gradually across time, while the latter stresses
the feature of their immediate shifts. The difference will be embodied in the
alternative and the formulation of the tests suggested below.
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The first test we consider is to detect a single-structure break of unknown
timing. In this event, A

h, t
follows a single-structural change at time i
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restriction under test is that when the coefficients are partitioned into two
subsets, the subset of cointegrating coefficients denoted by h is stable over time.
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There is another way to think of SupF test in terms of regression. It is the
maximum of a sequence of LM tests for B"0 in the regression defined as either
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ables indexed by the break point i("1,2,¹).
The notion of SupF test can run back as far as Quandt (1960). It can be found

that the timing of the shift is not conveyed to the test, which evolves from the
F test for a structural break. The information regarding the occurrence of
a break is normally incorporated into the conventional F test in an explicit way.
In practice, note that the region T cannot contain the endpoints (0 and 1) that
would result in a divergent sequence when the test statistics are calculated.
A reasonable suggestion by Andrews (1993) is to select T"[0.15, 0.85].

To detect the parameter instability of random-walk type, another two test
statistics are proposed. The time-varying parameters in Models I and II are
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specified as
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Therefore, when the parameters are considered constant under the null, it
amounts to confining the variance of the martingale process to zero (d2"0).
The alternative hypothesis for the tests is then H
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Associated with the martingale specification, one test is given by
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Thus, the choice for G
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is not unique. Here they are so chosen for mathematical

convenience in a way to provide a tractable limiting distribution that is free of
nuisance parameters. This practice can find its precedent in Nyblom (1989) and
Hansen (1992a). Sometimes applied researchers may wish to entertain multiple
structural breaks as an alternative. The alternatives of MeanF and ¸

c
tests can

in principle be generalized to include a process with multiple jumps such as
those discussed in Nyblom (1989). To be able to do so, some information about
the jump process on which the limit distribution of the test under consideration
will depend has to be known. However, such a test would not be free of
parameters relevant to this information; hence, in practice, it is difficult to
apply.

Both these tests have the optimality property that the power is maximized
against the alternatives close to the null hypothesis. MeanF

h
is the limit of the

exponential LM statistics considered in Andrews and Ploberger (1994), while
¸
h,c

is an asymptotic approximation to the locally most powerful test for
constant coefficients studied in Nyblom (1989). Note that the partial sum of the
residuals, S

h,Tt
, is the basic element in constructing the tests. Under the alterna-

tive that d2O0, as shown later, it diverges at a rate faster than that under the
null ("O

1
(¹1@2)). As a result, the consistency of these tests can be ensured by

taking advantage of this non-stationarity in the data.
The method of trimming the region is also required for MeanF, since it suffers

the same non-convergence problem as Sup F. On the contrary, ¸
c
, formulated
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independently of Sup F and Mean F, is able to escape from the non-convergence
problem, and is also computationally easier.

It cannot be expected that all three proposed tests come to an identical
conclusion when applied to a specific data set. This is because each test serves to
discover different alternatives, even though they have power in similar direc-
tions. Tailoring a test for a particular application therefore hinges on the
purpose of the test.

4. The limiting distributions of the test statistics

The asymptotic distributions of the proposed tests given below rely on the
theory of weak convergence on the space D. This approach can characterize all
the limiting distributions of the tests as functionals of Brownian motions under
mild regularity conditions. The set of assumptions required for the distribu-
tional theory is stated below. A few words on the notations used throughout:
‘N’ stands for weak convergence of the associated probability measures, and
‘BM(X)’ denotes a Brownian motion with covariance matrix X.
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To get better insights into the weak convergence results for the tests, we will
sketch the proof procedures that are spelled out in the appendix. Observe that
the proposed tests are functions of partial sample score sums S

h,Tt
, which in turn

are functions of a variety of partial regressor moment matrices. The regressor
vector consists of both deterministic and stochastic trends converging at differ-
ent rates. To accommodate the different rates of convergence, the weight matrix
that could appropriately standardize the regressors needs to be constructed.
Specifically, we rewrite the partial sums process of sample scores as functionals
on [0, 1],
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where ‘[ ) ]’ denotes ‘integer part’ and q3[0, 1].
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We also apply the same routine to the process F
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This theorem generalizes Theorem 2 of Hansen (1992a) and Lemma 5 of Shin
(1994). The former gives the asymptotics of the processes S
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(q) and F
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(q), S*(q) and

F(q), under the null that the whole cointegration vector is constant. The latter
shows the univariate version of the asymptotics of S
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(q), using the linear leads

and lags estimator of Saikkonen (1991) and Stock and Watson (1993). It should be
emphasized that Theorem 1.2 holds pointwise for any fixed q. When h"1, the
result can have a much simplified version because now X
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The functional limit to the partial sums process of sample scores S
hT

(q), S*
h
(q), is

a tied-down version of S
h
(q). In consequence, the covariance function of

S*
h
vanishes at the upper end of [0, 1]. To see this, note that conditional onF

x
"

p(X(q) : 0)r)1) (the sigma field generated by X(q)), the covariance functions of
S*(q) and S*

h
(q) are expressed as

E[vec(S*(q
1
))vec(S*(q

2
))@DF

x
]"X

1.a
?[M(q

1
)!M(q

1
)M(1)~1M@(q

2
)],

E[vec(S*
h
(q

1
))vec(S*

h
(q

2
))@DF

x
]"X

1.a
?[M

h
(q

1
)!M*

h
(q

1
)M(1)~1M*@

h
(q

2
)],

given q
1
)q

2
. The covariance function for S*

h
is zero if q

1
"q

2
"1 as it does for

S*, since S*
h

is a subset of S*. Note that when q
1
"q

2
, the covariance function

turns into the variance functions denoted by »
h
(q).
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In the theorem, the degrees of freedom of the chi-square distribution represent
the dimension of the regressors whose coefficients are under test. The sum
of the degrees of freedom of s2(l

1
) and s2(l

2
) is equal to that of the

functional limit of F
T
(q), F(q). F

T
(q), using the full vector of sample scores, is also

pointwise asymptotically chi-square distributed (see Theorem 2 Hansen
(1992a)). This is always true because the degrees of freedom of any chi-square
distribution mentioned are determined by the number of coefficients under test.
However, in general s2(l

1
) and s2(l

2
) will not be independent. It can be shown

by observing that with probability one, the off-diagonal submatrix of the
conditional covariance matrix of F(q),»(q) ("M(q)!M(q)M(1)~1M(q)), is
non-zero.

Theorem 1 also shows the difference in the asymptotics of the whole trend
regressor vector, X, when including the deterministic trends in regressors. For
a fixed number of regressors ("m

2
#m

3
#1), more variations would be intro-

duced into X when n
2
O0 than when n

2
"0 by increasing the number of the

stochastic trends (from m
2
#m

3
!p to m

2
#m

3
) across the regressors. This

is because the behavior of stochastic trends is dominated by that of deterministic
trends in the limit. With the convergence results above, we can now lay
out descriptions for the limiting distributions of the test statistics mounted
before.

¹heorem 2. ºnder the null hypothesis,

1. Sup F
h
Nsupq|TF

h
(q),

2. MeanF
h
N:TF

h
(q) dq,

3. ¸
h, c

N:1
0

trMS*{
h
(q)M

h
(1)~1S*

h
(q)N,

where h"1, 2.

The result is related to some recent works. The tests proposed by Quintos and
Phillips (1993) and Shin (1994) correspond to the ¸

c
test here. This test is an

extension of the test for stationarity suggested by Kiwatkowski et al. (1992) to
the context of cointegration. The tests of Shin (1994) are useful in testing for the
null of cointegration, but might not be suitable for testing for the constancy of
cointegrating coefficients. His test is equivalent to the test for intercept noncon-
stancy which is a special case of our subset tests. While Quintos and Phillips
(1993) dealt with the case allowing for the presence of deterministic trends in I(1)
regressors, Shin (1994) did not. The theorem here makes such an extension to
SupF

h
and MeanF

h
tests.

The covariance structure of vec(S*
h
(q)), X

1.a
?»

h
(q), has an influence on the

asymptotic distributions of the tests. Due to this influence, the estimation for
the covariance is expected to play a role concerning the finite-sample behavior
of the tests. As displayed in the next section, the power performance of the
tests appears to be affected partly by the estimation of the covariance
parameters.
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More importantly, Theorem 2 shows that the test statistics depend on the
trend nature of the regressors and the regressors whose coefficients are under
test. This is an echo of the previous finding that the trend property of the
regressors makes a difference in their joint asymptotics. Thus the theorem
substantiates that it is important to know the nature of the trend in X (i.e.
m

2
and p) to infer properly from the test.

The limiting distributions of the test statistics are free of nuisance parameters
and not standard. They do not have any practical merit until their critical values
are calculated. Because the limiting representations of the suggested tests only
depend on a few parameters, the critical values can be approximated well by
large sample Monte Carlo simulations. Using samples of size 1000 in 15 000
replications, the critical values for the models of primary interest in applica-
tions are provided in Table 1 at three different levels (1%, 5% and 10%).
Only the case for a single regressand is under consideration (m

1
"1), while the

controlled regressors indexed by p and m
2

are allowed to vary (p"0, 1; and
m

2
"1, 2, 3).
An immediate application of these subset tests is to test for cointegration as

Shin (1994) did. To understand this, rewrite Model I as y
t
"A

10
#

A
2
x
2t
#A

3
x
3t
#v

t
where v

t
"u

t
#+t

i/1
A

1i
, an I(1) process. As noted in Han-

sen (1992a), this is simply stating that y
t
and x

2t
are not cointegrated. In other

words, MeanF and ¸
c
, tests for intercept random variation, are also tests of H

0
:

cointegration against H
a
: no cointegration. Being a specification test for cointeg-

ration, SupF would also possess power against the alternative of no cointegra-
tion.

It is also important to establish the consistency of the suggested tests. This is
stated below.

¹heorem 3. ºnder the alternative hypothesis,

1. Sup F
h
"O

1
(T
M
),

2. MeanF
h
"O

1
(T
M
),

3. ¸
h,c
"O

1
(T
M

),

where h"1, 2.

The result indicates that our subset tests, regardless of type, diverge at a rate
¹/M under the alternative. Quintos and Phillips (1993) and Shin (1994) also
proved the same rate for their Nyblom-styled tests. It should be noted that the
rate, as commonly found for tests involving semiparametric corrections, de-
pends on the bandwidth number, M. Though the result is termed in an asymp-
totic sense, selecting an appropriate lag number proves very important for the
tests to have an adequate performance in small samples. This is the subject in the
next section.
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Table 1
Asymptotic critical values for ¸

c
, MeanF, and Sup F

ºsage:

1. The table is for a single equation (m
1
"1). The critical values are computed by Monte Carlo

simulations using samples of size 1000 in 15 000 replications.
2. m and m

2
stand for the number of stochastic trends in the whole regressor vector and in the

regressors whose coefficients are under test respectively. p is the maximum power integer of the
time trend in regressors. ‘Model’ is to indicate which model (I or II) is under consideration. o(n

2
)

assumes 0 in the absence of deterministic trend in regressors whose coefficients are under test (i.e.
n
2
"0), otherwise 1.

3. Reject the null of constancy of the cointegrating coefficients of concern if the computed value of
the statistics of interest is greater than the appropriate critical value. For example, given
(m,p)"(1,0), m

2
"1, and o(n

2
)"0, to test if H

0
:A

1
is constant (Model I) with ¸

c
, one should

reject at 5% level if the computed statistic is greater than 0.30.

(1) (2) (3)
¸
c

MeanF SupF

(m,p) Model m
2

o(n
2
) 1% 5% 10% 1% 5% 10% 1% 5% 10%

(1,0) I 0 0 0.55 0.31 0.23 4.20 2.60 2.01 13.07 9.58 7.94
(1,0) II 1 0 0.49 0.30 0.22 4.19 2.63 2.00 12.98 9.47 7.94
(2,0) I 0 0 0.37 0.22 0.17 3.73 2.44 1.89 13.48 10.09 8.53
(2,0) II 1 0 0.42 0.24 0.18 3.95 2.52 1.95 13.26 9.78 8.23
(2,0) II 2 0 0.70 0.46 0.36 6.27 4.38 3.59 16.08 12.45 10.07
(2,1) I 0 0 0.18 0.12 0.098 3.29 2.22 1.80 14.16 10.75 9.21
(2,1) II 1 0 0.34 0.20 0.15 3.84 2.47 1.93 13.52 9.98 8.46
(2,1) II 1 1 0.24 0.16 0.12 3.09 2.14 1.74 14.16 10.71 9.23
(2,1) II 2 1 0.65 0.40 0.31 6.18 4.35 3.55 16.96 13.25 11.56
(3,1) I 0 1 0.15 0.10 0.08 3.11 2.14 1.75 14.50 11.05 9.55
(3,1) II 1 0 0.30 0.17 0.13 3.68 2.42 1.88 13.82 10.21 8.71
(3,1) II 1 1 0.21 0.13 0.10 2.98 2.09 1.70 14.70 11.02 9.54
(3,1) II 2 0 0.58 0.36 0.28 6.27 4.31 3.48 16.60 12.78 11.17
(3,1) II 2 1 0.53 0.34 0.27 5.97 4.20 3.46 17.44 13.28 11.74
(3,1) II 3 1 0.83 0.56 0.44 8.36 5.95 5.04 19.43 15.33 13.68

5. Monte Carlo experiments

In this section, we conduct a small scale of Monte Carlo experiments to
evaluate the finite-sample performance of the suggested tests. Other than size
and power, we are also concerned with the issue of to what extent the presence of
a non-constancy in a certain subset of coefficients contaminates the size of
subset tests for the coefficients not in this subset. Ideally, it is preferred that when
only this subset of coefficients varies, the power of the corresponding subset test
is close to its ideal power function; meanwhile, the size of other subset tests for
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those coefficients not in this subset is minimized. It is expected, however, that the
analogs to the ideal situation might not be observed because of erratic behaviors
of finite-sample sequences.

The experiments are based on the following simple model:

y
t
"k

t
#b

2t
x
1t
!b

3t
x
2t
#e

t
, e

t
"oe

t~1
#h

t
,

x
1t
"x

1t~1
#g

1t
, g

1t
"a

1
g
1t~1

#u
1t
,

x
2t
"x

2t~1
#g

2t
, g

2t
"a

2
g
2t~1

#u
2t
,

where y
t
, x

1t
and x

2t
are scalars, and Mh

t
, u

1t
, u

2t
N@&nid(0, R). The experimental

design is similar to that of Gregory et al. (1996). For both size and power
simulations, there are four settings of interest featured by different degrees of
temporal dependence as the parameters (o, a

1
, a

2
, and R) vary.

Each experiment starts with the setting at which the errors are exogenous and
serially uncorrelated (Case A), then moves to the settings at which they are
serially correlated (Cases B and C), and winds up at the setting at which the
regressors are endogenous with the serial correlation (Case D). In each setting,
the cointegration error, e

t
, is renormalized to yield a constant unit long-run

variance by scaling down the variance of autoregressive error, h
t
. The settings

are detailed in the tables where the simulations are also given. Under each
test type suggested, five subset test statistics are applied to various collections
of cointegrating coefficients. The null of each individual test under consid-
eration is

Test (1) (2) (3) (4) (5)

Coefficient under Test (k
t
, b

1t
, b

2t
) k

t
b
1t

b
2t

(b
1t
, b

2t
)

Null: (k
0
, b

10
, b

20
) k

0
b
10

b
20

(b
10

, b
20

)

for which (k
0
, b

10
, b

20
) denotes the constant initials of (k

t
, b

1t
, b

2t
) having the

value of (1, 3,!1). The criterion is the rejection frequencies at 5% significance
level using critical values from Table 1 (for the subset tests) and Tables 1—3
indexed by m

2
"2 and p"0 in Hansen (1992a) (for the joint test) in 5000

replications. The sample size is 100, roughly corresponding to typical macroeco-
nomic time series and our application. The covariance is estimated using
a Bartlett kernel with M set at 4 as recommended by Andrews (1991) (Table 1).
Later we will discuss the effect of choosing other bandwidth numbers.

5.1. Size and power

In Table 2, we first display the result of a size comparison. The general
impression from simulations is that regardless of the degree of dependence, the
size for most of the subset tests seems to be close to the asymptotic values. It
suggests that there is little need to size correct the power calculations for these
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Table 2
Size of the tests

y
t
"1#3x

1t
!x

2t
#e

t
, e

t
"oe

t~1
#h

t
,

x
1t
"x

1t~1
#g

1t
, g

1t
"a

1
g
1t~1

#u
1t
,

x
2t
"x

2t~1
#g

2t
, g

2t
"a

2
g
2t~1

#u
2t
,

Mh
t
, u

1t
, u

2t
N@&NID(0, R).

o a
1

a
2

R

Case A 0.0 0.0 0.0 I
3

Case B 0.5 0.0 0.0 p
11
"0.25

Case C 0.5 0.0 0.0 p
11
"0.25 p

12
"0.3 p

13
"0.4 p

23
"0.5

Case D 0.5 0.6 0.7 p
11
"0.25 p

12
"0.3 p

13
"0.4 p

23
"0.5

Case A Case B Case C Case D

¸
c

(1) 0.05 0.08 0.08 0.07
(2) 0.03 0.06 0.07 0.05
(3) 0.05 0.07 0.07 0.06
(4) 0.04 0.07 0.07 0.05
(5) 0.05 0.07 0.07 0.06
MeanF
(1) 0.04 0.05 0.05 0.07
(2) 0.02 0.06 0.06 0.05
(3) 0.04 0.07 0.06 0.07
(4) 0.04 0.06 0.07 0.07
(5) 0.04 0.07 0.07 0.07
Sup F
(1) 0.03 0.01 0.01 0.02
(2) 0.01 0.02 0.02 0.03
(3) 0.04 0.03 0.03 0.04
(4) 0.04 0.03 0.04 0.05
(5) 0.05 0.03 0.03 0.05

Note:
1. Rejection frequencies are calculated at the 5% level of significance using critical values from

Tables 1—3 in Hansen (1992a) (indexed by (m
2
, p)"(2, 0)) for the joint test, and Table 1 in the text

(indexed by (m, p)"(2, 0)) for the subset tests in 5000 replications.
2. The numbers in the leftmost column refer to the cointegrating coefficients under test: (1) the whole

cointegration vector; (2) the intercept; (3) the coefficient on x
1t
; (4) the coefficient on x

2t
; and (5) the

coefficients on x
1t

and x
2t
.

subset tests when sample size is moderate. However, there are a number
of instances of overrejection for the subset tests of MeanF and SupF type.
In contrast, underrejection is more likely to occur for the subset tests of SupF
type.
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Table 3
Power of the tests: structural break

y
t
"k

t
#3x

1t
!b

2t
x
2t
#e

t
,

G
k
t
"1, t)[q¹]

k
t
"2, t'[q¹]H or G

b
2t
"!1, t)[q¹]

b
2t
"!1.4, t'[q¹]H, e

t
"oe

t~1
#h

t
,

x
1t
"x

1t~1
#g

1t
, g

1t
"a

1
g
1t~1

#u
1t
,

x
2t
"x

2t~1
#g

2t
, g

2t
"a

2
g
2t~1

#u
2t
,

Mh
t
, u

1t
, u

2t
N@&NID(0, R).

o a
1

a
2

R

Case A 0.0 0.0 0.0 I
3

Case B 0.5 0.0 0.0 I
3

Case C 0.5 0.0 0.0 p
11
"0.25 p

12
"0.3 p

13
"0.4 p

23
"0.5

Case D 0.5 0.6 0.7 p
11
"0.25 p

12
"0.3 p

13
"0.4 p

23
"0.5

Case A Case B
k
t

b
2t

k
t

b
2t

q 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

¸
c

(1) 0.26 0.24 0.26 0.29 0.56 0.62 0.36 0.30 0.36 0.35 0.63 0.68
(2) 0.28 0.34 0.30 0.20 0.37 0.45 0.37 0.42 0.38 0.24 0.41 0.50
(3) 0.13 0.21 0.26 0.14 0.28 0.43 0.19 0.26 0.33 0.16 0.32 0.45
(4) 0.13 0.20 0.26 0.31 0.68 0.72 0.18 0.26 0.33 0.37 0.73 0.76
(5) 0.16 0.21 0.25 0.32 0.60 0.65 0.22 0.26 0.34 0.38 0.65 0.69
MeanF
(1) 0.20 0.18 0.21 0.31 0.61 0.62 0.29 0.25 0.30 0.39 0.69 0.67
(2) 0.31 0.37 0.33 0.23 0.48 0.57 0.43 0.49 0.46 0.28 0.54 0.62
(3) 0.16 0.20 0.23 0.20 0.33 0.44 0.23 0.27 0.31 0.24 0.39 0.46
(4) 0.17 0.20 0.23 0.56 0.86 0.79 0.23 0.27 0.31 0.66 0.91 0.85
(5) 0.18 0.19 0.21 0.45 0.74 0.66 0.25 0.25 0.29 0.55 0.81 0.73
Sup F
(1) 0.06 0.05 0.06 0.37 0.59 0.63 0.08 0.07 0.08 0.48 0.72 0.71
(2) 0.22 0.23 0.20 0.22 0.42 0.60 0.33 0.34 0.32 0.28 0.47 0.63
(3) 0.13 0.13 0.15 0.23 0.29 0.43 0.16 0.17 0.22 0.27 0.33 0.45
(4) 0.12 0.12 0.15 0.68 0.87 0.85 0.15 0.17 0.22 0.77 0.93 0.90
(5) 0.11 0.10 0.11 0.57 0.77 0.76 0.12 0.12 0.16 0.68 0.86 0.83

Case C Case D
k
t

b
2t

k
t

b
2t

¸
c

(1) 0.35 0.28 0.33 0.32 0.60 0.65 0.32 0.25 0.30 0.40 0.67 0.72
(2) 0.35 0.39 0.36 0.22 0.39 0.49 0.30 0.33 0.30 0.26 0.45 0.55
(3) 0.17 0.25 0.31 0.18 0.38 0.49 0.15 0.22 0.27 0.23 0.43 0.54
(4) 0.17 0.24 0.31 0.34 0.71 0.74 0.14 0.21 0.27 0.35 0.73 0.77
(5) 0.21 0.25 0.31 0.35 0.62 0.62 0.19 0.22 0.27 0.41 0.68 0.72
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Table 3 continued

Case A Case B
k
t

b
2t

k
t

b
2t

q 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

MeanF
(1) 0.28 0.23 0.27 0.35 0.65 0.66 0.31 0.24 0.29 0.55 0.79 0.81
(2) 0.41 0.45 0.42 0.25 0.52 0.61 0.39 0.41 0.39 0.35 0.67 0.73
(3) 0.21 0.26 0.29 0.28 0.46 0.50 0.23 0.25 0.28 0.45 0.58 0.61
(4) 0.21 0.26 0.30 0.61 0.89 0.81 0.22 0.25 0.29 0.81 0.94 0.90
(5) 0.22 0.24 0.27 0.50 0.77 0.70 0.26 0.25 0.29 0.73 0.87 0.81
Sup F
(1) 0.07 0.06 0.07 0.39 0.63 0.64 0.07 0.07 0.07 0.88 0.94 0.94
(2) 0.29 0.30 0.27 0.24 0.44 0.61 0.26 0.26 0.26 0.47 0.62 0.79
(3) 0.13 0.16 0.20 0.31 0.41 0.49 0.17 0.16 0.19 0.58 0.57 0.64
(4) 0.13 0.15 0.19 0.71 0.88 0.85 0.16 0.17 0.21 0.97 0.99 0.99
(5) 0.10 0.11 0.13 0.60 0.79 0.76 0.14 0.12 0.14 0.95 0.98 0.98

Note:
1. See note to Table 2.
2. The numbers underlined are empirical powers of the specific subset tests for changes in the

coefficients considered in the experimentation.

Two forms of variation, jump or random-walk, are studied for the powers of
the tests. In Table 3, we illustrate the power of the subset tests under two
experiments: a structural break occurs in the intercept (k

t
), or in the slope on the

second stochastic trend (b
2t
). Under the alternative the coefficient processes

subject to break are specified as

Coefficient k
t

b
2t

"G
k
0

b
20

t)[¹q]

k
0
#*

1
b
20
#*

2
t'[¹q],

where *"(*
1
, *

2
) is the jump of size (1,!0.4), and q is the break point which

takes place at 0.25, 0.50 and 0.75, roughly representing the beginning, middle
and end of the sample. By varying q, we will examine whether the power of the
tests is independent of the break point, given that our suggested tests assume
arbitrary breaks.

Our proposed tests perform well. In the presence of a slope jump, the tests
appropriate for this context are those labelled (1)-joint test, (4)-test for b

2t
,

(5)-test for b
1t
, b

2t
. But the tests having the best power to discover a slope jump

are Test (4) of SupF and MeanF types. These are the specific subset tests mainly
designed to detect non constancy in this form. Test (2) of each type, relative to
others, also performs the best in the presence of an intercept jump. Indeed, for
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q"0.50, when a slope jumps, Test (4) rejects in 86—99% of the trials, and when
an intercept jumps, Test (2) rejects in 23—49% of the trials. We note that Test (1)
of SupF type, a joint test, appears to have trouble dealing with a jump in
intercept, with a rejection frequency of only 5—8%. This suggests a merit of
using our subset tests when only part of the cointegration coefficients is not
constant.

In addition, the power of the subset tests is little affected by the degree of
dependence. In particular, the rejection frequency of the tests remains more or
less unchanged within Cases B—D. But there is a power loss by approximately
5—10%, moving from the case of mild dependence (Case B) to the case of no
dependence (Case A). This is the adverse effect of selecting too large a bandwidth
number. Also the subset tests tend to reject more often when the intercept or
slope jumps at the middle or end of the sample.

Table 4 reports the capability of detecting a random variation by the subset
tests. The non-constancy here takes the form of a random walk,

Coefficient k
t

b
2t

" k
t~1

#d
1t

b
2t~1

#d
2t
,

in which d
it
&nid(1, l2) for i"1, 2. We set l"0.2, 0.05 for current experimenta-

tions.
The subset tests applicable to detect a random intercept or slope also perform

reasonably well. Typically the specific tests of MeanF and ¸
c
types have greater

power than others. The rejection rate is 38—50% in the presence of a random
intercept, and 54—67% in the presence of a random slope. Again, similar to the
results with a structural shift, the degree of dependence does not much impair
the power of the tests.

Unfortunately, there is a problem with size contamination. For instance,
when a slope jump or a random slope is present, Test (2) has a rejection rate
more than half of that of Test (4). These are the rejections under the null of
a constant intercept, thus indicating a sizable distortion. It implies that the
subset test for some coefficient variations, because of the presence of other
coefficient variations, has a tendency to spuriously reject. Although when
employing these subset tests for inference one needs to exercise care, spurious
rejection is not as bad as its name implies. It is noted that, in the presence of
a change in a certain coefficient, the rejection rates are not often lower than 25%
across subset tests. Thus, a reasonable view of this phenomenon is that spurious
rejection, with the good power property of the subset tests, is potentially
directing toward the presence of some sort of coefficient variations in the data.
In other words, when applying our tests to various subsets of cointegrating
coefficients, rejection by most of the statistics, possibly as a result of spurious
rejection, simply suggests that the changes in a certain part of cointegrating
coefficients may be significant, implying a misspecification in the regression. We
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Table 4
Power of the tests: random variation
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#g
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2t
"x
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#g
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"a
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#u
2t
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Mh
t
, u

1t
, u

2t
N@&NID(0, R).

o a
1

a
2

R

Case A 0.0 0.0 0.0 I
3

Case B 0.5 0.0 0.0 p
11
"0.25

Case C 0.5 0.0 0.0 p
11
"0.25 p

12
"0.3 p

13
"0.4 p

23
"0.5

Case D 0.5 0.6 0.7 p
11
"0.25 p

12
"0.3 p

13
"0.4 p

23
"0.5

Case A Case B Case C Case D
k
t

b
2t

k
t

b
2t

k
t

b
2t

k
t

b
2t

¸
c

(1) 0.37 0.46 0.43 0.50 0.41 0.49 0.39 0.54
(2) 0.39 0.31 0.45 0.34 0.42 0.33 0.38 0.38
(3) 0.28 0.29 0.31 0.31 0.29 0.34 0.27 0.40
(4) 0.28 0.54 0.31 0.59 0.30 0.57 0.27 0.60
(5) 0.29 0.48 0.34 0.52 0.31 0.50 0.31 0.56
MeanF
(1) 0.31 0.45 0.37 0.50 0.36 0.47 0.40 0.60
(2) 0.43 0.36 0.50 0.41 0.48 0.40 0.47 0.51
(3) 0.28 0.28 0.32 0.31 0.31 0.35 0.33 0.45
(4) 0.29 0.56 0.32 0.62 0.31 0.59 0.32 0.67
(5) 0.29 0.49 0.33 0.54 0.32 0.52 0.37 0.62
Sup F
(1) 0.10 0.24 0.11 0.27 0.10 0.23 0.12 0.36
(2) 0.28 0.24 0.32 0.27 0.29 0.26 0.29 0.35
(3) 0.17 0.19 0.20 0.22 0.18 0.26 0.21 0.35
(4) 0.18 0.48 0.20 0.52 0.18 0.49 0.20 0.60
(5) 0.14 0.36 0.15 0.40 0.14 0.36 0.16 0.49

Note: See note to Table 3.

conclude that spurious rejection has a bearing on the merits of using our tests as
a specification test in the regression with nonstationary processes.

5.2. Robustness check

The simulation results just presented depend on the choice of a bandwidth
parameter. The optimal choice of M for the experiments under Case A is
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actually 0 rather than 5. We thus have found a power loss to the tests due to
using too large a lag window. On the other hand, selecting too small a number
risks a size distortion when autocorrelation is not well accounted for in the data.
It is natural to ask how robust our results are to alternative bandwidth numbers.
As an attempt to answer this question, we examined the size and power of the
tests with another two bandwidth values, 0 and 12, following Kiwatkowski et al.
(1992) and other recent simulations. The latter is considered an extreme choice
and roughly gives an upper bound for the power loss. As expected, this produces
a power loss but an insignificant size distortion for the tests. More precisely, in
the presence of an intercept or a slope jump, it reduces the power of our subset
tests by approximately 20—35%. In the presence of a random intercept or slope,
the loss is approximately 30%. While having an unfavorable effect on the power
of the tests, a too-large lag substantially mitigates the problem with spurious
rejection. We found that the subset tests for a certain coefficient now very often
reject at only 10% or less of the trials when another coefficient is not constant.
This is as anticipated from Theorem 3 where we can see that the stochastic order
of the tests under the alternative will be decreased by an increase in M. In
contrast, at M"0, when each coefficient is constant, the tests usually are found
to have a rejection rate of more than 30% within each setting, except Case A.
This indicates a severe overrejection. The Monte Carlo evidence here suggests
that it would be valuable to use more than one of the consistent long-run
covariance estimators when applying the tests.

Also, we experimented with the lag M"4 and the smaller sample size
¹"50. All of the tests now have a much worse power performance; neverthe-
less, their sizes are approximately correct. Presumably, this is a reflection of the
consistency of the tests.

6. An application

Stock and Watson (1993) and Gregory et al. (1994) recently studied whether
there is a stable money demand relation spanning pre- and postwar periods. The
latter focused on testing for constancy of the whole cointegration vector by
applying the joint test of Hansen (1992a). Our previous simulations suggest that
the power of a joint test might not be good when only a subset of cointegrating
coefficients varies over time. Stock and Watson (1993), on the other hand,
employed a classical Chow test for the null of no break in the income elasticity
or in the interest semielasticity. This test, however, is crippled by the need to
specify an ad hoc timing for the break point. As an illustrative example, we
use the suggested subset tests to avoid these drawbacks in this empirical
exercise. Consistent with those found by Stock and Watson (1993), the notion of
a stable money demand appears to be strengthened by the evidence presented
here.
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Table 5
Testing for the stability in U.S. money demand (Annual data) ln(m

t
)!ln(p

t
)"k#

b
1
ln(y

t
)#b

2
r
t
#e

t
.

1901—1985 1901—1945 1946—1985
Estimate Std err. Estimate Std err. Estimate Std err.

k 1.822 0.128 2.127 0.351 5.669 0.300
b
1

0.982 0.028 0.906 0.075 0.208 0.059
b
2

!0.099 0.007 !0.103 0.014 !0.017 0.006
Test Test Test 5% c.v.

¸
c

(1) 0.500 0.398 0.201 0.78
(2) 0.058 0.083 0.084 0.12
(3) 0.055 0.087 0.090 0.16
(4) 0.117 0.111 0.126 0.20
(5) 0.421* 0.277 0.185 0.40
MeanF
(1) 6.920 12.961* 3.003 7.69
(2) 1.285 1.220 1.684 2.22
(3) 1.301 1.319 1.671 2.14
(4) 2.820* 1.337 1.777 2.47
(5) 5.237* 7.032* 2.576 4.35
Sup F
(1) 11.677 53.727* 6.008 17.3
(2) 6.961 5.065 5.153 10.75
(3) 6.848 5.313 5.062 10.71
(4) 6.833 5.573 5.310 9.98
(5) 9.598 32.378* 6.094 13.25

Note:
1. The test statistics are obtained using a Bartlett kernel with bandwidth set at 5.
2. The annual data are from Lucas (1988). m is M1, p the implicit price deflator, y real net national

product and r the six-month commercial paper rate.
3. The numbers in the leftmost column refer to the cointegrating coefficients under test: (1) the whole

cointegration vector; (2) the intercept; (3) the income elasticity; (4) the interest semielasticity; and
(5) both the income elasticity and the interest semielasticity.

4. The starred test statistics are significant at 5% level.
5. Based on the specification that ln(y

t
) is an I(1) with drift and r

t
is an I(1) without drift, the critical

values of test statistics are from Tables 1—3 in Hansen (1992a) (indexed by (m
2
, p)"(1, 1)) for the

joint test, and Table 1 in the text (indexed by (m, p)"(2, 1)) for the subset tests at 5% level.

The long-run money demand relation with constant coefficients is specified as

ln(m
t
)!ln(p

t
)"k#b

1
ln(y

t
)#b

2
r
t
#e

t
,

where m is M1, p is the implicit price deflator, y is real-net national product and
r is the six-month commercial paper rate. Following Stock and Watson, ln(y

t
) is

characterized as an I(1) with drift, and r
t
an I(1) without drift. In Table 5, we

B.-S. Kuo / Journal of Econometrics 86 (1998) 337–368 357



report the estimations under the null of parameter constancy, and the test
statistics for the constancy of different subsets of cointegrating coefficients, using
annual data (1901—1985) from Lucas (1988). The data set is also used in
Stock and Watson where results for the fully modified estimator were obtained
using a Bartlett kernel with five lags. Here we adopt this procedure for a com-
parison.

Using the full sample, the fully modified regression gives estimates close to
those reported in the literature. For example, the income elasticity is not
significantly different from 1. With most of the p-values greater than 0.05, the
test statistics seem to support the null that each individual coefficient is con-
stant, and thus the money demand has a stable cointegrating relation. Recall
that the test for intercept instability is also a test for the null of cointegration.
Rejection of the alternative of intercept instability also suggests that there be
a cointegration relation among real balance, real income, and interest rate, over
the entire period.

To permit a further comparison with Stock and Watson (1993), prewar and
postwar estimates are computed as well. Apparently, the postwar estimates
differ from the prewar ones in having a smaller income elasticity, while the latter
exhibit comparable magnitude with the full-sample estimates. This difference
raises the question of whether there has been a regime shift in the long-run
money demand relation. Inspection of the test statistics for each subsample,
however, yields no sufficient evidence against the hypothesis of no breaks in
money demand. Specifically, the subset tests of any type fail to reject the null of
constancy of each single cointegrating coefficient for each subsample, with the
exception that, for the prewar period, the null is rejected at 5% for the subset
tests of MeanF and SupF types that allow for both elasticities to vary. It should
be noted that intercept and income elasticity for the postwar data are not
estimated as precisely as those for the full-sample, with twice bigger standard
errors. This piece of information, along with non-rejection of the cointegration
null by the subset test for the intercept for each subsample, is indicative of the
possibility that the prewar series cointegrate the postwar ones with a common
long-run vector. Overall, the evidence is not much at odds with the existence of
a stable long-run money demand.

7. Concluding remarks

This paper began with two goals. The first was to develop the limiting
distributions of three test statistics for detecting the non-constancy of the subset
of cointegrating coefficients. Under mild regularity conditions, it has been
shown that the limiting representations of the proposed tests can be character-
ized as functions of continuous martingales depending on the nature of the
regressor process.
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The second, and more practical objective of the paper was to address the
question of how good it is for the finite-sample performance of the tests. The
answer to this is related to the previous theoretical findings. The asymptotics of
the tests share an essential ingredient in their constructions: the partial score
sums process. This generality, although a desirable property in one way, is
a drawback in the other. The large-sample approximation to the exact distribu-
tion sometimes may not be quite accurate. This is particularly true for the subset
tests in the context where an inappropriate bandwidth number is chosen. On the
other hand, the size contamination problem appears unavoidable in some cases.
This is another facet of the problem of slow convergence to the limiting
distribution just mentioned. Caution is required when drawing inferences from
the tests. Despite these caveats, our Monte Carlo results did lend support to the
finite-sample performance of the proposed subset tests. In particular, for small
sample size, the subset tests are found to dominate the joint test with good
power against the alternative that only partial parameters are time-varying.

Our Monte Carlo experiments open a question that bears further investiga-
tions. The subset tests may experience a power loss or size distortion when the
lag window is not optimally selected along the lines of Andrews (1991). This
problem would happen to those developed by Quintos and Phillips (1993) and
Shin (1994) as well. The estimation of the long-run covariance matrix has proven
to be a key factor in affecting size and power of the subset tests. If the test is to
perform adequately, it is helpful to have a means of estimation independent of
the bandwidth number for the long-run covariance. The recently developed
spectral estimation procedure by Den Haan and Levin (1996) and Perron and
Ng (1996) should be appealing solutions to this problem.

Lastly, rejections by the proposed tests here suggest a misspecification in the
model or a time-varying cointegrating relationship between variables. It is
a reasonable first attempt to search for the available omitted variables. Compar-
ing post-sample performances, which is complementary to tests for constancy, at
this stage may help developments of a satisfactory specification. This implies
that some practical problems ought to be taken up. Should the possibility of
time-varying cointegration need to be considered, allowing for a structural
break or a random variation is likely to be a sensible and parsimonious
modeling strategy. Yet some technical issues need to be studied. For example,
Bai (1996) and Bai et al. (1997) began to address estimation of a break point
in cointegrating regressions. Still, much work in that direction remains to be done.

8. For further reading

Andrews (1990), Andrews and Monohan (1992), Gregory and Hansen (1996),
Hansen (1992c), Johansen (1991), Phillips (1987), Phillips (1991b), Phillips and
Durlauf (1986).
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Appendix A. Mathematical proofs

We will prove Theorems 1—3 for the case allowing for parameter change
in stochastic trend regressors (h"2) rigorously. The proof of other case
(h"1) can be followed similarly with minor modifications, and hence is omitted
here.

A.1. Weight matrix and moment matrix

Define the cumulative process for the innovation vector, u
t
,

½
t
"

t
+
i/1

u
i
.

Our assumptions are sufficient for the following multivariate invariance prin-
ciple:

¹~1@2½
*Tq+NB(q),BM(X) (A.1)

which has been shown to hold by Herrndorf (1984).
The weight matrices are defined for the purpose of reconciling with the

various regressors converging at different rates. For the sequence of determinis-
tic trend k

t
, the weight matrix is d

T
"diag(1,¹~1,¹~2,2,¹~p). Also, let

k(q)"(1, q, q2,2,qp)@, thus we have d
T
k
*Tq+Nk(q) as ¹PR uniformly in q. For

k
2t
, simply let d

2T
"diag(¹~1,¹~2,2,¹~p).

A little complication would be involved in designing the weight matrix for x
2t
.

Recall that x
2t

in Eq. (2) is driven by a constant term, k
2t

and xo
2t
. Because k

1t
is

included in the level regression, k
2t

and xo
2t

will remain after least squares project
x
2t

onto k
1t

orthogonally. Due to that the behavior of stochastic trend is
dominated by that of deterministic trend asymptotically, separating the effect of
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the former from the latter is necessary. For this, if p
2
O0, define

D
2T

"C
d
2T

(p@
2
p
2
)~1n@

2
1/J¹(n*@

2
X

22
p*
2
)~1@2p*@

2
D,

where p*
2
, of dimension m

2
](m

2
!p), is constructed in the null space of p

2
.

Therefore,

D
2T

x
2t
"C

d
2T

(p@
2
p
2
)~1p@

2
(n

1
#xo

2t
)#d

2T
k
2t

1/J¹(n*@
2
X

22
n*
2
)~1@2n*@

2
xo
2t

D.
Note that since xo

2*Tq+"O
1
(¹1@2), d

2T
(n@

2
n
2
)~1n@

2
(n

1
#xo

2*Tq+)"o
1
(1). Then to-

gether with Eq. (A.1)

D
2T

x
2*Tq+NC

k
2
(q)

¼
2
(q)D

p

m
2
!p

"X
2
(q), (A.2)

where ¼
2
(q)"(n*@

2
X

22
n*
2
)~1@2n*@

2
B

2
(q),BM(I

m2~p
). If n

2
"0, let D

2T
"

(1/J¹)X~1@2
22

. In such case, D
2T

x
2*Tq+N¼

2
(q), where ¼

2
(q)"X~1@2

22
B
2
(q),

BM(I
m2

).
Next, if t@

2
"[n@

2
, /@

2
]O0, first define

D
aT
"C

d
2T

(t@
2
t
2
)~1t@

2
1/J¹(t*@

2
X

aa
t*
2
)~1@2t*@

2
D,

where t*
2
, of dimension (m

2
#m

3
)](m

2
#m

3
!p), is constructed in the null

space of t
2
. Then the weight matrix for x

t
is

D
T
"C

1 0

0 D
aT
D. (A.3)

Now, that D
T

is a (m
2
#m

3
)](m

2
#m

3
) square matrix,

D
T
x
*Tq+NC

1

k
2
(q)

¼
a
(q)D

1

p

m
2
#m

3
!p

"X(q). (A.4)

Otherwise, define D
aT
"(1J¹)X~1@2

aa
, so D

T
x
*Tq+N[1@, ¼@

a
(q)]@, where

¼
a
(q),BM(I

m2`m3
).

By Eq. (A.2), Eq. (A.4), and the continuous mapping theorem (CMT, see
Billingsley, 1968, Theorem 5.1), we then have

1

¹

D
T
M

T
(q)D@

T
NM(q)"P

q

0

XX@,

1

¹

D
2T

M
2T

(q)D@
2T

NM
2
(q)"P

q

0

X
2
X@

2
,

1

¹

D
2T

M*
2T

(q)D@
T
NM*

2
(q)"P

q

0

X
2
X@
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and

1

¹

D
2T

»
2T

(q)D@
2T

N»
2
(q)"M

2
(q)!M*

2
(q)M(1)~1M*

2
(q)@.

Note that :q
0
XX@'0 and :q

0
X

2
X@

2
'0 for all q'0 almost surely (Phillips and

Hansen, 1990, Lemma A.2).

A.2. Some preliminary results.

A number of large sample behaviors of various partial sums processes will be
studied in this section. Note first that our assumptions also lead to

1

¹

*Tq+
+
t/1

½
t
u@

t`1
NP

q

0

BdB@#qK, (A.5)

as well as

XK P
p

X, KK P
p

K. (A.6)

The proof of convergence to matrix stochastic integral in Eq. (A.5) can be found
in Hansen (1992d). The consistency of covariance parameters estimation was
documented by Hansen (1992b).

Next, define u`
1t
"u

1t
!X

1a
X~1

aa
u
at
. Then if n

2
O0, by Eqs. (A.2) and (A.5)

1

¹

*Tq+
+
t/1

u`
1t
x@
2t
D@
2T

"C
1

¹

*Tq+
+
t/1

u`
1t

k{
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d
2t
#o

p
(1),

1

¹

*Tq+
+
t/1
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1t
xo@
2t
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2
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2
X
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2
)~1DN

CAP
q

0

dB
1.a

k@
2
,AP

q

0

dB
1.a

B@
2
#qK`@

21Bn*
2
(n*@

2
X

22
n*
2
)~1BD"

CAP
q

0

dB
1.a

k@
2
,AP

q

0

dB
1.a

¼@
2
#qK*@

21BBD"P
q

0

dB
1.a

X@
2
#q(0,K*@

21
), (A.7)

where K*

21
"(n*@

2
X

22
n*

2
)~1@2 n*@

2
K`

21
, and B

1.a
,BM(X

1.a
). And, by (A.6)

J¹KK `@
21

D@
2T

"KK `@
21

J¹Cn2
(n@

2
n
2
)~1d@

2T
,
1

¹

n*
2
(n*@

2
X

22
n*
2
)~1@2DPp

(0, K*@
21

),

(A.8)

where KK `
21

is the first element in KK `
a1

. If n
2
"0, the above procedure follows with

n*
2
(n*@

2
X

22
n*
2
)~1@2 replaced by X~1@2

22
. Last, also note that

1

J¹

D
2T

*Tq+
+
t/1

[x
2t
(u@

at
!uL @

at
)]"

1

¹

D
2T

*Tq+
+
t/1

x
2t
*k@

2t
d@
2T

d{~1
2T

(tK
2
!t

2
)@J¹"o

1
(1),

(A.9)
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where tK is the consistent least-square estimator of t as stated in Section 2.
A final result is due to Theorem 1(e) of Hansen (1992a), which proves the limiting
distribution of least-squares estimation of cointegration vector corrected for
bias under the null:

J¹(AK `!A)D{~1
T

NP
1

0

dB
1.a

X@AP
1

0

XX@B
~1

, (A.10)

in which B
1.a

(q) is independent of X(q).

A.3. Proof of Theorem 1

The suggested tests are functions of the partial sums process S
2,T

(q). We need
to investigate their asymptotic distribution before deriving the distributional
theory of the tests.

First, rewrite

1

J¹

D
2T

S
2T

(q)"
1

J¹

D
2T

*Tq+
+
t/1
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"

1
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T
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D
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.

Putting together the above preliminary results, the CMT and joint convergence,
we finally have

1

¹

D
2T

S
2T

(q)NP
q

0

X
2
dB@

1.a
#qA

0
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0
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where S*
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), independent of X.
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By (A.11) and the CMT
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where F
2
(q)"tr(S*

2
(q)@»

2
(q)~1S*

2
(q)). The equivalence relation in the last equa-

tion comes directly from the observation that conditional on
F

x
, vec(S*

2
(q)),N(0, X

1.a
?»

2
(q)) for any q3T.

A.4. Proof of ¹heorem 2

As an application of the CMT and Eq. (A.12), both part (1) and part (2) hold
naturally. By the moment matrix convergence results (M

2
(1)), (A.6), and (A.11),

part (3) follows as a result.

A.5. Proof of ¹heorem 3

For ease of exposition, we only consider the standard case that m"1 and
t"0 because the general case follows with identical arguments. We first
investigate the stochastic order for a number of processes under the alternative
that d2O0. Let A

2
be the initial fixed value of A

2, t
. Thus, y
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where AK and tK are least-squares estimates from Eqs. (1) and (2). Under the
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The order is established by a combination of appendix of Phillips (1991a),
Hansen (1992d) (Theorem 4.2), and previous results on the least-square esti-
mates. Since 1/¹1@2MP0, it follows that
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With the above results,
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Turn to SupF
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while for t(i,
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