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Abstract

In this paper, we investigate a test for structural change in the long-run
persistence in a univariate time series. Our model has a unit root with no
structural change under the null hypothesis, while under the alternative it
changes from a unit-root process to a stationary one or vice versa. We propose
a Lagrange multiplier-type test, a test with the quasi-differencing method, and
‘demeaned versions’ of these tests. We find that the demeaned versions of
these tests have better finite-sample properties, although they are not
necessarily superior in asymptotics to the other tests.

I. Introduction

Testing for a unit root has become common practice in time-series analysis,
and the null hypothesis of a unit root is not rejected for many macroeconomic
variables. In a practical analysis, we usually use as long a sample period as
possible, but we sometimes divide the sample period into several sub-periods
to analyse specific periods. For example, we may split the sample in 1990 to
analyse the effect of the reunification of Germany, while we may be interested
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in the periods before and after the middle of 1997 when the Asian crises
occurred. Applying a unit-root test for each sub-period, we sometimes
encounter cases where the null of a unit root is rejected in one of the sub-
periods, although it is not rejected in the other sub-period. Then, our interest
becomes whether or not the long-run persistence in the time series has
changed.

Recently, change in the long-run persistence has been investigated in
several papers. Enders and Granger (1998) and Caner and Hansen (2001)
considered the test for such change with a threshold autoregressive (AR)
model, while Busetti and Taylor (2004), Kim (2000), Kim, Belaire-Franch and
Amador (2002) and Leybourne and Taylor (2004) proposed the test for the
null of stationarity with no structural change in persistence. On the contrary,
Kurozumi (2002) and Leybourne et al. (2003) considered the null of a unit
root and proposed the tests of a change in the long-run persistence. Chong
(2001) investigated the limiting property of the least squares estimator in an
AR model of order 1 with a single structural change in the AR parameter.
Although there are a great deal of papers on structural change such as those of
Andrews (1993), Andrews, Lee and Ploberger (1996), Andrews and Ploberger
(1994), Sowell (1996) and references therein among others, most of them
assume that the parameter of interest is an interior point of the parameter
space. However, this is not the case in our situation and then those results
cannot be applied directly to our problem.

Taking structural change into account in a model is important for statistical
tests. For example, Perron (1989) showed that standard unit-root tests tend not
to reject the unit-root hypothesis when a change in a constant and/or a linear
trend exists, and he proposed tests for a unit-root using a model with a
structural break in a deterministic term. While the purpose of his paper is to
test the unit-root hypothesis in the whole sample period, it demonstrates the
importance of considering structural change in a model. Perron (1989) was
criticized by Banerjee, Lumsdaine and Stock (1992), Christiano (1992) and
Zivot and Andrews (1992) because he assumed that the break point is known,
while the latter studies insist that the break point should be unknown and
decided depending on data. However, as explained in Perron (1994) there are
situations where the time of the break is known and, therefore, it seems
appropriate to consider the testing problem for both cases of a known and
unknown break point, depending on the situation.

In this paper, we consider the model in which the process changes from
non-stationarity with a unit root to stationarity or vice versa. Both cases of a
known and unknown break point are investigated. We propose four tests for
the null of no structural change in the long-run persistence: a Lagrange
multiplier (LM)-type test, tests based on the quasi-differencing method used
by Elliott, Rothenberg and Stock (1996) and Xiao and Phillips (1999), and
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‘demeaned versions’ of these tests as used by Oya and Toda (1998) and Toda
and Oya (1993). We derive the limiting distributions of these test statistics
under local alternatives and compare the power functions. A Monte Carlo
simulation is also conducted to study the finite-sample property. We found that
the LM-type test is much more affected by the initial condition when data
have no trend. As a whole, the demeaned versions of the tests perform better
in a finite sample.

The plan of this paper is as follows. In section II, we investigate the
LM-type test and the demeaned version test for a known break point. We
derive the limiting distribution both under the null hypothesis and local
alternatives, and the asymptotic local powers are compared. We also
consider the tests with the quasi-differencing method. Section III treats
the case where a break point is unknown, and the finite-sample properties
are investigated in section IV. Section V gives empirical examples, and
section VI concludes the paper.

II. Testing for stability in the long-run persistence
with a known break point

LM-type tests

Let us consider the following model:

yt ¼ l0 þ l1t þ xt; ð1� atLÞwðLÞxt ¼ ut ð1Þ
for t ¼ 1, . . . , T, where {ut} is independently and identically distributed
(i.i.d.) with mean 0 and variance r2, L denotes the lag operator, w(L) is the
pth-order lag polynomial and all roots of w(z) ¼ 0 lie outside the unit circle.
Suppose that some shock occurred at time T �

B and T �
B=T ¼ k� is constant.

Here, we consider the case where T �
B is known, while the unknown case is

treated in the next section.
The testing problem we are concerned with can be written as follows:

H0 : at ¼ 1 8 t v.s. ð2Þ

H10
1 :

at ¼ 1 t � T �
B

jatj < 1 t � T �
B þ 1

�
or H01

1 :
jatj < 1 t � T �

B
at ¼ 1 t � T �

B þ 1

�
:

Note that {xt} is a unit-root process under H0. On the contrary, under H10
1 , it

changes from a unit-root process to a stationary one, while the change is in the
reverse direction under H01

1 . It is possible to consider the case of the mixture
of H10

1 and H01
1 , under which {xt} shifts between two stationary processes

possibly with different persistences.
Figure 1(a)–(d) display simulated realizations from the model (1) under

the assumptions that {ut} � n.i.d.(0, 1), w(L) ¼ 1, l0 ¼ 5, l1 ¼ 0 or 0.2.
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at changes from 1 to 0.85 or vice versa at k* ¼ 0.5. Figure 1a, b corresponds
to the cases without a linear trend (l1 ¼ 0) and Figure 1c, d corresponds
to the cases with a linear trend (l1 ¼ 0.2). The dotted line in each figure is
the estimated constant (trend). As we can see from the figures, variance of
the process changes before/after the break point. In addition, the figures
appear to show a structural break in a constant and/or a linear trend. These two
phenomena sometimes appear in macroeconomic time series and hence, the
model (1) may be seen as an alternative to the usual trend-break model.

As shown in the literature, the process {xt} in equation (1) can be
expressed as

Dxt ¼ qtxt�1 þ /1tDxt�1 þ � � � þ /ptDxt�p þ ut; ð3Þ

where

qt ¼ �ð1� atÞwð1Þ
and

/jt ¼ atwj � ð1� atÞðwjþ1 þ � � � þ wpÞ; 1 � j � p � 1; /pt ¼ atwp: ð4Þ

Then, the testing problem (2) is equivalent to

H 0
0 : qt ¼ 0 8 t v.s. ð5Þ
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Figure 1. The simulated series; (a) non-trending case: a ¼ 1 fi 0.85, (b) non-trending case:
a ¼ 0.85 fi 1, (c) trending case: a ¼ 1 fi 0.85, (d) trending case: a ¼ 0.85 fi 1
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H100
1 :

qt ¼ q1 ¼ 0 t � T �
B

qt ¼ q2 < 0 t � T �
B þ 1

�
or H010

1 :
qt ¼ q1 < 0 t � T �

B
qt ¼ q2 ¼ 0 t � T �

B þ 1

�
:

Testing (5) by using the usual Wald test statistic is not convenient because
we have to impose nonlinear restrictions on parameters to estimate equation
(3). Instead, let us consider the LM test, which is easier to calculate because
we only need the estimator under H 0

0. Here notice that the log-likelihood
function under H100

1 is different from that under H010
1 . Then, if we construct the

test statistic against H100
1 , the test may not be able to detect H010

1 and vice
versa. However, in practice, we are interested in whether or not a structural
change occurred and we want to detect both H100

1 and H010
1 . Then, we consider

the model (3) with

qt ¼ q1 � 0 for t � T �
B and qt ¼ q2 � 0 for t � T �

B þ 1 ð6Þ

and construct the test statistic to test H 0
0. Note that the model (3) with (6)

includes a stationary process possibly with a structural change. In this sense,
our test is not designed to reject the specific alternative such as H100

1 and H010
1

but rather a wide class of alternatives that includes stationarity. However, as
the model includes H100

1 and H010
1 as special cases, our test has considerable

power against these alternatives and so we proceed to construct the test
statistic based on the model (3) with (6).

Let us suppose that {ut} is normally distributed. As xt ¼ yt ) l0 ) l1t
from equation (1), we can substitute yt ) l0 ) l1t for xt in equation (3) and
then the log-likelihood can be written as

logL¼ constant�T
2
logr2

� 1

2r2
XT
t¼1

Dyt�l1�qtðyt�1�y0�l1ðt�1ÞÞ�
Xp
j¼1

/jtðDyt�j�l1Þ
( )2

:

ð7Þ
Note that we replaced l0 by y0, as did Ahn (1993), Oya and Toda (1998) and
Schmidt and Phillips (1992), because it is not identified under H0. As

@ logL

@l1

����
H0

¼ �r�2
XT
t¼1

ut

�
�1þ

Xp
j¼1

/j

�
;

where /j ¼ wj for all j under H0, we have the (approximate) maximum
likelihood estimator (MLE) of l1 as

~l1 ¼ T�1
XT
t¼1

Dyt
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using the relation of XT
t¼1

Dyt ’
XT
t¼1

Dyt�j

(see Oya and Toda, 1998). Similarly, as

@ logL

@/jt

����
H0

¼ r�2
XT
t¼1

utðDyt�j � l1Þ;

the MLE of /j under H0 is given by the following regression:

D~xt ¼ ~/1D~xt�1 þ � � � þ ~/pD~xt�p þ ~ut; ð8Þ

where ~xt ¼ yt � y0 � ~l1t. We also have

~r2 ¼ T�1
XT
t¼1

~u2t :

Using the above estimators we construct the LM-type test statistic. In the
same way, as in Ahn (1993) and Toda and Oya (1993), the second derivative
with the appropriate normalization is found to be asymptotically block
diagonal between q ¼ [q1, q2]0 and the other parameters. Consequently, the
LM test statistic becomes

LMs
oðk�Þ ¼

@ logL

@q

 !0

� @2 logL

@q@q0

 !�1
@ logL

@q

 !

¼ @ logL=@q1ð Þ2

�@2 logL=@q21
þ @ logL=@q2ð Þ2

�@2 logL=@q22
; ð9Þ

which is evaluated under H0. The second equality holds because @2 log L/
@q1@q2 ¼ 0. As the first and second derivatives under H0 are given by

@ logL

@q1

����
H0

¼ 1

~r2
XT �

B

t¼1

~ut~xt�1;
@ logL

@q2

����
H0

¼ 1

~r2
XT

t¼T �
Bþ1

~ut~xt�1; ð10Þ

@2 logL

@q21

����
H0

¼ �1

~r2
XT �

B

t¼1

~x2t�1;
@2 logL

@q22

����
H0

¼ �1

~r2
XT
T �
Bþ1

~x2t�1; ð11Þ

we can express equation (9) as

LMs
oðk

�Þ ¼
PT �

B
t¼1 ~ut~xt�1

� �2
~r2
PT �

B
t¼1 ~x

2
t�1

þ
PT

t¼T �
Bþ1 ~ut~xt�1

� �2
~r2
PT

t¼T �
Bþ1 ~x

2
t�1

: ð12Þ
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Note that this test statistic is constructed for the two-sided alternative,
which implies that it will reject the null hypothesis when the partial sums
in parentheses of the right-hand side of equation (12) take large absolute
values. However, our purpose is to detect a change in the long-run
persistence and the alternative hypothesis is one-sided as given by (5).
As the partial sums in parentheses of LMs

oðk�Þ tend to take negative values
under H100

1 and H010
1 , it is enough to reject the null hypothesis

when they take large negative values. Then, we modify the test statistic
(12) as

LMs
1ðk�Þ ¼

PT �
B

t¼1 ~ut~xt�1

~r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT �

B
t¼1 ~x

2
t�1

q þ
PT

t¼T �
Bþ1 ~ut~xt�1

~r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT

t¼T �
Bþ1 ~x

2
t�1

q ; ð13Þ

which rejects the null hypothesis when it takes small values. By making this
modification, the power of the test is expected to be improved.

As in Oya and Toda (1998), we can show that the above test statistic is
asymptotically equivalent to the sum of the t-statistics for q1 and q2 in the
regression

D~xt ¼ q1D1t~xt�1 þ q2D2t~xt�1 þ /0~zt�1 þ et; ð14Þ
where D1t ¼ 1 for t � T �

B and zero otherwise, D2t ¼ 1 ) D1t, / ¼
[/1, . . . ,/p]

0 and ~zt�1 ¼ ½D~xt�1; . . . ;D~xt�p�0. Then, we define the test statistic
for (5) as

LMsðk�Þ ¼ ts1ðk�Þ þ ts2ðk�Þ; ð15Þ
where ts1 and ts2 are t-statistics for q1 and q2.

We also consider the ‘demeaned version’ of LMs(k*), i.e. the sum of the
t-statistics for q1 and q2 in the regression

D~xt ¼ c1D1t þ q1D1t~xt�1 þ c2D2t þ q2D2t~xt�1 þ /0~zt�1 þ et: ð16Þ
We denote the demeaned version statistic as LMs

dðk�Þ.
When yt has no trend, i.e. if we know l1 ¼ 0 in the model (1), we define

~xt ¼ yt � y0 and construct the test statistics LMl(k*) and LMl
dðk

�Þ exactly in
the same way as LMs(k*) and LMs

dðk�Þ.
Theorem 1 gives the limiting distributions of LMs, LMs

d , LM
l and LMl

d
under a sequence of local alternatives:

H10‘
1 :

at ¼ a1 ¼ 1 t � T �
B

at ¼ a2 ¼ 1� h�2
T�T �

B
t � T �

B þ 1

(
or

H01‘
1 :

at ¼ a1 ¼ 1� h�1
T �
B

t � T �
B

at ¼ a2 ¼ 1 t � T �
B þ 1,

(
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where h�1 and h�2 > 0. We define the following functionals of a stochastic
process V(r) in generic form.

Sðk�Þ ¼
1
2 ðV 2ðk�Þ � k�ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR k�

0 V 2ðsÞds
q þ

1
2 ðV 2ð1Þ � V 2ðk�Þ � ð1� k�ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR 1

k� V
2ðsÞds

q � S1ðk�Þ þ S2ðk�Þ;

ð17Þ

Sdðk�Þ ¼
k�

2 V 2ðk�Þ � k�ð Þ � V ðk�Þ
R k�
0 V ðsÞdsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k�2
R k�
0 V 2ðsÞds� k�

R k�
0 V ðsÞds

� �2r

þ
1�k�

2 ðV 2ð1Þ � V 2ðk�Þ � ð1� k�ÞÞ � ðV ð1Þ � V ðk�ÞÞ
R 1
k� V ðsÞdsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� k�Þ2
R 1
k� V

2ðsÞds� ð1� k�Þð
R 1
k� V ðsÞdsÞ

2
q

� Sd1ðk�Þ þ Sd2ðk�Þ: ð18Þ

Theorem 1.

(i) Under H10‘
1 ; LMsðk�Þ�!d Sðk�Þ and LMs

dðk�Þ�!
d

Sdðk�Þ with

V ðrÞ ¼ W ðrÞ � r~V ð1Þ 0 � r � k�

~V ðrÞ � r~V ð1Þ k� � r � 1

�
; ð19Þ

where ~V ðrÞ ¼ e�h�2ðr�k�Þ=ð1�k�ÞfW ðk�Þ � ~W ðh�2=ð1� k�Þ; k�Þg þ ~W ðh�2=
ð1 � k�Þ; rÞ and ~W ðh; rÞ is the Orenstein–Uhlenbeck process defined
by d ~W ðh; tÞ ¼ � h ~W ðh; tÞdt þ dW ðtÞ for given h.

(ii) Under H10‘
1 , LMlðk�Þ�!d Sðk�Þ and LMl

dðk
�Þ�!d Sdðk�Þ with

V ðrÞ ¼ W ðrÞ 0 � r � k�

~V ðrÞ k� � r � 1

�
; ð20Þ

where ~V ðrÞ is the same as (i).

(iii) Under H01‘
1 ; LMsðk�Þ�!d Sðk�Þ and LMs

dðk�Þ�!
d

Sdðk�Þ with

V ðrÞ ¼
~W ðh�1=k�; rÞ � r~V ð1Þ 0 � r � k�

~V ðrÞ � r~V ð1Þ k� � r � 1

�
ð21Þ

where ~W ðh; rÞ is defined in (i) and ~V ðrÞ ¼ ~W ðh�1=k�; k�Þþ
W ðrÞ � W ðk�Þ.

(iv) Under H01‘
1 ; LMlðk�Þ�!d Sðk�Þ and LMl

dðk
�Þ�!d Sdðk�Þ with

V ðrÞ ¼
~W ðh�1=k

�; rÞ 0 � r � k�

~V ðrÞ k� � r � 1

�
; ð22Þ

where ~V ðrÞ is the same as (iii).
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Remark 1. The limiting distributions under the null hypothesis are obtained by
letting h�1 ¼ 0 for (iii) and (iv) and h�2 ¼ 0 for (i) and (ii). Under the null
hypothesis, V(r) ¼ W(r) ) rW(1) for the trending case and V(r) ¼ W(r) for
the non-trending case.

Critical points of the above limiting distributions are tabulated in Table 1a.
They are calculated by 10,000 iterations using the approximation

W ðrÞ ¼
X½1;000r�
t¼1

etffiffiffiffiffiffiffiffiffiffiffiffi
1; 000

p ;

TABLE 1

Critical values of the test statistics

k*

LMl LMl
d

0.01 0.05 0.10 0.01 0.05 0.10

(a) k* is known
0.1 )3.910 )3.045 )2.560 )5.724 )4.969 )4.552
0.2 )3.964 )3.030 )2.581 )5.796 )4.978 )4.539
0.3 )3.899 )3.056 )2.560 )5.786 )4.972 )4.526
0.4 )3.882 )3.063 )2.574 )5.707 )4.950 )4.541
0.5 )3.905 )3.063 )2.572 )5.659 )4.946 )4.522
0.6 )3.905 )3.064 )2.589 )5.664 )4.924 )4.536
0.7 )3.924 )3.065 )2.573 )5.728 )4.939 )4.536
0.8 )3.869 )3.044 )2.584 )5.733 )4.964 )4.529
0.9 )3.915 )3.018 )2.562 )5.725 )4.946 )4.562

LM s LMs
d

0.1 )4.630 )3.801 )3.380 )5.926 )5.163 )4.761
0.2 )4.565 )3.843 )3.421 )5.896 )5.139 )4.744
0.3 )4.598 )3.836 )3.445 )5.844 )5.103 )4.730
0.4 )4.644 )3.893 )3.495 )5.831 )5.097 )4.700
0.5 )4.703 )3.983 )3.552 )5.773 )5.082 )4.711
0.6 )4.790 )4.005 )3.616 )5.847 )5.112 )4.729
0.7 )4.850 )4.097 )3.696 )5.923 )5.138 )4.745
0.8 )4.932 )4.173 )3.789 )5.847 )5.123 )4.753
0.9 )5.071 )4.342 )3.967 )5.951 )5.164 )4.755

0.01 0.05 0.10

(b) k* is unknown
inf-LMl

d )7.097 )6.409 )6.057
avg-LMl

d 14.548 11.190 9.778

exp-LMl
d 22.014 17.208 15.116

inf-LMs
d )7.122 )6.413 )6.038

avg-LMs
d 15.580 12.316 10.695

exp-LMs
d 22.090 17.448 15.212

inf-LMQD
d )7.148 )6.442 )6.072

avg-LMQD
d 14.528 11.433 9.982

exp-LMQD
d 21.937 17.339 15.266
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where {et} is an independent standard normal variable and [x] signifies the
integer part of x. From Table 1a, we can see that critical values of LMl; LMl

d
and LMs

d seem to be insensitive to the break fraction k*, while those of LMs

tend to be smaller for larger values of k*.
Using the above result, we depict the local limiting powers as a function of

h�1 and h�2. Figure 2a shows the case, where the model does not have a linear
trend when k* ¼ 0.5. The centre of the horizontal axis corresponds to the null
hypothesis, while the left-hand (right-hand) side from the centre shows the
alternative hypothesis H10‘

1 (H01‘
1 ). We can see that the power of LMl

dominates that of LMl
d for both directions of h�1 and h�2, which may be

theoretically expected, because LMl
d is constructed from the regression with an

extra constant term. On the contrary, from Figure 2b, when data are trending,
the power of the demeaned version test, LMs

d , dominates that of the LM-type
test, LMs, under H10‘

1 . To examine the reason of this strange relation, let us
focus on the case where h�2 takes small values close to zero. The powers of LMs

and LMs
d are 0.0388 and 0.0484 for h

�
2 ¼ 1, 0.0401 and 0.0582 for h�2 ¼ 2 and

0.0470 and 0.0740 for h�2 ¼ 3, respectively. These imply that both tests are
biased, and LMs is more biased in a wider range of h�2 than LM

s
d , which seems

to partly explain why the demeaned version test dominates the LM-type.
The other interesting point is that the power function increases differently

depending on the direction of the alternative: the test can detect the change from
non-stationarity to stationarity more often than that in the reverse direction. One
of the reasons is that, as is seen in Figure 1a–d, the unit-root process reverts to
the mean value within a short period of time after it changes to stationarity,
whereas the stationary process starts to deviate from the mean value relatively
slowly when it becomes a unit-root process, so that the difference of the process
before and after the break tends to be more evident under H10

1 . This tendency is
observed even in finite samples as will be seen in later.

Tests using the quasi-differencing method

In the framework of a unit-root test, it is pointed out by Elliott et al. (1996)
that the power of the test may increase if we estimate a non-stochastic term by
generalized least squares (GLS), because the GLS estimator is efficient under
the alternative of trend stationarity close to a unit-root process. For the test of a
change in the long-run persistence, this point is also appropriate because under
H10

1 ðH01
1 ), the process is trend stationary after (before) the break point.

Leybourne et al. (2003) also used this quasi-differencing method for testing a
change in the long-run persistence when the break point is unknown.

Let us define a quasi-differenced series as

~xQDt ¼ yt � ~lQD0 � ~lQD1 t; ð23Þ
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where ½~lQD0 ; ~lQD1 �0 is obtained by regressing yQD ¼ ½y1; Dh1y2; . . . ;Dh1yT �
B
;

Dh2yT �
B þ 1; . . . ;Dh2yT �

0 on nQD ¼ ½nQD0 ; nQD1 �, where nQD0 ¼ ½1; Dh11; . . . ;
Dh11; Dh21; . . . ;Dh21�

0 and nQD1 ¼ ½1; Dh12; . . . ;Dh1T
�
B ; Dh2ðT �

B þ 1Þ; . . . ;
Dh2T �

0 with Dh1 ¼ 1 � ð1 � h1=T �
BÞL and Dh2 ¼ 1 � ð1 � h2=

ðT � T �
BÞÞL being quasi-differencing operators for t ¼ 1; . . . ; T �

B and
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Figure 2. The asymptotic local powers; (a) non-trending case: k* ¼ 0.5, (b) trending case:
k* ¼ 0.5
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t ¼ T �
B þ 1; . . . ; T , respectively. By using the quasi-differenced series ~xQDt ,

we construct the test statistics LMQD(k*) and LMQD
d ðk�Þ in the same way as

LMs(k*) and LMs
dðk�Þ.

Theorem 2.

(i) Under H10‘
1 ; LMQDðk�Þ�!d Sðk�Þ and LMs

dðk�Þ�!
d

Sdðk�Þ with

V ðrÞ ¼ W ðrÞ � rJ1 0 � r � k�

~V ðrÞ � rJ1 k� � r � 1

�
; ð24Þ

where ~V ðrÞ is the same as Theorem 1(i) and

J1 ¼
1

d
1þ h2

1� k�

� �
W ð1Þ þ h1 �

k�h2
1� k�

� �
W ðk�Þ

�

þ h21
k�2

Z k�

0
sW ðsÞds� h2

1� k�

Z 1

k�
W ðsÞds

þ h2 � h�2
1� k�

Z 1

k�
1þ h2

1� k�
s

� �
~V ðsÞds

�
ð25Þ

with

d ¼ k� 1þ h1 þ
h21
3

� �
þ ð1� k�Þ 1þ h2

1� k�2

ð1� k�Þ2
þ h22

3

1� k�3

ð1� k�Þ3

 !
:

ð26Þ
(ii) Under H01‘

1 ; LMQDðk�Þ�!d Sðk�Þ and LMQD
d ðk�Þ�!d Sdðk�Þ with

V ðrÞ ¼
~W ðh�1=k�; rÞ � rJ2 0 � r � k�

~V ðrÞ � rJ2 k� � r � 1

�
ð27Þ

where ~V ðrÞ is the same as Theorem 1(iii) and

J2 ¼
1

d
1þ h2

1� k�

� �
W ð1Þ þ h1 �

k�h2
1� k�

� �
W ðk�Þ

�

� h1
k�

Z k�

0
W ðsÞdsþ h1 � h�1

k�

Z k�

0
1þ h1

k�
s

� �
~W ðh; sÞds

� h2
1� k�

Z 1

k�
W ðsÞdsþ h2

1� k�

Z 1

k�
1þ h2

1� k�
s

� �
~V ðsÞds

�
: ð28Þ

Remark 2. The null distribution is obtained by letting h�2 ¼ 0 for case (i) and
h�1 ¼ 0 for case (ii).

Remark 3. We can consider the case where the model does not have a linear
trend, but the test statistic constructed using the quasi-differencing method is
shown to have the same limiting distribution as the LM-type test statistic (see
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also Leybourne et al., 2003). Then, we do not consider the quasi-differencing
method for non-trending data.

Notice that the null distributions of LMQD(k*) and LMQD
d ðk�Þ depend on h1

and h2 and then we have to decide these values to calculate percentage points
of these distributions. If we choose h1 ¼ h�1, the power attains its maximum
against the alternative of H01‘

1 for a fixed value of h�1 and then, by varying the
values of h1 ¼ h�1, we obtain the power envelope against H01‘

1 . Similarly, we
can obtain the power envelope against H10‘

1 by choosing h2 ¼ h�2. Although
we cannot construct a test that has the same power function as the envelope,
this envelope has often been used to decide the local parameter. For example,
King (1983) proposed to select the alternative point so that the power function
of the test is tangent to the envelope at a power of 25%, 50% or 75%, while
Tanaka (1996) considered the test the power function of which is tangent to
the envelope at a power of 50%. Although these two papers consider models
different from ours, their results show that the strategy of Tanaka (1996)
works fairly well. Therefore, we choose the local parameter so that the power
of the test can be tangent to the power envelope at a power of 50%. Following
this strategy, we obtained h1 and h2 with which the power is tangent to both
envelopes against H01‘

1 and H10‘
1 at a power of 50%. For LMQD(k*), {h1, h2,

5% critical value} are given by {45, 50, )4.076}, {41, 40, )4.166} and
{35, 26, )4.344} for k* ¼ 0.3, 0.5 and 0.7, and for LMQD

d ðk�Þ, they are
{27.5, 18.5, )4.950}, {26, 13.25, )4.973} and {24.75, 9.5, )5.042}.

The power functions of LMQD and LMQD
d are drawn in Figure 2b. As in

the previous section, the demeaned version test is more powerful against H10‘
1

while it is less powerful against H01‘
1 when the alternative is close to the null.

Note that LMQD has very low power against H10‘
1 . This is because our choice

of the local parameter h2 is 41 at which the power attains 50%. If we use the
other value of h2, the shape of the power function will change and we may
find the value of h2 which is more favourable than h2 ¼ 41 in view of the
power. However, if we change the value of h2, the power against H01‘

1 will
also change and the test may not attain the power of 50% at h�1 ¼ 40 under
H01‘

1 . As we used the selection rule for h1 and h2 so that the test attains a
power of 50% at h1 ¼ h�1 under H01‘

1 and h2 ¼ h�2 under H10‘
1 , h1 ¼ 41 and

h2 ¼ 45 are used in our analysis. Other selection rules may produce different
results, but we do not pursue them.

III. Testing for stability in the long-run persistence
with an unknown break point

In practice, it is often the case that we do not know the actual break point T �
B

and, for such a case, several testing procedures have been proposed in the

193Detection of structural change in the long-run persistence

� Blackwell Publishing Ltd 2005



literature. One of the useful methods is to take the infimum of the test statistic
in a closed interval:

inf -LMs ¼ inf
k2K

LMsðkÞ; ð29Þ

where K is a closed set in (0, 1). We also consider the test statistics of an
average exponential form, as considered in Andrews et al. (1996) and
Andrews and Ploberger (1994),

avg-LMs ¼
Z
k2K

ðts1ðkÞ
2 þ ts2ðkÞ

2Þdk;

exp-LMs ¼ log

Z
k2K

expðts1ðkÞ
2 þ ts2ðkÞ

2Þdk:

Exactly in the same way, we consider the test statistics using the quasi-
differencing method and the demeaned version statistics.

Theorem 3. Under H 0
0, inf-LM �!d inf k2K SðkÞ,

avg-LM�!d
Z
k2K

ðS1ðkÞ2 þ S2ðkÞ2Þdk

and exp-LM�!d log

Z
k2K

ðS1ðkÞ2 þ S2ðkÞ2Þdk;

where LM ¼ LMs; LMs
d ; LMQD; LMQD

d ; LMl or LMl
d and S(k), S1(k) and

S2(k) are corresponding distributions given by Theorems 1 and 2 with
h�1 ¼ h�2 ¼ 0.

Critical values of the tests can be obtained once K is chosen, and many
choices of K have been proposed in the literature for the sup- and inf-type
tests, although they seem more or less arbitrary. Intuitively, the narrower
interval of K will produce more powerful test, while such an interval excludes
the possibility of a structural change that occurs at the end of the sample
period. In this paper, we follow Leybourne et al. (2003) that chose K ¼
[0.2, 0.8]. By choosing this interval, our tests become comparable with those
of Leybourne et al. (2003). Critical values are tabulated in Table 1b only for
the demeaned version statistics, because only the demeaned version tests are
shown to be useful in practice from the Monte Carlo simulation. For the test
using the quasi-differencing method, we used h1 ¼ 26 and h2 ¼ 13.25, which
are the same values as in the case where the break point is known as k* ¼ 0.5.
Notice that we reject the null hypothesis when either ts1ðkÞ or ts2ðkÞ takes small
values, which implies that the inf-type test rejects the null hypothesis when it
takes small values. On the contrary, as the avg- and exp-type tests are
increasing functions of ts1ðkÞ

2 and ts2ðkÞ
2, we reject the null hypothesis when

they take large values.
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IV. Finite-sample properties

In this section, we investigate the finite-sample properties of the test statistics
in the previous sections. The following data generating process is considered:

yt ¼ c0tbþ xt; ð1� atLÞð1� wLÞxt ¼ ut; ð30Þ

where {ut} is n.i.d.(0, 1) and ct ¼ 1 or [1, t]0. We set b ¼ 0, a1 and a2 ¼
1, 0.95, 0.9, 0.8, 0.7, w ¼ 0, ±0.5, 0.8, k* ¼ 0.3, 0.5, 0.7, and the sample
size T ¼ 100, 200 and 500. The initial value of xt is set equal to 0 and the first
100 observations are discarded. The level of significance is 0.05 and the
number of replications is 1,000 in all experiments, performed by the GAUSS
matrix programming language. Recall that when the true rejection probability
is P, the standard error of the rejection frequency based on 1,000 replications
of the experiment is given by {P(1 ) P)/1,000}1/2, so that, for example, the
standard error is 0.007 for P ¼ 0.05. It goes without saying that the accuracy of
the experiment becomes better when the number of replications is increased.

Table 2 reports the size and power without a linear trend when the break
point is known and w ¼ 0. From the table, we can see that LMl has a
reasonable empirical size close to 0.05 in all cases, while LMl

d tends to
slightly over-reject the null hypothesis when T ¼ 100. When T ¼ 200 and
500, both statistics have the empirical size close to the nominal one. As to the
power, in almost all cases, LMl

d is more powerful than LMl. We can also see
that the power of LMl

d against H
10
1 increases as k* tends to 0, while it increases

under H01
1 as the break occurs at the later point of the sample period.

The simulation results for the trending case are tabulated in Table 3. As in
the case with no linear trend, the empirical size of the LM-type test is closer to
the nominal one than the other statistics. The tests using the quasi-differencing
method overly reject the null hypothesis, even when the sample size is 200,
although LMQD

d is not distorted as much as LMQD. As to the power, the
demeaned version tests are more powerful against both the alternatives.
Considering the performance of the tests both under the null and the
alternative, LMs

d performs better than any other statistics.
In the case, where w „ 0, the sizes of the tests are close to the entries on

Tables 2 and 3, while the tests tend to be less powerful against H10
1 as w

increases, although the difference is slight. The relation between the power
against H01

1 and w is similar to the case of H10
1 , but the powers of the tests

decrease considerably as w increases. For example, when (a1, a2) ¼
(0.8, 1), k* ¼ 0.5 and T ¼ 200, the power of LMl

d is 0.577, 0.493 and
0.325 for w ¼ 0, 0.5 and 0.8, while that of LMs

d is 0.426, 0.308 and 0.175,
respectively (details are available upon request). These results imply that it is
difficult for our tests to find a change in persistence from stationarity to non-
stationarity when the stable AR coefficient is close to 1.
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As seen above, our finite-sample simulation shows that the power of
LMl is very low, although it performs better than LMl

d in view of the
asymptotic local power. This poor performance under the alternative in finite
samples is partly because of the initial value condition. Table 4 summarizes
the effect of the initial value on the power when T ¼ 1,000. We see that
LMl has reasonable power when x0 ¼ 0, whereas its power decreases
dramatically when x0 ¼ 10, even if the sample size is 1,000. On the
contrary, LMl

d seems to be robust to the initial value condition.1 From these

TABLE 2

Size and power (non-trending case, k* is known)

(a1, a2)

k* ¼ 0.3 k* ¼ 0.5 k* ¼ 0.7

LMl LMl
d LMl LMl

d LMl LMl
d

T ¼ 100
(1, 1) 0.054 0.089 0.055 0.105 0.055 0.076
(1, 0.95) 0.061 0.183 0.053 0.152 0.049 0.087
(1, 0.9) 0.076 0.409 0.067 0.367 0.076 0.245
(1, 0.8) 0.117 0.714 0.122 0.643 0.133 0.553
(1, 0.7) 0.133 0.869 0.154 0.816 0.183 0.732
(0.95, 1) 0.080 0.097 0.095 0.135 0.117 0.126
(0.9, 1) 0.119 0.104 0.165 0.166 0.201 0.195
(0.8, 1) 0.174 0.174 0.267 0.312 0.353 0.385
(0.7, 1) 0.265 0.290 0.377 0.478 0.459 0.611
T ¼ 200
(1, 1) 0.054 0.056 0.052 0.069 0.052 0.058
(1, 0.95) 0.091 0.309 0.080 0.260 0.092 0.183
(1, 0.9) 0.157 0.628 0.153 0.536 0.191 0.465
(1, 0.8) 0.214 0.916 0.218 0.846 0.255 0.745
(1, 0.7) 0.225 0.978 0.238 0.941 0.287 0.883
(0.95, 1) 0.103 0.090 0.140 0.136 0.202 0.180
(0.9, 1) 0.162 0.153 0.251 0.261 0.374 0.385
(0.8, 1) 0.311 0.328 0.486 0.577 0.594 0.758
(0.7, 1) 0.451 0.521 0.648 0.811 0.725 0.918
T ¼ 500
(1, 1) 0.053 0.056 0.044 0.064 0.045 0.070
(1, 0.95) 0.275 0.654 0.282 0.620 0.315 0.504
(1, 0.9) 0.327 0.944 0.375 0.901 0.402 0.816
(1, 0.8) 0.354 0.998 0.399 0.992 0.436 0.979
(1, 0.7) 0.359 1.000 0.406 1.000 0.461 0.994
(0.95, 1) 0.204 0.175 0.329 0.326 0.445 0.478
(0.9, 1) 0.365 0.398 0.551 0.702 0.684 0.851
(0.8, 1) 0.656 0.778 0.795 0.952 0.885 0.993
(0.7, 1) 0.793 0.937 0.893 0.995 0.938 1.000

1We also checked the initial value effect for T ¼ 100, 200 and 500, and this tendency also remains
for these sample sizes.
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results, we recommend the use of the demeaned version test in practical
analysis.

For the case, where the break point is unknown, we conducted the
simulation for the same parameter settings as the known case with k* ¼ 0.5,
and tabulated the results in Tables 5 and 6. From our preliminary simulations,
we found that the LM-type test and the test with the quasi-differencing method
perform very poorly in finite samples and then, we report only the results of
the demeaned version tests in the following.

Table 5 reports the simulation results when data have no trend. In the table,
LKSNl denotes the ‘sequential statistic’ proposed by Leybourne et al. (2003).

TABLE 3

Size and power (trending case, k* is known)

(a1, a2)

k* ¼ 0.3 k* ¼ 0.5 k* ¼ 0.7

LMs LMs
d LMQD LMQD

d LMs LMs
d LMQD LMQD

d LMs LMs
d LMQD LMQD

d

T ¼ 100
(1, 1) 0.057 0.086 0.235 0.087 0.052 0.106 0.248 0.118 0.050 0.077 0.196 0.113

(1, 0.95) 0.072 0.133 0.200 0.103 0.058 0.130 0.204 0.129 0.050 0.063 0.129 0.086

(1, 0.9) 0.070 0.227 0.194 0.116 0.078 0.256 0.200 0.233 0.074 0.168 0.126 0.203

(1, 0.8) 0.135 0.384 0.251 0.185 0.213 0.506 0.265 0.435 0.346 0.466 0.269 0.512

(1, 0.7) 0.206 0.482 0.289 0.284 0.322 0.654 0.343 0.584 0.532 0.664 0.545 0.703

(0.95, 1) 0.085 0.101 0.283 0.128 0.077 0.136 0.286 0.162 0.081 0.109 0.243 0.150

(0.9, 1) 0.103 0.125 0.339 0.136 0.110 0.167 0.325 0.185 0.108 0.156 0.300 0.187

(0.8, 1) 0.158 0.190 0.416 0.185 0.166 0.248 0.424 0.260 0.177 0.257 0.408 0.314

(0.7, 1) 0.226 0.255 0.496 0.267 0.235 0.344 0.515 0.358 0.246 0.368 0.506 0.436

T ¼ 200
(1, 1) 0.065 0.061 0.236 0.062 0.060 0.071 0.211 0.084 0.054 0.062 0.150 0.090

(1, 0.95) 0.086 0.177 0.242 0.147 0.065 0.193 0.198 0.201 0.059 0.132 0.133 0.171

(1, 0.9) 0.159 0.354 0.299 0.252 0.183 0.422 0.282 0.441 0.263 0.383 0.180 0.426

(1, 0.8) 0.307 0.602 0.378 0.436 0.432 0.704 0.458 0.690 0.585 0.682 0.550 0.707

(1, 0.7) 0.361 0.690 0.419 0.511 0.537 0.811 0.568 0.775 0.697 0.815 0.740 0.854

(0.95, 1) 0.105 0.105 0.319 0.106 0.105 0.122 0.312 0.147 0.115 0.133 0.271 0.171

(0.9, 1) 0.159 0.152 0.398 0.148 0.166 0.211 0.417 0.224 0.186 0.252 0.411 0.299

(0.8, 1) 0.252 0.285 0.539 0.285 0.251 0.426 0.568 0.424 0.330 0.465 0.586 0.546

(0.7, 1) 0.344 0.441 0.625 0.398 0.342 0.536 0.653 0.561 0.380 0.560 0.649 0.669

T ¼ 500
(1, 1) 0.063 0.070 0.199 0.076 0.058 0.067 0.160 0.075 0.055 0.057 0.101 0.076

(1, 0.95) 0.268 0.485 0.398 0.449 0.302 0.518 0.305 0.551 0.331 0.434 0.157 0.489

(1, 0.9) 0.503 0.766 0.519 0.689 0.629 0.806 0.521 0.808 0.670 0.758 0.492 0.789

(1, 0.8) 0.595 0.852 0.581 0.753 0.755 0.927 0.704 0.910 0.850 0.941 0.783 0.940

(1, 0.7) 0.619 0.874 0.599 0.767 0.788 0.953 0.764 0.925 0.907 0.973 0.854 0.966

(0.95, 1) 0.181 0.170 0.383 0.176 0.192 0.237 0.411 0.249 0.234 0.289 0.399 0.348

(0.9, 1) 0.259 0.316 0.521 0.315 0.324 0.434 0.569 0.486 0.357 0.522 0.589 0.627

(0.8, 1) 0.386 0.560 0.672 0.521 0.408 0.604 0.655 0.686 0.420 0.624 0.662 0.796

(0.7, 1) 0.449 0.650 0.733 0.648 0.432 0.640 0.688 0.746 0.446 0.637 0.685 0.830
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From the table, three tests proposed in this paper tend to slightly over-reject
the null hypothesis when T ¼ 100, while LKSNl has a large size distortion.
As to the power, the exp-type test is more powerful than the inf-type and avg-
type tests under H10

1 while the avg-type and exp-type tests have good
performance under H01

1 . As a whole, exp-LMl
d performs fairly well both under

the null and the alternative. Therefore, we recommend using it when data have
no trend.

The effect of w on the power of exp-LMl
d is similar to the case where k* is

known. The power tends to decrease as w becomes large, especially under
H01

1 . The power is 0.480, 0.366 and 0.170 for w ¼ 0, 0.5 and 0.8,
respectively, when (a1, a2) ¼ (0.8, 1) and T ¼ 200.

The results when data are trending are reported in Table 6. Under the
null hypothesis, the size of inf-LMQD

d is closest to the nominal size while
avg-LMQD

d has a large size distortion, and the other tests have the similar
performance under the null hypothesis. Under H10

1 ; exp-LMs
d outperforms the

other tests, while the avg-type tests and LKSNs have low power when T ¼
100, although the power of the latter increases when T ¼ 200 and 500. On the
contrary, under H01

1 ; avg-LMs
d is most powerful when the alternative is close

to the null hypothesis, while LKSNs becomes most powerful as the alternative
tends to diverge from the null hypothesis. As a result, although none of the
tests dominate others, exp-LMs

d , avg-LMs
d and LKSNs may be useful in

practice for trending data.
The effect of w is similar to the non-trending case. The powers of these

three statistics are 0.316, 0.406 and 0.511 for w ¼ 0, 0.225, 0.285 and 0.409
for w ¼ 0.5, and 0.232, 0.136 and 0.232 for w ¼ 0.8, respectively, when
(a1, a2) ¼ (0.8, 1) and T ¼ 200.

TABLE 4

Effects of the initial value condition (T ¼ 1,000, k* ¼ 0.5 is known)

(a1, a2)

x0 ¼ 0 x0 ¼ 10

LMl LMl
d LMl LMl

d

(1, 1) 0.051 0.058 0.051 0.058
(1, 0.999) 0.060 0.064 0.068 0.073
(1, 0.995) 0.138 0.088 0.093 0.101
(1, 0.99) 0.280 0.175 0.099 0.201
(1, 0.95) 1.000 0.910 0.113 0.911
(1, 0.9) 1.000 1.000 0.140 0.999
(0.999, 1) 0.069 0.061 0.065 0.059
(0.995, 1) 0.126 0.079 0.067 0.062
(0.99, 1) 0.218 0.111 0.062 0.112
(0.95, 1) 0.764 0.662 0.032 0.747
(0.9, 1) 0.940 0.961 0.028 0.975
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V. Empirical examples

In this section, we present an empirical application of the tests proposed in the
previous sections. We investigate the yen/dollar exchange rate (January 1974
to June 2001; denoted by ‘Yen’), which is drawn in Figure 3. We calculated
the test statistics for both models with/without a linear trend. Taking account
of the finite-sample results investigated in the previous section, we calculated
only exp-LMl

d for the non-trending case and avg-LMs
d ; exp-LM

s
d and LKSNs

for the trending case. The results are summarized in Table 7. The symbol ‘l’
in parentheses signifies that the model is estimated without a linear trend,
while the symbol ‘s’ implies that a linear trend is included as a regressor.

TABLE 5

Size and power (non-trending case, k* ¼ 0.5 is unknown)

(a1, a2) inf-LMl
d avg-LMl

d exp-LMl
d LKSNl

T ¼ 100
(1, 1) 0.080 0.089 0.098 0.179
(1, 0.95) 0.086 0.072 0.120 0.180
(1, 0.9) 0.190 0.093 0.268 0.222
(1, 0.8) 0.447 0.184 0.566 0.416
(1, 0.7) 0.630 0.337 0.750 0.635
(0.95, 1) 0.084 0.113 0.108 0.203
(0.9, 1) 0.099 0.146 0.125 0.279
(0.8, 1) 0.192 0.259 0.240 0.530
(0.7, 1) 0.299 0.388 0.383 0.758
T ¼ 200
(1, 1) 0.047 0.069 0.059 0.111
(1, 0.95) 0.114 0.089 0.170 0.142
(1, 0.9) 0.312 0.176 0.416 0.288
(1, 0.8) 0.645 0.481 0.791 0.750
(1, 0.7) 0.855 0.815 0.965 0.966
(0.95, 1) 0.100 0.127 0.113 0.205
(0.9, 1) 0.161 0.243 0.192 0.418
(0.8, 1) 0.361 0.543 0.480 0.852
(0.7, 1) 0.575 0.775 0.793 0.984
T ¼ 500
(1, 1) 0.046 0.071 0.053 0.079
(1, 0.95) 0.335 0.242 0.465 0.285
(1, 0.9) 0.721 0.629 0.862 0.765
(1, 0.8) 0.977 0.992 1.000 0.988
(1, 0.7) 1.000 1.000 1.000 0.998
(0.95, 1) 0.191 0.287 0.213 0.423
(0.9, 1) 0.447 0.656 0.604 0.833
(0.8, 1) 0.812 0.974 0.983 0.986
(0.7, 1) 0.955 0.999 1.000 1.000
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The lag length is decided by testing the significance of the coefficient
estimate of yt)p)1 in the regression of yt on yt)1, . . . , yt)p)1 and a constant or a
constant and a linear trend. We assume that the maximum lag length (p + 1) is
at most 18 and the test is continued until the coefficient estimate of yt)p)1
becomes significant at the 5% significance level. The lag length of 4 is
selected for both models with/without a linear trend.

First, we consider the model without a linear trend. exp-LMd rejects the
null of a unit root in the whole period at the 10% significance level, which
weakly implies a change in the long-run persistence. This is consistent with
the results of the Busetti and Taylor (2004) and Leybourne and Taylor
(2004) tests, which are designed to test the null of (trend) stationarity against

TABLE 6

Size and power (trending case, k* ¼ 0.5 is unknown)

(a1, a2) inf-LMs
d avg-LMs

d exp-LMs
d inf-LMQD

d avg-LMQD
d exp-LMQD

d LKSNs

T ¼ 100
(1, 1) 0.082 0.085 0.096 0.047 0.140 0.072 0.080
(1, 0.95) 0.084 0.071 0.114 0.048 0.110 0.090 0.074
(1, 0.9) 0.133 0.075 0.197 0.075 0.118 0.155 0.084
(1, 0.8) 0.275 0.110 0.421 0.159 0.148 0.330 0.165
(1, 0.7) 0.427 0.166 0.571 0.286 0.205 0.450 0.256
(0.95, 1) 0.095 0.133 0.119 0.060 0.187 0.093 0.085
(0.9, 1) 0.131 0.160 0.150 0.081 0.227 0.112 0.110
(0.8, 1) 0.172 0.234 0.202 0.106 0.316 0.161 0.220
(0.7, 1) 0.212 0.324 0.270 0.140 0.394 0.218 0.378
T ¼ 200
(1, 1) 0.072 0.074 0.077 0.049 0.118 0.060 0.072
(1, 0.95) 0.095 0.069 0.140 0.072 0.118 0.122 0.079
(1, 0.9) 0.217 0.120 0.336 0.170 0.173 0.308 0.131
(1, 0.8) 0.487 0.266 0.616 0.402 0.306 0.561 0.368
(1, 0.7) 0.665 0.423 0.778 0.581 0.440 0.717 0.732
(0.95, 1) 0.097 0.139 0.117 0.052 0.191 0.086 0.107
(0.9, 1) 0.137 0.214 0.155 0.085 0.276 0.120 0.175
(0.8, 1) 0.246 0.406 0.316 0.162 0.500 0.283 0.511
(0.7, 1) 0.359 0.510 0.469 0.283 0.615 0.453 0.802
T ¼ 500
(1, 1) 0.054 0.069 0.052 0.042 0.100 0.053 0.061
(1, 0.95) 0.274 0.173 0.398 0.241 0.215 0.377 0.135
(1, 0.9) 0.615 0.396 0.749 0.584 0.458 0.712 0.502
(1, 0.8) 0.864 0.775 0.930 0.849 0.765 0.902 0.964
(1, 0.7) 0.922 0.870 0.950 0.890 0.840 0.930 0.997
(0.95, 1) 0.135 0.232 0.154 0.104 0.308 0.155 0.217
(0.9, 1) 0.267 0.430 0.340 0.209 0.543 0.346 0.613
(0.8, 1) 0.496 0.626 0.600 0.448 0.750 0.654 0.974
(0.7, 1) 0.602 0.683 0.663 0.595 0.805 0.751 1.000
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a change in persistence. In Table 7, Kj for j ¼ 1, 2 and 3 correspond to
K�

j ð0Þ statistics proposed by Leybourne and Taylor (2004, p. 110), while
BTj for j ¼ 1, 2 and 3 denote the Busetti and Taylor’s tests given by
equation (4.13) in their paper with m ¼[12(T/100)1/4] ¼ 16. Critical values
of these statistics are given by Table 1 of Busetti and Taylor (2004). Four of
these tests reject the null of stationarity and again, these results imply a
change in persistence. We also conducted the augmented Dickey–Fuller
(ADF)–GLS test proposed by Elliott et al. (1996) in the two sub-periods.
The subscripts f and ‘ signify that the test is conducted in the former and
the latter sub-periods, respectively. The whole sample is split at the date
where the demeaned-type test, LMl

d , is minimized. In this case, LMl
d is

minimized at September 1985, which is the same month as the Plaza
Agreement, and the ADF-GLS test rejects the null of a unit root at the 10%
and 1% significance levels before and after the break date, respectively.
Judging from these results for the model without a linear trend, the exchange
rate does not seem to have a unit-root in the whole period, and there is
evidence of a change in persistence, although this tendency is not
necessarily strong.

On the contrary, when we include a linear trend in the regressors, only K3

rejects the null of no change in persistence at the 10% significance level and

100

150

200

250

300

1975 1980 1985 1990 1995 2000

Figure 3. The yen–dollar exchange rate
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neither the null of a unit root nor the null of stationarity can be rejected by the
other tests. One of the possible reasons for this discrepancy is that each test
becomes less powerful when a linear trend is used. However, the ADF-GLS
test rejects the unit-root hypothesis in the latter sub-period at the 1%
significance level while the test does not reject it in the former sub-period,
where the sample is split in February 1985, at which LMs

d is minimized. Thus
using the model with a linear trend, our conclusions are mixed. However, we
can at least say that there seems to be no strong evidence supporting the unit-
root hypothesis for the whole sample period.

VI. Concluding remarks

In this paper, we have investigated a test of a change in the long-run
persistence in a univariate time series. We first proposed two types of tests,
one is the LM-type test and the other is the ‘demeaned version’ of the
LM-type test. We also considered the tests with the quasi-differencing method.
From the Monte Carlo simulation, we found that the demeaned versions of the
LM-type tests perform better than the tests with the quasi-differencing
method. However, this result does not necessarily indicate that the quasi-
differencing method is not useful for the test of a change in the long-run
persistence. In our setting, the difficulty is that we have to decide two local
parameters, h1 and h2. We chose these parameters so that the power is tangent
to the envelope at a power of 50% both under H01‘

1 and H10‘
1 , but we can

construct other tests using a different setting of h1 and h2, which might have
better finite-sample properties. One of the possibilities is that, as used in

TABLE 7

Summary of the test statistics

Yen (l) Yen (s)

avg-LMd — 5.46
exp-LMd 16.62* 6.63
LKSN — )2.77
K1 24.15** 5.11
K2 2.56 1.09
K3 19.43*** 2.42*

BT1 1.82* 0.34
BT2 0.64 0.08
BT3 0.72** )0.37
Date Sep.1985 Feb.1985
ADF-GLSf )1.78* )1.54
ADF-GLSl )4.18*** )3.99***

Notes: The symbols *, ** and *** denote significance at the 10%, 5%, and 1% levels, respectively.
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Leybourne et al. (2003), we set h ¼ h1 ¼ h2 and investigate the performance
of the test by changing one dimensional parameter h. The choice of multiple
local parameters need to be studied in the future.

Final Manuscript Received: November 2004
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Appendix

We only outline the proofs here. Full details are available upon request.

Proof of Theorem 1.

(i) D~xt can be expressed as

D~xt ¼ w0~zt�1 � wð1Þð~l1 � l1Þ þ u�t ;

where u�t ¼ ut � ð1� atÞwðLÞxt�1
ð31Þ

w ¼ [w1, . . . ,wp]
0 and ~zt�1 ¼ ½D~xt�1; . . . ;D~xt�p�0. Using equation (31) it

is shown that the product moment matrix of the regressors, ½D1t~x0t�1;
D2t~x0t�1; ~z

0
t�1�

0, with an appropriate weighting matrix is shown to be
asymptotically block-diagonal, so that the t-statistics for q1 and q2 can
be expressed as

tsi ðk�Þ ¼
T�1

P
Ti

~xt�1fu�t � wð1Þð~l1 � l1Þgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T�2~r2

P
Ti

~x2t�1

q þ opð1Þ; ð32Þ

for i ¼ 1 and 2, where T1 ¼ ft : 1 � t � T �
Bg and T2 ¼

ft : T �
B þ 1 � t � Tg.

We first derive the limiting distribution of the denominator. Under
H10‘

1 we have

T�1=2x½Tr� ) rw�1W ðrÞ 0 � r � k�

rw�1 ~V ðrÞ k� � t � 1

�
ð33Þ
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by the functional central limit theorem (FCLT), where w ¼ w(1) and
‘�’ signifies weak convergence. As ~l1 ¼ l1 þ T�1ðxT � x0Þ, this
result induces that

T 1=2ð~l1 � l1Þ ) rw�1 ~V ð1Þ: ð34Þ
Noting that ~xt ¼ xt � ð~l1 � l1Þt þ l0 � y0 and combining equa-
tions (33) and (34), we obtain T�1=2~x½Tr� ) rw�1V ðrÞ. From this result
and the continuous mapping theorem (CMT), we have

T�2
XT �

B

t¼1

~x2t�1 ) r2w�2

Z k�

0
V 2ðsÞds;

T�2
XT

t¼T �
Bþ1

~x2t�1 ) r2w�2

Z 1

k�
V 2ðsÞds: ð35Þ

To show the convergence of the numerators of ts1ðk
�Þ and ts2ðk

�Þ, we
define

~St ¼
Xt
j¼1

ðu�j � �u�Þ ¼
Xt
j¼1

u�j � �u�t; ð36Þ

where

�u� ¼ T�1
XT
t¼1

u�t :

Note that

T�1=2
X½Tr�
t¼1

u�t ) rW ðrÞ for 0 � r � k�

while

T�1=2
X½Tr�
t¼1

u�t ) r~V ðrÞ for k� � r � 1:

Then, we can see that T�1=2~S½Tr� ) rV ðrÞ for 0 £ r £ 1. It is also shown
that

T�1
XT �

B

t¼1

ðut � �uÞ2 ! r2k�:

Then,

T�1
XT �

B

t¼1

~xt�1fu�t � wð1Þð~l1 � l1Þg

¼ ðwT Þ�1
XT �

B

t¼1

~St�1ðu�t � �u�Þ þ opð1Þ!
d
r2ð2wÞ�1ðV 2ðk�Þ � k�Þ ð37Þ
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by the FCLT and CMT. As ~r2 is shown to converge in probability to r2

under local alternatives, we have ts1ðk
�Þ!d S1ðk�Þ. Similarly, we can get

ts2ðk�Þ!
d
S2ðk�Þ. The theorem is established using these results.

(ii) The limiting distribution of the demeaned version statistic and the result
of (ii) can be derived in the same way as the proof of (i).

(iii) Under H01‘
1 we have

T�1=2x½Tr� )
rw�1 ~W ðh�1=k�;rÞ 0� t�k�

rw�1 ~V ðrÞ�rw�1 ~W ðh�1=k�;k�ÞþW ðrÞ�W ðk�Þ
	 


k� � t�1.

�
ð38Þ

Then, in the same way as the proof of (i), we can establish the
theorem. j

Proof of Theorem 2. This theorem is proved in the same way as in Leybourne
et al. (2003). First we derive the asymptotic behaviour of ~lQD0 and ~lQD1 .

Lemma 1.

(i) Under H10‘
1 , ð~lQD0 � l0Þ!

d
x1 and T 1=2ð~lQD1 � l1Þ!

d
rw�1J1=d.

(ii) Under H01‘
1 , ð~lQD0 � l0Þ!

d
x1 and T 1=2ð~lQD1 � l1Þ!

d
rw�1J2=d.

Using equations (33), (38) and the above lemma, we have, under H10‘
1 ,

T�1=2~xQD½Tr� )
rw�1ðW ðrÞ � rJ1Þ 0 � t � k�

rw�1ð~V ðrÞ � rJ1Þ k� � t � 1

�
ð39Þ

while under H01‘
1 ,

T�1=2~xQD½Tr� )
rw�1ð ~W ðh�1=k�; rÞ � rJ2Þ 0 � t � k�

rw�1ð~V ðrÞ � rJ2Þ k� � t � 1

�
: ð40Þ

Then, the statement of the theorem is proved exactly in the same way as the
proof of the previous theorem. j

Proof of Theorem 3. As shown in Theorems 1 and 2, ts1ðkÞ and ts2ðkÞ converge in
distribution to S1(k) and S2(k) under H 0

0. In the same way as Gregory and Hansen
(1996), these convergences hold uniformly in k. As inf-LMs, avg-LMs and
exp-LMs are continuous functions of S1(k) and S2(k), the limiting distribution is
obtained by the CMT. j
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