Threshold Autoregressions for Strongly
Autocorrelated Time Series

Markku LANNE

Department of Economics, University of Helsinki, Finland (markku.lanne@helsinki.fi)

Pentti SAIKKONEN

Department of Statistics, University of Helsinki, Finland (pentti.saikkonen@helsinki.fi)

In some cases the unit root or near unit root behavior of linear autoregressive models fined 0 econonie
time series 18 not in accordance with the underlying economic theory. To accaommaodate this feature
we consider a threshold autoregressive (TAR) process with the threshold effect only in the intercept
rerm. Although these processes are stationary, their realizations switch between different regimes and
can therefore closely resemble those of (near) integrated processes for sample sizes relevant in many
economic applications. Estimation and inference of these TAR models are discussed, and a specification
Lest for testing thew stability 15 denved. Testing 15 based on the dea that if (near) integratedness is really
caused by level slults, the senes purged ol these shafts should be stable so that known stationarity tests
can be applied to this series. Simulation results indicate that m certn cases these tests, like several
linearity tests, can have low power. The proposed model is applied to interest rate duta.
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Many economic time series are strongly autocorrelated and
can be modeled by hnear (near) unit root or I(1) processes.
However, 1mphications of such linear maodels may not be
in accordance with economic theory or “stylized facts.” Vor
instance, the estimated impulse response function may imply
very slow mean-reversion inconsistent with the properties of
many economic and financial variables. In the long run, (near)
unit root behavior is also unthinkable for such variables as
nominal interest rates and unemployment rate that do not rake
negative values. In such cases the occurrence of a (near) unit
root may be an indication of factors not accounted for by
the employed linear model. In this article we shall therefore
consider nonlinear processes which are stationary but, due to
stochastic level shifts, whose linear properties are very simi-
lar to those of I(1) or nearly I(1) processes. Specifically, we
consider threshold autoregressive (TAR) models in which the
threshold effect only appears in the intercept term.

Recently, Gonzdlez and Gonzalo (1998) and Caner and
Hansen (2001) have also considered TAR models as alterna-
tives to linear (nearly) I(1) models. Their models can have a
(near) unit root in some of the regimes. This 1s contrary (o
our models, which have constant stable roots clearly smaller
than | in all the regimes and in which only the intercept
term switches between different regimes. Gonzilez and Gon-
zalo (1998) and Caner and Hansen (2001) also derived statis-
tical tests for testing their TAR models against linear (nearly)
I(1) models. These linearity tests assume a stationary thresh-
old variable which in practice is typically a lagged difference
of the series. Because the motivation of our model assumes
that the threshold variable 1s a lagged level of the series, these
previous tests are not suitable for us.

Derving a lincanty test in the context of our TAR model
appears very difficult. To help model selection, we there-
fore instead consider testing the null hypothesis that our
TAR model is stable or stationary. A similar approach has
previously been employed by Corradi, Swanson, and White
(2000), who tested the stability of a general nonlinear pro-
cess by applying the stationarity test of Kwiatkowski, Phillips,

Near unit root, Stability test; Threshold models.

Schmidt, and Shin (1992) directly to the observed series.
According to Monte Carlo sumulations, this 1s not a reason-
able approach in our contexi. It turns out to be much bet-
ter to make use of the specified TAR model and employ a
series purged of the estimated level shifts, It our stationary
TAR model is approprate, this series should be stable, and
we use the statonarity test of Leybourne and McCabe (1994)
for testing whether this is really the case. Visual inspection of
this series can also be very helpful in selecting an appropri-
ate model. Unfortunately, however, simulation results indicate
that our stability test can have low power in certiain cases, but
this seems to be inherent in the considered testing problem
hecause a similar result is obtained for several linearity tests
prasented 1n the previous literature.

Nominal interest rates are a potentially useful field of appli-
cation of our TAR model. We illustrate this by using the three-
month Swiss Franc Eurorate and UK Treasury bill rate data.
Our results show that al least these interest rate series can be
successtully modeled by clearly stable TAR models consid-
cred in this article. This is in contrast to previous linear inter-
est rate models, which have typically contained a (near) unit
root and therefore produced implications not in accordance
with the observed behavior of interest rates (see, e.g., Ball and
Torous 1996),

The plan of the article i1s as follows. In Section | our TAR
model is presented, and in Section 2 parameter estimation and
statistical inference are briefly discussed. Section 3 introduces
the stability test. The empirical applications are presented in
Section 4. Section 5 provides simulation results of the size
and power of the stability test and some previously suggested
lineanty tests. Finally, Section 6 concludes.
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1. MODELS

As an alternative to a linear (nearly) I( 1) model, we consider
the TAR madel

i

Jl':'
vw=v+3 fllyv_yze)+) &y +or, (1)

k=1 f=|

where [(-) 1s the indicalor function and &, 15 a sequence of
contimuous 1d{0, 1) random vanables with a density function
positive everywhere. The threshold parameters are ordered as
¢, < - < ¢, and the scale parameter o satisties o > 0. More
over, the zeros of the polynomial ¢(z)=1 ¢,z -~ & =
are assumed to lie outside the unit circle. With these assump-
tions the process v, 1s geometnically ergodic and strong muix-
ing with geometrically decaying mixing numbers. This can be
deduced from Masry and Tjastheim (1995, lemma 3.1) by tak-
ing. 4 =0, (@) vay ”fl'.;..---n )=(¢,.....d). and vsing well-
known results about eigenvalues of companion matrices. For
the type of appheations we have 1in mind, 1t 18 reasonable to
assume that 8, > 0 (k= 1,...,m), where the inequality is
strict unless otherwise stated. It 1s worth noting, however, that
this assumption is only used to motivate the model. It is not
necessary for the theoreucal results Lo be discussed later.

To see the mouvation of the above model, suppose that
v,_; < ¢;. Then the process evolves in the lowest regime
according to a linear AR(p) process whose level 1s determined
by the parameter v/¢(1). However, when vy, > ¢, occurs,
the value of the intercept term of the process changes from v
to a larger value » 4 0, and the process starts evolving around
a higher level (#+6,)/¢b(1). Except for a new level, the prop-
erties of the process are the same as before the level shift. The
larger is the value of the parameter 6,, the larger i1s the dif-
terence between the two levels, After evolving in the second
regime, the process may return to the first regime or, if m > 2,
it can shilt w an even higher level. In this way the process
wanders between the m regimes and it is this wandering that,
for sample sizes typical in many economic applications. can
make realizations of the process look very similar to those of
a linear I(1) or nearly I(1) process. In standard unit root and
stationarity testing, such series can easily be confounded with
[(1) series. This can happen even if the roots of the polyno-
mial ¢(z) are rcasonably far away from unity and the number
of regimes 1s only two or three (for examples see Section 4)

Because y, can be treated as a stationary process and the
zeros of the polynomial &(z) lie outside the unit circle, Equa-
tion (1) implies the representation

(11} ﬁ
‘.'-’;Tf#"i‘szl}’;_,;'if',}-l-:,, (2)

=

where p = v/(1), 2z, = (L) 'ae.. and L stands for the
usual lag operator. Clearly, z, is a linear zero mean stationary
AR(p) process. It represents the part of v, from which both
current and lagged effects of the stochastic level shifts have
been removed. Thus, time series plots of y, and z, can be used
as an informal practical aid (o assess the sigmificance ol the
estimaled level shifts.

For some cases 1l 18 reasonable to extend the preceding
model and allow for the possibility that the conditional vari-
ance may vary hetween regimes. For instance, in interest rate
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applications this may be needed to model the “stylized fact”
that the vanance is higher at higher levels. Therefore. we
extend model (1) 1o

i U

vy=p+Y 81y, s> )+ dy_ +olv._s)e, (3)
k=1

=

where ao(y, ;) =0+ Y w My, , > c.) and the values of
the parameters o and w,....,w, are such that o(y,_ ;) 15
positive everywhere, Thus, model (3) can also capture changes
in the error variance dependent on the level of the series.
That Equation (3) also defines a stationary process can again
be deduced from Masry and Tygstheim (1995, lemma |).
Hence, a representation, analogous to (2), applies with 7, =
d(L) 'ar(y, ,)e,, a zero mean stationary process.

2. PARAMETER ESTIMATION AND
STATISTICAL INFERENCE

Given an observed time series v ., ,.... yr. where r =
max{p, d}, the parameters in the TAR model (1) can be esti-
maled by least squares (LS). Suppose the values of the inte-
gers p,m, and o are known. Then, for given values of the
threshold parameters ¢, ..., c,, the regression coefficients
Voo @, and 8y... ., &, in (1) can be cstimated by
ordinary LS. Because the sum of squares function in this LS
estimation only takes a finite number of ditferent values and
the number of thresholds is usually one or two, it is possible
and also quite feasible to use grid search over possible values
of the threshold parameters to obtain the final LS estimators,
Alternatively, one could consider the sequential procedure of
Bai and Perron (1998) and estimate the thresholds one at a
tume. This would be especially convenient in the case of very
long series or many thresholds. In practice the possible val-
ues of the threshold parameters are usually restricted in such
a way that a prescribed minimum portion of observations are
guaranteed 10 belong to each regime (cf., Caner and Hansen
2001). Since the LS estimators of the threshold parameters are
not unigue, we choose each of them as the smallest possible
value such that the sum of squares function {s minimized.

This estimation procedure is straightforward to extend to
the case of the heteroskedastic TAR model (3). For given val-
ues of the threshold parameters, one can first use ordinary
L5 estimates of the regression coetficients v, ¢,.. .., &, and
s S 0, and associated residuals to estimate the unknown
parameters o and w,, ..., @, in the function a(y,_ ). This
latter estimation 18 simply a reparameterized form of estimat-
ing the error vanances in each regime. Using the estimate of
oy, ,), one can next obtain obvious weighted LS estimates
of the regression coefficients », ¢, ..., u;b,,, and 6,,...,68
as well as the corresponding residual sum of squares function.
This residual sum of squares function, which depends on the
given values of the threshold parameters, can then be treated
in the same way as its counterpart in model (1) so that the
estimation procedure diflers Irom the previous one only in that
the ordinary LS estimation 15 replaced by a weighted LS esti-
mauon. This weighted LS estimation is based on a two-step
approach and, it desired, 1t can be iterated until convergence
to obtain proper weighted LS estimates. In this article proper
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weighted LS estimates are employed because the needed extra
computations are quite modest,

Consistency and limiting distributions of LS estmators and
maximum likelihood (ML) estimators in general TAR mod-
els with one threshold have recently been obtained by Chan
(1993) and Qian (1998). The results presented in these articles
imply that, under appropriate regulanty conditions, the esti-
mates of threshold parameters can be treated as if they were
the true parameter values when hypotheses on other parame-
ters are tested. Thus, except for the threshold paramcters and
with one exception to be discussed shortly, approximate stan-
dard errors of estimators and standard large sample tests with
asymptotic chi-squared distributions under the null hypothe-
sis can be constructed in a straightforward way. As for the
LS estimators of the threshold parameters, complicated non-
standard limiting distributions result (see Chan 1993, Hansen
1997, and Qian 1998). Therefore, inference on the threshold
paramelers 18 difficult and will not be considered in this article.

The null hypothesis, which cannot be tested in a simple way,
implies that the number of regimes is smaller than specified.
[n particular, the null hypothesis may imply a linear AR(p)
model or that 6, =--. =48, =0 holds in (1). Being able 1o
test this null hypothesis and 118 extensions would be of major
interest. Untfortunately, however, this testing problem is non-
standard and very difficult. An obvious difficulty is that under
the null hypothesis the threshold parameters are not identified.
In the present context further difficulties arise because the null
hypothesis 1s supposed to imply an I(1) or nearly I(1) pro-
cess, This means that the recent tests of Gonzalez and Gon-
zalo (1998) and Caner and Hansen (2001) do not apply. Try-
ing 0 exrend the tests of these authors to the case of an I(1)
or nearly I(1) threshold variable appears difficult and will not
be attempied here. Some allernative approaches for testing the
null hypothesis &, =--- =48, =0 in (1) will be discussed later.

Finally, note that, in addition to the value of the parameter
m, also the values of the parameters p and d are unknown
in practice so that experimentation with different values and
some kind of model selection are needed. A consistent esti-

mator of the delay parameter d can be found in Chan (1993)
and Qian (1998§).

3. STABILITY TEST

To assess whether our stationary TAR model can really
account for the assumed high persistence of an observed
series, a test procedure for testing it against a conventional
linear 1(1) model will be developed. The application of this
test procedure together with available unit root and stationar-
Ity lests can give useful information abour the properties of the
considered tume series and the relevance of our TAR model.

First consider the null hypothesis that the observed series is
generated by a homoskedastic TAR model (1). As noticed 1n
Section 1, then the process z, defined in (2) has the stationary
AR(p) representation z, = (L) 'ae,. Under the alternative,
Z, 18 assumed to be an unstable I(1) process. Thus, if the pro-
cess z, were observable, the stationarity tests of Saikkonen and
Luukkonen (1993) and Leybourne and McCabe (1994) could
be used directly to test the desired hypotheses. Because this is

not the case, we simply replace z, by a sample analog based
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on the LS estimation of the null model and proceed as it z,
were observable, The same idea can be extended to the het-
eroskedastic TAR model (3) in a straightforward manner.
Our stationarity test is formulated in the framework of
Leybourne and McCabe (1994), although the approach of
Saikkonen and Luukkonen (1993) would lead to a similar test
procedure. Thus, consider the unobserved component model

h(L)z, =

i

M OE, r=1,2,..., (4)

I
ot
where the iid(0, o) sequence 7), is totally independent of the
sequence &,. The null hypothesis states that f.?“i = (). whereas
vl.’]';; > 0 under the alternative. The process defined by (4) is
second order equivalent in moments to the ARIMA(p,1,1) pro-
CeSs

Az, = ¢(L) 1{E—HL}rn—:,q bl s ava (5)
where A = | — L 15 the difference operator. The moving aver-
age parameter 6 15 a function of the varniances t‘Ii and o and
satisfies O < ¢ < | with 6 = | under the null hypothesis. Thus,
7, 18 supposed to be a stationary AR(p) process under the null
hypothesis and an integrated ARIMA(p,1.1) process under the
alternative.

Now consider the observed series y,, which is highly persis-
tent whether the null hypothesis holds or not. Under the null
hypothesis this high persistence 1s modeled by the stochastic
level shifts implied by the TAR process (1) or (3), whereas
under the alternatve a linear I(1) model is used for the
same purpose. Thus, when we use the representation (2) with
(4) to construct our stability Llest. we assume that under the
null hypothesis the values of the parameters &,,...,4d, are
nonzero but under the alternative they are zero. Under the
alternative the values of the paramelers @, ..., @, in the
TAR model (3) are similarly assumed to be zero.

In the case of the TAR model (1). our test statistic can also
be based on an empirical counterpart of the process u, =z, /er.
The advantage of this formulation is that it extends to the case
of the heteroskedastic TAR model (3). We use a circumflex to
signify LS estimators and residuals based on the TAR model
(1) or (3). Using the LS estimators ¢, . . .. -:;‘)F and the resid-
uals £, we first compute recursively

Py &
Gom Y Pl &y =l T
=
where u, = 0 lor ¢ < (). An explicit expression of the residual

-

&, 18 given by

U

E‘rt-vl—dl.}éf — }:E o ‘:} T Z E.l'.: "r(_.'I; 7 2 Il.ﬁr‘:}
A=

where a(y,_,) =  in the case of model (1).
Our test procedure obviously assumes that u, should behave
like a stationary series under the null hypothesis and like an
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I(1) series under the alternative, That this happens under the
null hypothesis and for T large tollows from the consistency
of the LS estimators in (6). As for the alternative, recall that
O =wy=0 (k= ..., m) by assumption so that z, and,
conscquently, v, is an unstable ARIMA process. For simplic-
ity, consider the homoskedastic TAR model (1). Then, for
i, to behave like an I(1) series, we should have 8, = o,(1)

(k= 1,....m)and é(1)=o,(1). The fact that the threshold
parameters are not identified complicates demonstrating this.
However, the situation is simplified if we make the commonly
used assumption and require that a lixed minimum portion
of observations must belong 0 each regime. Then it 15 not
difticult to use known limit theorems on stationary and inte-
grated processes o show that 6, = o (1) (k=1,....m) and
d(1) =0,(1) hold [see Tsay (1998, theorem 1) for a similar
result]. Thus, the series &, behaves in the way the stationarity
test of Leybourne and McCabe (1994) assumes.

Treating &, (1 = 1,....7T) as an observed series, we now
proceed in exactly the same way as in Leybourne and McCabe
(1994). The first step is to obtain suitable estimators for the
parameters ¢, .. .., ¢, and to form an empirical counterpart
for the series ¢ (L )i,. In the same way as in Saitkkonen and
Luukkonen (1993) and Leybourne and McCabe (1994), the
use of the LS estimators ¢, ..., &, renders the resulting test
inconsistent, and the same thing happens il one uses the LS
estimators from a regression of &, on #, ... u,_, Thus,
following these previous authors. we consider (quasi) ML est:
mators based on the auxiliary ARMA(p,1) model

d(L)AG, = (1 —HL)a,, (7)

where a, is treated as Gaussian white noise and # is as in (5).
Notice that if u, on the left side is replaced by u,, we have
J=iE Lelet, . .., ¢, be the ML estimators of .. .. . ¢,
based on (7). Using these esumators we next torm the series

il

".'
= —u e . i ' -
& = E tf}J-ur__“

j=]

and its demeaned version

T
gr=e -~ (T-p" Y. &, R G [P T
f=mn+1

As 1n Leybourne and McCabe (1994), we can finally intro-
duce the test stanstic

~ |

S=g"Ve" /(T - p)e”&",

where &' = [£7 | ---&y] and V is a (T — p) x (T — p) matrix
with ijth element equal to the minimum of { and /. It can be
shown that under the null hypothesis and appropriate regular-
ity conditions. test statistic § has the same limiting distribu-
tion as obtained in Levbourne and McCabe (1994). A formal
proof of this result can be found in a discussion paper version
of this article and is available upon request. Thus, under the
null hypothesis,

il
Sij [B(r)—rB(H) dr, (8)
i

where B(r) 15 a standard Browman motion and consequently
B(r) rB(1) is a standard Brownian bridge. Large values of
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test staustic S are crtical. Crtical values can be found in
Kwiatkowski et al. (1992).

Recently, Caner and Kilian (2001) and Lanne and Saikko-
nen (in press) have pointed out that, in finite samples, the sta-
tionarity test of Levbourne and McCabe (1994) suffers from
a serious over-rejection problem when applied 1o stationary
but strongly autocorrelated series. The latter authors developed
a modification of the onginal test which works considerably
better and will be used in the applications of this article. In
our context, the reason for the overrejection problem is that
estimation errors in the ML estimates &}, .. .. ¢, are totally
ignored when the series ¢ is constructed. Therefore, follow-
g the dea of Lanne and Saikkonen (in press)., we replace
the demeaned version of &' by residuals from the auxiliary
regression model

€, =«k—B(Lyp(L)Ar,_,+w, + B(L)p,_,,

1 =2p+1yaoo Ty (9)

where k is an intercept werm, f(l.) = Efﬂﬁij" <.

_.;;—..-| tﬁ{l} I[f.ﬁ'_: s ﬂl}jli{f;_ % "PU—-) - zj;:r: "F'_EL'F. with ¥ =
imjp1 Pyoand o, =3 m +¢&,. When the null hypothe-
sis holds, 0, = g, and (9) can be treated as a regression
model with moving average errors and multiplicative con-
straints between the regression coetficients and moving aver-
age parameters. Thus, we treat o, in (92) as Gaussian white
noise, estimate the purameters by ML, and use the resulting
residuals €] (r=2p+1,....7T), say, instead of &', In the
same way as in Lanne and Saikkonen (in press). one can also
show here that this modification does not change the asymp-
totic distribution of the test.

4. EMPIRICAL RESULTS
4.1 Swiss Franc Eurorate

As a hirst empirical illustration, we consider the monthly
Swiss 'ranc three-month Eurorate during the period 1978:1-
1997:9 (237 observations) extracted [rom the International
Financial Statistics published by the IMFE This series serves
as an example of a case where a homoskedastic TAR model
(1) is sufficient. The solid line in Figure | depicts the three-
month Swiss Franc Eurorate. The series looks very persistent
and, in fact, the Dickey-Fuller test does not reject the null of
a unit root at the 3% level (the value of the test statistic is
—1.92, and the 5% critical value is —2.86), whilc the modified
Leybourne-McCuabe test does reject the null of stationarity at
the 10% level (the value of the test statistic is .42, and the 10%
and 3% critical values are .35 and .46, respectively). The csti-
mation results of the linear AR(2) model and the level-shift
TAR(2Z) models with one and two thresholds are presented
in Table 1. The lincar model corresponds to our expectations
based on the stationarity test: the sum of the AR coefficients
1s high, indicating (near) unit root behavior of the series. In
the one-threshold model. the threshold is estimated at 7.1%.
Taking this level shift into account results in a “z” series for
which the null of stationarity 15 rejected at the 19 level. Also,
the visual inspection of this series in Figure 1 reveals some
potentially remaining level shifting. According (o the test for
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14

1978 1982 1986 1990 1884 1598

Figure 1. The Level (solid line) and "z" Series Computed from the
One-Threshold (dashes) and Two-Threshold (dots) Models of tha Three-
Month Swiss Franc Eurorate, The dolted straight lines indicate the esti-
mated thresholds.

a general TAR model, the level-shilt model 1s not sufficient.
The rejechon could, however, also indicate some other kind of
misspecification, such as the need for an additional threshold.

In the two-threshold model, the upper threshold is estimated
at 7.1% and the lower threshold at 2.8%. The corresponding
levels around which the process evolves in the three regimes
are about 8.3, 4.6, and 2.0%, respectively. The stationarity

Table 7. Estimation Results: Swiss Franc Eurorate
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of the "z series cannot be rejected at the 10% level, and it
has a narrower range than the “z” series for the one-threshold
model. Compared to the linear AR and one-threshold level-
shift TAR models, the sum of the autoregressive coefficients
and the residual sum of squares are considerably lower and,
according to diagnostic tests, there is no reason to suspect the
adequacy of the model, As a further informal check, we simu-
lated long realizations from the estimated linear AR and TAR
models. It turned out that the AR model tended to produce
excessively erratic realizations with a large number of nega-
tive values, whereas the range of the values in the realizations
tfrom the two-threshold TAR model more closely corresponded
to that of the observed series.

4.2 UK Treasury Bill Rate

The second example 1s the monthly series of the UK Trea-
sury Bill rate during the period 1964:1-1997:9 (405 observa-
tons) also extracted from the International Financial Statistics
of the IMF. For this series the heteroskedastic specification (3)
1s required. The solid line in Figure 2 depicts the interest rate
series, and the estimation results are presented in Table 2. The
estimated linear model is characterized by high persistence,
and the Dickey-Fuller test cannot reject the null of a unit root
at the 5% level (the value of the test statistic is —2.78, and
the critical value is —2.86 at the 5% level), whereas the mod-
ified Leybourne—McCabe test rejects the null of stationarity

Made!
TAR TAR
AR (one threshold) (two thresholds)
¥ 140 241 .284
(.074) (.098) (.098)
A, 221 354
(.139) (.144)
0. 510
(.181)
c, 7.103 2.845
Csp 7.103
&, 1.141 1.113 1.045
(.064) (.067) (.071)
v - 169 72 —, 183
(.064) (.064) (.064)
Sum of AR coefficients 972 941 861
Residual sum of squares 60.822 60.167 68.620
Stationarity test of the “z" series” 420 883 192
AR(1)" 164 285 534
AR(2) 139 427 136
AR(3) 220 1982 114
AR(4) 354 253 170
AR(S) A57 389 erS
AR(B) A87 435 327
LM test for homoskeadasticity© 636 .6B0
LM test for general TAR® 036 195
Number of observations by regime;
Upper 54 54
Middie 133
Lower 181 48

NOTE: The TAR modeis are estimated under the restriction that at least 15% of the observations belong lo sach regime. The delay
parameter d = 1. The figures in the parentheses are standard errors, For all tests except the stationarity test, marginal signficance

levels are reportad.

"The 1%. 5%. and 10% critical values are .739, .463, and 347, respactivaly.

“AR(k) is the LM tast far autocorrelation of orders 1 to k.
“LM test for equality of errar variance across the regimes.

dLM tasl for the same nutoreqressive polynomial in all the regimes
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Figure 2. The Level (solid line) and “z" Serles Computed from
tha One-Threshold (dashes) and Two-Threshold (dots) Models aof tha
UK Treasury Bill Rate. The dotted straight lines indicate the estimatec
thresholds.

(the value of the test statistic is 3.43, and the 3% critical value
15 .46).

As already indicated, the homoskedasticity of the error term
was clearly rejected when one- and two-threshold TAR mod-
els (1) were tried, so results of the heteroskedastic model (3)
are only reported. In the one-threshold model, the threshold 1g

Table 2. Estimation Results: UK Treasury Bill Rate
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estimated at 8.3%. The sum of the autoregressive coefficients
1s not much lower for this model than for the linear model,
and the stationarity of the “:” series is rejected at the 5%
level. It is also noteworthy that the estimated residual vari-
ance 1n the upper regime is almost twice the estimate in the
lower regime. The second threshold 1s estimated at 11.3%.
The levels corresponding to these thresholds, around which
the process evolves in the upper, middle, and lower regimes,
are about 12,0, 9.4, and 6.3%. respectively. The “z” series in
Figure 2 for the two-threshold model shows no clear signs of
level shifts, and also the stability test fails to reject at the 10%
level, The decrease in the sum of the AR coefficients com-
pared to the one-threshold model is considerable, albeit not as
dramatic as in the model for the Swiss Franc Eurorate. The
estimated residual variances in the three regimes also seem to
be clearly different, lending further support to the three-regime
against two-regime specification. Simulations of long realiza-
tions provided informal evidence in favor of the two-threshold
TAR model against the linear AR model also in this case.

5. SIMULATION RESULTS

This section presents mited simulation results on the per-
lormiance of our stability test and some alternative Llests in
distinguishing between a stationary TAR model and a linear
(near) unit root process. The estimated two-threshold TAR

Mactal
TAR TAR
AR (one threshold) (twa thresholcls)
It 217 363 538
(.080) (.101) (.129)
3y 220 262
(.095) (.098)
i 217
(.110)
2 8.270 8.270
. 11.320
i, 1.341 1.335 1.307
(.047) (.047) (.049)
i, -. 365 3N -.301
(.0486) (.045) (.045)
Sum of AR coefficients 976 944 816
Residual sum of squares 105.220 103.825 103.272
Stationarity test of the series’ 3.434 490 134
AR(1)® 388 428 i
AR(2) 694 523 601
AR(3) 795 723 798
AR(4) 573 a14 B85
AR(5) 710 108 229
AR(6) 787 145 12
LM test for general TAR" 831 063
Number of observations by regime:
Upper 215 96
Middla 118
Lower 188 188
Residual variance by regime:
Upper B15 655
Middle 576
Lower 344 342

NOTE: The TAR models are estimated by iterated weighted leasl squares undar the restriction that & least 15% of the obsarvations
belong to each regime. The delay parameter d — 1 The fiqguras In the parentheses are standard errars. For all tests excapt the

stationanty tast, marginal significance levels are reportad.
"See notes to Table 1
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models of Section 4 were used as the dala generating pro-
cesses (DGP’s). This choice was motivated by our observation
that generating representative realizations of TAR models 1s
not a straightforward task because complicated relations pre-
vail between the parameters, making it almost impossible (0
concentrate on examining the effect of changing only the value
of one parameter at a time. For instance, changing the values
of AR parameters also changes the variance of the process,
and unless the threshold parameters are changed accordingly,
most of the simulated realizations need not have any observa-
tions in some of the regimes. However, finding the required
adjustments is laborious at the very least and makes report-
ing the results inconvenient. Of course, this difficulty depends
on the length of the series and disappears when sufficiently
long series are simulated. All the lfollowing results are based
on 1,000 replications. Throughout, the lag length is assumed
known, and a two-threshold TAR model 1s fitted 1o the gener-
ated realizations. While this conforms with the DGP’s in the
size simulations, we have made this choice in the power simu-
lations as well because our experience with these models sug-
gests that two thresholds are, in general. required to capture
strong autocorrelation.

The empirical sizes of the stability test are presented
in Table 3 along with the rejection rates of the moditied
Leybourne—McCabe test and augmented Dickey—Fuller (ADF)
test based on a model with an intercept but no time trend.
The rejection rates of the stability test indicate that the test
controls size relatively well already with 100 observations. As
expected, the size is closer to the nominal size for the Swiss
Franc Eurorate model, which has a lower sum of the autore-
gressive coefficients than the UK Treasury bill rate model.
Somewhat surprisingly, the sample size seems to have a neg-
ligible effect on the empirical size. The results of the modi-
fied Leybourne-McCabe test and the ADF test imply that both
of these tests can casily fail to reveal the stationarity of the
considered TAR processes. In particular, using the modified
Leybourne—MeCabe test for the original series dircetly results
in severe overrejection. It may be noted that the same resull
was obtained when the test of Kwiatkowski et al. (1992) was
tried (the rejection rates varied between .30 and .48). This
implies that, in general, the recent suggestion of Corradi et al.

Table 3. Rejection Rates of the Modified Leybourne-McCabe (L-M)
and Augmented Dickey—Fuller (ADF) and Stability Tests With
Nominal Size 5%

100 300

Swiss Franc Eurarate model

Modified L-M test 414 322
ADF 238 667
Stability test 068 072
UK. Treasury bill rate mode!
Modified L-M test 361 350
ADF 371 541
Stahility test 080 083
NOTE. The figures are based on 1,000 replications af the two-thrashold TAR models of the

pravious section Tha ADF test s based on a regression model including an intercept but no
lime trend.
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(2000) to use this test in the case of a nonlinear stationary
DGP should be apphied with caution.

For power simulations we used the same DGP as Leybourne
an¢ McCabe (1994):

1".11':&]' ‘i E|i'l (II:EE.I |.-.|-‘-‘.ﬂll"'I

where £, ~ nid(0, 1) and n, ~ md(0, {Fé_:l are independent and
the process a, is initialized at zero. Note that this linear 1(1)
pracess can cquivalently be expressed as

¥y == _‘I-‘, | + g.’ o ﬂgr— I

where ¢, ~ mid(0, rrj} and 0 < & < 1. In terms of this rep-
resentation, the closer @ is to unity the closer y, 15 o a sta-
tonary process. The rejection rates are presented in Table 4.
For T = 300, the power is good for some values of ;. Ini-
tially it increases with r.’ré hut decreascs as cr;} increases from
1 w0 8.0. The relatively low power at very small values of r:rfi
follows from the fact that in this case the random walk com-
ponent of y, 1s only weak. On the other hand. as u';: becomes
larze enough, the realizations start resembling those from a
TAR model because with increased variance of the random
walk component large shifts from one level Lo another become
more common. As a result, fitting a TAR model to the reahiza-
tions becomes increasingly successful, which tends to decrease
the power of the stability test. This can also be seen from the
vialues of the moving average parameter #. Imitially the power
improves with diminishing values of # but begins to dechne
as 6 approaches zero and the process approaches a random
walk. This is a disappointing result because it means that the
power of the test is low against alternatives that are of primary
interest for us.

Because our stability test seemed 1o lack power i cases
of interest, some simulation experiments were conducted to
examine whether some known linearity tests would be more
successtul. The estimated two-threshold TAR model for the
Swiss Frane Eurorate was used as the DGP, and in each exper-
mment the nominal size was 5%. Although the following tests
have been derived assuming a strictly stationary threshold
variable, limited simulation experiments suggested that they
control size well, Tsay's (1989) test based on arranging the
observations according to the threshold variable and using pre-
dictive residuals from the arranged autoregression can have

Table 4. Power of the Stability Test With Nominal Size 5%

-
o 0 100 300
001 969 128 539
010 805 486 897
100 730 698 960
1.000 382 332 823
2.000 268 236 697
4.000 172 172 444
142 265

8.000 1o

MCTE: The DGP s the lollowing: vy = ay y + 8. wy = oy + 0 with & -~ nid(0,1) and
- N0, o). Equivalently, the DGP can ba expressed as yr = yp.q | 4 # ¢ with
i - nid(0, o%), Tha number of replications is 1,000,
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very low power: it was just 11% with even as many as 500)
observations. Caner and Hansen (2001) suggested bootstrap-
ping the critical values of the Wald test for no thresholds.
The empirical power turned out to be only ahout 45% lor 3()
observations. Because the TAR model is a limiting case of the
smooth transition autoregression, we also considered the test
of Luukkonen, Saikkonen, and Teriisvirta (1988) against this
type of nonlinearity (using critical values trom the asymplotic
distribution derived under the assumption of an integrated tran-
sition variable). Also this test lacked power: it was about 22%
for 300 observations, Thus, all these linearity tests have dil-
ficultics with distinguishing the considered TAR maodels from
their linear approximalions.

6. CONCLUSION

In this article we have argued that fairly simple stationary
nonlinear TAR models may be useful alternatives for linear
(nearly) 1(1) models in cases where the long-run propertics
of the latter are not in accordance with underlying economic
theory or ohserved properties of the series, We also developed
a stability test that, together with available stationarity and
unil root tests, can be used to assess the applicability of our
TAR maodels over conventional I(1) alternatives. Two empirical
examples on nominal interest rates demonstrated the potential
usefulness of these ideas.

From the empirical examples and limited simulation results,
the following conclusions emerge. First, clearly stationary
TAR processes considered in this article can easily be deemed
as nonstationary unit root processes in standard unit root and
stationarily lestung., Second, for sample sizes of a tew hun-
dred observations or less, our stability test. as well as some
recent linearity tests, can have low power. This unplies thet,
in addition to statistical tests. also other procedures are worth
using in model selection. In this respect, visual inspection of
the graph of the “z" series on which our stability test i1s based,
is a convenient possibility. Long realizations ol the chosen
lincar model and our nonlinear TAR model can also be sim-
ulated to visually inspect their resemblance to the observed
series. At least in our empirical examples, this procedure
seemed to provide corroborating evidence in favor of the TAR
specifications.

289

ACKNOWLEDGMENTS

We thank Dag Tjgstheim for his helpful advice and two
anonymous referees for useful comments. Financial support
from the Yrjo Jahnsson Foundation is gratefully acknowl-
edged.

[Received May 199 Revised Muv 2|

REFERENCES

But, J., wnd Perron, P 1998), "Estimating and Testing Linear Models with
Muluple Structurnl Changes.” Feonomertrica, 6, 47-T4.

Ball. C. A., and Torous, W. N, (1996), “Lhint Rools and the Estimation of
Interest Rate Dynamics,” Jowrnal of Empirical Finanee, 3, 215 238

Caner, M., and Hansen, B. E. (2001}, “Threshold Aworcgression with a Unat
Root,” Econcmetrica, 04, 155515496

Caner, M., und Kilwn, L. (2001), *Size Distortions of Tests of the Null
Hypothesis of Stationarity: Evidence and Imphcations [or the PPP Debate.”
Jowwrnad of International Money and Finance, 20, 639-657.

Chun, K. S (1993), “Consistency and Limiting Disiribution ot the Least
Squures Estimutor of a Threshold Autorepressive Model,” Annals of Stanis-
Hes, 21, 52533

Corradi, V., Swanson, N. R, and White, H. (2000}, “Testing for Stationary-
Frgodicity and  for Comovements  Between Nonlinear  Discrele Tune
Markoy Processes,” Jowrnal of Econometrics, 96, 39-73,

Gonzalez. M, and Gonzalo, {19983, “Threshold Unit Root Models,” unpub-
lished muanuscript, U, Carlos HT de Madnd,

Hansen, B. E. (1997), “Inference in TAR Models” Studies in Nanlinear
Ivnamics and Econometrics, 1. 1149-131.

Kwiatkowski, 1., Fhillips. P. C. B., Schmidy, P.oand Shin, Y, (1992), “Tesung
the Null Hypothesis of Stationarity Against the Alternative of a Unit Root:
How Sure Are We That Econvmic Time Sertes Have a Unit Root?” Jouwrnal
of Econometrics, 154, 1539-17§,

Lanne, M., and Saikkonen, P. {in press), “Reducing Size Distortions of Pura-
metric Slanonarly Tests,"” Jopenal of Time Series Analvsis.

Levbourne, 5. 1. and McCabe, B P M| 1994), "A Consistent Test for a Lnil
Root," Jowrnal of Business & Economic Statisics, 12, 157166,

Luukkonen, R.. Saikkonen, P, and 'Terdsvirta, 1. (1U88), “Testing Linear-
ity Against Smooth Transition Autoregressive Models,” Biomerrika, 75,
4971499

Masry, E., and Tjestheun, 1) {1995), "Nu:unpar:um?triu Fstimation and lden-
tification of Nonlinear ARCH Dme Senes.” Econometric Theory, 11,
258289,

Oian, 1 (1998), "On Maximum Likehhood Estimators tfor a4 Threshold
Autoregression,” Jowrnal of Statistical Planning and Inference, 75, 21-46.

Sartkkonen, P. und Luukkonen, R. ([993), “Testing for a Moving Average
Linit Root in Autoregressive Integrated Moving Average Models” Journal
of the American Statistical Association, 88, 396601

Tsay, R S. (1989), “Testing and Modeling Threshold Autoregressive Pro-
cesses.” Journg! of the American Statistical Assoctation, 84, 231-24(.

(198), “Testing und Modeling Multivarte Threshold Models” Jowr-

nal of the American Statistical Associarion, 93, 1 188-1202,



