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Optimal Segmentation of Random Processes

Marc Lavielle

Abstract—Segmentation of a nonstationary process consists in two changes. Detecting the instants of changes consists of
assuming piecewise stationarity and in detecting the instants of recovering the change proceRsWithout any additional prior
change. We consider here that all the data is available in a same information, this change process is defined as a sequence of in-

time and perform a global segmentation instead of a sequential - . - L
procedure. We build a change process and define arbitrarily its dependent Bernoulli variables. When a particular realization

prior distribution. That allows us to propose the MAP estimate  Of the vectorX = (X1, -, X,) is observed, the maximum
as well as some minimum contrast estimate as a solution. One of posteriori (MAP) estimate of the vectaR = (R, -+, R,) IS

the interests of the method is its ability to give the best solution, computed by maximizing tha posterioridistribution P{R =
according to the resolution level required by the user, that is, to r/X = z). 2t

the prior distribution chosen. The method can address a wide M V. the instants of ch timated b
class of parametric and nonparametric models. Simulations and oré generally, the Instants of change are estimated by

applications to real data are proposed. minimizing a penalized contrast function of the form

Index Terms—Detection of changes, MAP estimate, minimum "
contrast estimate, parametric and nonparametric distributions, N . .
segmentation. Uﬂ(l) - Vﬁ(l) t+8 Z Ti (1)
=1

[. INTRODUCTION where the first termi/.(r) measures the fidelity to the obser-
ET X = (X;,i > 1) be a nonstationary real processvationg, whereas the second term is related to the number of
7 — .

We assume thak is piecewise stationaryThen, there changes. Equation (1) defines the MAP estimate whep(r)

exist instants(ty, k > 0) such that(X, 1, ---, Xy, ,,) is 'S the log-likelihood ofz for a sequence of changes
stationary for allk € IN. The problem consists of detecting 1N€ Parametes is a tradeoff between these two criteria and
the changes in the distribution &f, that is, in recovering the controls the probabilities of detection errors. Small changes in
family (t,) when a trajectory ofX is observed. the distribution of the process are detected with a small value

First, we shall assume that the distribution of the process ©f A A bigger value offj allows us to detect only the more
depends on a parametér Thus, the problem consists nowimportant changes. _ _
of detecting the changes @ The changes can affect the VWhen the contrast function (or energy functidij) to be
mean and the covariance structure of the process, the transifidimized can be decomposed into a sum of local potentials, a
probabilities in a Markov random chain, etc. simulated annealing procedure can be used to reach the optimal

When the detection delay (which is the time between configuration? [5]. . _
the change and its detection) needs to be well controlled, dNumerical experiments with parametric models are pro-
sequential detection is performed, which means to decidePgsed in Section llI. First, the algorithm is used for detecting
time ¢ 4+ 7 if a change has occurred at tinte Most of the jumps in the mean of independent Gaussian variables. We see
test statistics used by the detection algorithms are built froffith this example that the resolution level of the segmentation
the likelihood ratio or the Kullback distance [1]-[4]. The goafliréctly depends on the prior distribution &, that is, on the
of these procedures is to minimize the probabilities of falslue of the paramete#. A method is proposed for choosing
alarms and omissions as well as the defayere, we assume this parametep. In a second example, the changes affect both
that all the data is available. The detection is off line. Thud}® Mmean and the variance, and we show with a simulation
the criteria of good recovery are only related to the detectidi@t the original changes can be well recovered. Finally, the
errors. Instead of a sequential procedure that does not usedigorithm is used for detecting changes in the parameters of
information provided by the future, we shall perform a globd? AR process. An application to an electroencephalogram

segmentation of the process by detecting all the changesd&EC) is presented. _ _
the same time. We show in Section IV that this algorithm can also be

To do this, we shall introduce a new random procBshat used for detecting changes in a nonparametric distribution.

takes the value 1 at the change instants and is zero betw¥ consider a sequence of random variables that marginal
distribution is piecewise constant. A new sequence of random

. . . variables with a parametric distribution is built from the
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sleep periods. In this example, the true instants of change aref K segments, lef = (6,, ---, fx) be the sequence of

known and well recovered by the algorithm. parameters such thay, is the parameter in theth segment.
In a same way, changes in the spectrum of a nonparameiefine h(-/r; ) as the density function of the distribution of

process are detected. The new statistic that is used for the sEgeonditionally to B = r.

mentation is built up from the empirical spectral distribution. Then,# can be estimated simultaneously withby maxi-

Then, we look for changes in the mean of this statistic. Thatizing thea posteriori distribution of R

allows us to detect changes in some given bands of frequency.

Such a method is shown to be very useful in some applications [, 8(7)] = arg o) Pr(B =r/X = 0) (4)
such as EEG analysis. = argmax h(z/r; O)n(r) (5)
The optimization procedures are presented in Section V. The ey 77T

global minimum of the contrast function is computed with a

: ) : ) " nd 7 is obtained as
simulated annealing procedure. The iterative conditional moae r

(ICM) algorithm is much faster and leads to a local minimum. #=arg max hlz/r; 8(r)]r(r). (6)
re{0; 1}
Il. THE MODEL Remark: In a Bayesian frameworkg(r) is a Bayesian

Let X = (X;, i > 1) be a nonstationary-dimensional real estimate off. Let f be the density of the prior distribution
process. To assume thit is piecewise stationary means tha®f 6. Then

there exist instant§y, k& > 0) such that( Xy, 41, -++, X¢, ) N . i
is stationary for allt € IN. Here, we set, = 0. [7, 6(1)] = arg {%‘h@/ 1) (1)1 (6). (7)

We consider here that a complete trajectort (zq - - z,,) t of th | 4 bel h )
is observed, and we shall perform a global detection of changﬁz(én_ most of he examples proposed below, the maximum
ikelihood estimate of is used. For a given configuration of

by using all the trajectory at the same time. - th i likelihood estimate &f i ted
The problem of detecting the changes can also be seen gggnges_, & maximum likelihood estimate 6f, is compute
In segmentk as

global segmentation ok = (X, --- X,,) in stationary pieces.

In fact, it is equivalent to looking for the optimal family of O (r) = argmax (x4, 41, @5 0) (8)
instants of changé&y, & > 0) or for the optimal segmentation 0€o
of the process. wherel is the log-likelihood of(z;,_ 41, -+, x, ). Now, let

We say that the solution is optimal according to some criteria

of good recovery. For a global detection, the criteria of good Sr
recovery are only related to the detection errors and define a lu(r, 8) = Zl(“k—lﬂ’ T T Ox). ©)
resolution level for the segmentation. k=1
We shall introduce a random vectdt = (R, ---, R,) Assuming that the different segments are independent, we have
that is defined by that §(r) = [f(r)] and that? is obtained as
1, if there existsk such that = R "
Ri= { 0, otherwise. 2) P =arg Tel{%i;lll}n {—lz[i; 8(r)] + 2 7’2} (10)

rea = log(1/A —1).
ore generally, any contrast functidn can be used for es-
timating 6. instead of maximizing the log-likelihood function

Then, R takes the value 1 at the change instants and i

zero between two changes. Of course, detecting the insta\f*ﬁ%‘;

of changes is equivalent to recovering the vedtor
Conventionally, we shall sek,, = 1 such that the number

of changesS, = > | R; is the same as the number o

segments. Letr(r) = Pr(R = r) be the prior probability Oy (r) = argmin V(zs, 11, -, o1, ; 0). (11)

to have the configuration. With no additional information, 6o

we could think of definingR as a sequence of independenthus, r is estimated by minimizing the penalized contrast

Bernoulli variables function U, defined by
w(r) = A% (1= )" ®) . "
Up(r) = Vilrs B+ 8> i (12)
where ) is a real parameter between 0 and 1. i=1

When a particular realizatianof the processX is observed,
it is natural to look for the most likely configuration of changes

for this trajectoryz. In other words, we shall look for the most s

likely value of R, according to the observations and a prior Va(r, 0) = Z V@t oo @ Or) (13)
information. The MAP estimate is obtained by maximizing the k=1

conditional probabilityPr(R = r/X = z). and whereg is a tuning parameter that must be fixed to a

In the case of a parametric model, the distribution of thgositive value. X
process.X depends on a parameter whose value remainsThe first termV,[r; 6(r)] is related to the fit to the obser-
constant in each stationary piece. For a given configuratigation z, whereas the second term is related to the number of
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Fig. 1. Detection of changes in the mean of a Gaussian process obtained with £a)10, (b) # = 5, and ()3 = 1. The autocorrelations of
the residuals are displayed in (d)—(f).

changes. The parametércontrols the probabilities of detec-where3 = 2ao?. Here, fii.(r) is the least-square estimate of

tion errors; the smallef is, the bigger the prior probability of a 115, on the kth segment of configuration
change, and the fewer the omissions are. On the other hand, the

bigger s is, the fewer the false alarms. Thusjs a parameter 1 ti
that controls the resolution level of the segmentation; small fir(r) = . Z Xi. (16)
changes will be detected for small values/bf TR i

When ¢ is not a Gaussian white noise, it is important to
remark that this functio®,, can be used as a contrast function.
We just have to choose the value ©f

We simply consider the case > 0 since the method does
not have any sense for a prior probabilky> 0.5. In this case,

. [ is negative, and the optimal segmentation is obtained for
Xi=pete, tatlsish 14 5= (1, 1---1), that is, by detecting a change a each instant.

We propose in Fig. 1 different segmentations of the same
process, obtained with different positive valuegsoft is clear
in this example that the parametgrdefines the resolution

Ill. EXAMPLES WITH PARAMETRIC MODELS

A. Changes in the Mean of a Process
We consider the following process:

wheree is an additive noise. It is a Gaussian white noise
with variances?, it is easy to show that is computed by

minimizing . _
level. If we want details, that is, to detect small changes of
Sr te . ) i, we must choose a small value fér On the other hand,
Ug(r) = [Xi — ()" +8S: (15)  only the more important jumps of the mean are detected with
k=1 t=t,_1+1

a bigger value off.
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Fig. 2. Detection of changes in the mean and the variance of a Gaussian process. (a) Observed series. (b) Segmentation. The original change points

are the dotted line, and the estimated change points are the solid line.

A main problem consists of the choice gf In the model (29)
described above, the noise is assumed to be noncorrelated. . . . )

Thus, a natural choice fof would be the greatest value for “ Gaussian procesX was simulated with changes in the
which the residuals are considered to be noncorrelated. Wameters [Fig. 2(a)]. In this example, the original changes
also display in Fig. 1 the estimated autocorrelation function 8f¢ Perfectly detected far < /5 < 14 [Fig. 2(b)].

the residuals obtained with the three segmentations proposed ]

in this example. We see that the hypothesis of noncorrelated Changes in the Spectrum of an AR Process

residuals is accepted with = 1 [Fig. 2(f)] but rejected with ~ We consider theAR(p) process

greater values [Fig. 2(d) and (e)].

In many applications, the whiteness of the noise is a strong .
hypothesis that does not have any physical sense. Indeed, the
resolution level will be selected empirically, depending on the i . .
relevance of some details. The eye of the specialist is generdljere e is the innovation process. _
the best way to select the best valuedofThe only job of the e can use the sum of the residual squares to estimate the
algorithm is to compute the optimal segmentation accordif@efficients(az;). In other words|az, (r), - - -, axp(r)] are the

to the resolution level chosen by the user. empirical estimates of the coefficients,, - -, ax,) on the
kth segment of configuration obtained by minimizing the

contrast functionl” defined by

ni(r) =ty — tr_1.

ther+p+1<i<t, (20)

b
= E axj Xi—j + €4,
i=1

B. Changes in the Mean and the Variance of a Process

We shall assume now that the changes affect also the V(a1 s T Qs oo Gip)
variances? of the noise. That means that we have to detect t 2

chapge; in both the mean and the variance’(ostipg t_he — Z X, — zp:aiji_j (21)
log-likelihood of a Gaussian process, we must minimize ittt =
the contrast function
s, Then, # is computed by minimizing
Ur(r) = ni(r)log 67(r) + S 17) 5, t p 2
=t Uer) =Y > Xi = () Xioy | + B85S,
wheref3 = 2a. Here,5%(r) is the estimated variance of on k=1 i=ti-1tp+l j=1 22)

the kth segment, ana,.(r) is its length

We present here an application to EEG analysis. The most
popular methods use ahz model to describe locally the EEG
[6]-[8]. In fact, the basic assumption that underlies this type
of processing is that of piecewise second-order stationarity. In

123

> X — ()P

=ty _1+1

(D) (18)



LAVIELLE: OPTIMAL SEGMENTATION OF RANDOM PROCESSES 1369

10 T T T T T T T T

:
|

_5 1 1 1 1 1 1 1 1 1
0 0.5 1 1.5 2 25 3 35 4 45 5
time (in sec.)
@
6 6 6
4 4 4
2 2 2
0 0 0
-2 -2 -2
0 10 20 0 10 20 0 10 20
frequency (in Hz) frequency (in Hz) frequency (in Hz)

(b)

Fig. 3. Detection of changes in the spectrum of a EEG withAR(7) modeling. (a) Observed series and the estimated change points. (b) Three
estimated log-spectra, corresponding to the three segments.

other words, a spectral analysis of the EEG allows us to detect et h; be the probability density function ot in the kth

changes in the electrical activity of the brain. segment. For any,_1 + 1 < i < #, let

An AR(7) was used to detect changes in the EEG displayed o
in Fig. 3(a). The method successfully detected epileptic spikes prm = Pr(Y; =m) = / hy(z)dzx. (23)
(1.3-3.0 s) in the background activity. The estimated coeffi- 1

cients were used to compute the estimated spectrum in eacky, ;s
segment [Fig. 3(b)]. In this case, the paroxystical activity is s
clearly characterized as an activity in the range of frequencies H H e (1)

3.5-7.5 Hz. Piom (24)

k=1 m=1
whereny,,(r) is the number of times that' takes the value

m in the kth segment of configuration.
Since py.,, is estimated by

IV. CHANGES IN A NONPARAMETRIC DISTRIBUTION

A. Changes in the Marginal Distribution

. . ~ nkrn( )
We consider now a proces¥ such that the marginal Drm (1) = () (25)
distribution of the X;'s is piecewise constant. The instants -
(tr, k > 0) are such that¥;, 41, ---, Xy, have the same where ny(r) = S2M_ | M (r) is the length of thekth

marginal distribution for allt € IN. Assumlng that this dis- segment, the solutiof is obtained by minimizing
tribution possesses a density with respect to a given measure,
we want to detect changes in the density function. a

Assuming thatX is a sequence of independent random Ug(r Z Z e (1
variables, we shall build a new statistic from the empirical
distribution of X. where 3 = «.

Let (z,, 0 < m < M) be a sequence of real numbers such A simulation is shown in Fig. 4. Independent Gaussian
that 2o < 21 < --- < zp. For eachX;, we define a new variables were simulated in the first and third segments,
variableY; that takes the value: whenz,,_1 < X; < z,. whereas a uniform distribution was used in the second segment

The distribution ofY can be seen as the projected digFig. 4(a)]. In these examples, the changes were well detected
tribution of X. Using the fact that the changes that affedty the algorithm for a number of classed = 20 and
the distribution of X also affect the projected distribution,8 < g < 12 [Fig. 4(b)]. The changes are not significant
we shall recoverR by maximizing the posterior distribution enough to be detected with a value 6fgreater than 12,
Pr(R = r/Y = y). whereas a value smaller than 8 produces false alarms.

) log AL rn(t) | pe (26)
k=1 m=1 (7—)
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Fig. 4. Detection of changes in the marginal distribution of a sequence of independent random variables. (a) Observed series. The variablessimve a Gau
distribution between 0 and 100 and between 300 and 400, and the distribution is uniform between 100 and 300. (b) Segmentation. The originaitshange-poi
are shown as a dotted line, and the estimated change points are shown as a solid line.
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Fig. 5. Detection of changes in the heart rate of a newborn baby. The change points estimated with external measurements are shown as a dotted line,
and the change points estimated with the algorithm are shown as a solid line.

Another application of the method with real data is prathe changes detected by the algorithm wito < g < 400
posed. Fig. 5(a) represents the heart rate of a newborn batgree with the exact instants of change.
It can be very useful to identify automatically heavy and
light sleep periods from this series. In this example, externdl Changes in the Spectrum
measurements (such as that of the movement of the eye-lidsh [4], Lavielle proposes a sequential procedure for detect-
let us know that the heavy sleep period is approximateiyg changes in the spectrum of a multidimensional process,
between data 1300 and data 3200. We can see in Fig. 5(b) tasguming any kind of nonparameterized distribution. We shall
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Fig. 6. Detection of changes in the spectrum of a EEG. (a) Observed series and the estimated change-points. (b) Estimated spectral disedpdiotiagorr
to the different segments. Here, five well-known bands of frequency were used for the segmentation.

see in this section how to extend this method for a globtie spectral density ok in the kth stationary segment, and
segmentation of the process. let 7* be the true configuration of changes. kgt = ni(r*)

In the previous section, we used the empirical marginahd Z},, = Zin(r*). Then, if nj — oo whenn — oo, it
distribution for detecting changes in the marginal distributioean be shown that

of the process in given classés,,_1, z»[. In a similar .. Am
way, we shall use now the empirical spectral distribution for V1, | Zm _A Je(N)dA
detecting changes in the spectrum of the process in given bands ;n_
of frequency[An—1, Am]. WToo N 07/ fz()\) d)\ (30)
We shall define a new statistié(r) = [Zin(r), 1 < k < Am—1

S, 1 < m < M], where and

Am E zZ EZ; W25 — EZY

Zint) = [ Dz Ny (@7) e ]
Am_1 n—>o<>0 |f (/{, m) 7£ (j, l) (31)

where I;(r, A) is the periodogram computed on thgh

. , We look for changes in the spectral distribution®f that
segment of the configuration

is, in [ffmm_l f(N), 1 <m < M]. To do that, using (30), we

1 ty ‘ 2 detect changes in the mean &f
Li(r, ) = () > XM (28)  If we want to detect changes in the mean of a process, we
M t=t 1 can remark that it is equivalent to estimatindpy minimizing
and the contrast function defined in (15) or by minimizing the
1 function J, defined by
Zkrn (7_) = m ( - rn 1 Z X2 Sy
N th-1tl Je(r) = = ma(r) u(r)? + BS,. (32)
tp—1 tp—t k=1
+2 Z Z X Xoys Thus, for detecting changes in the spectrum of the prog&gss
tr_1+1 s=1

we shall estimate by minimizing the function/,, defined by

Sin Ay, 8 — sin Ay—1 8

p - (29) Z Z na(r) Ziom(r)® + BSy. (33)
k=1 m=1
The Z,.(r) are asymptotically Gaussian variables, inde- An application to EEG analysis is presented in Fig. 6.
pendent in both time and frequency domains, that convergeRive well known bands of frequencies (in hertz) were used:
the spectral distribution oK [4], [9], [10]. Indeed, letf, be [0; 1.5[, [1.5; 3.5[, [3.5; 7.5[, [7.5; 12.5[ and [12.5; 19.5].
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Each one of these bands of frequency correspond toCaExample

particular electrical activity of the brain [8]. In this example, | opg go back to the example proposed in Section Ill, where
a period ofa activity (7.5, 12.5]) is well identified by the 4 changes affect the mean of the process[#éj—1), k >
algorithm around 4 s and a shorter one around 1.5 s. Thene the estimated instants of changes at iterafient.
estimated spectral distribution for each segment is displayeds the ocal modification consists of adding a change at the
in Fig. 6(b). instantt, thenr,(j — 1) = 0 and#, = 1, while 7, = r,(j — 1)

for s #£ t. We assume thatbelongs to theith segment. Lef:;
(resp.,ji2) be the empirical mean of betweent;,_, +1 and¢

V. THE OPTIMIZATION PROCEDURES (resp.,t+1 andt). Letny =t —t,_1 andno = ¢, —¢. Then

nin2 .

A. The Simulated Annealing Algorithm AU = - n (o — f11)?. (34)
ny +n2
For a process of length, a change can occur at the-1 first o ] ) )
instants. ThusR takes its values in a space that contaifis! If the modification consists of removing a change at time

elements. Let: be the configuration that minimizeis, (). tx the energy variation is
An exhaustive research df by computing the2”—! values AL = M2 W2 _ 3
of U.(r) is not generally tractable. Nevertheless, a simulated T (fiz = fuu)” =
annealing procedure can be used to reach the solation ) o o

The simulated annealing algorithm is an iterative proceduf'ere fii (résp., jiz) is the empirical mean of{' between
that defines a nonhomogeneous Markov chaig), j > 0] tr—1 +1andtx (resp.ti + 1 andtii) andny =t — tr—y

that converges to the optimal solutiérwith probability one; and n2 = tk_+1 - tk'_ - o
see [5]. This provides a simple condition to decide#f = 0 or

7t = 1, where? is a minimum (local or global) of/.
. At iteration j Indeed, by us_iTgA (34)A ar21d (35), we s#t = 1 only if
_ . o ninz(ny +n2) " (fiz — fi1)* > B. A change is present dt
— choose a new configurationas a modification of oy it the empirical means before and afteare significantly
r(j =1 different.
— let AU = Uy(F) = U[r(j — 1)); One interesting aspect of this algorithm is that the decision
— Setr(j) = # with probability one if AU < 0 rule only depends on the empirical mean of the process (similar
and with probabilityexp{—AU/T(j)} elsewhere. calculus can easily be done when the modification consists in
[Here,T'(j) is a decreasing sequence called tempemoving a change).
ature.] We can do the same kind of calculus with the example
» Stop when no more modifications are accepted. proposed in Section IV-A, where the changes affect the
When the total energy is a sum of local potentials, a locHparginal distribution of the process. Using the same notations
perturbation of the configuratior(;) will affect few terms of @S above, leti,, (resp.,n2y,) be the number of times that
this sum, and the energy variatiai’ will be easy to compute. ¥ takes the valuen betweent;_, + 1 and¢ (resp.,t + 1
In our segmentation algorithm, the modifications consist 81d%x)- Let nz = ny +ny andnz, = nim + nam. For any
adding a new change, in removing one, and in translating ode€ {1; 2; 3}, let

(35)

* Choose an initial configuration(0).

M
n;m
B. The ICM Algorithm l; = Z n;(m) log # (36)

The simulated annealing algorithm is very useful when we m=t !
need to obtain the global minima of the energy functidn Then, in the case of adding a change,ahe energy variation
with probability one. The main limitation is the computationais
effort required by the algorithm. In theory, the temperatiire
must decrease very slowly to ensure the convergengeand AU ==l =l 415 37)

a big number of iterations is required; see [5]. Let n, = (nar, -+, maar) ((€SPamy = (Mot ++ -, mions)

Now, if we want to obtain much faster a “good solutionb he hi & that is. th irical distributi ¢
with a “high probability,” the iterative conditional mode (ICM) e the histogram oft, that is, the empirical distri UIIC.)I’I. 0
' Y betweent,_; + 1 andt¢ (resp.,t + 1 andt). Then, it is

algorithm can be preferred; see [11], [12]. This algorithm is
L : . . easy to check that

the deterministic version of the simulated annealing procedure,

setting T(j) = 0 for any j. Then, the ICM leads to a dng;ny) =l + 1y — I3 (38)

minima of the energy function since only the modifications that

produce a decrease of this function are accepted. Nevertheléss, distance between the two histograms, that is, between the

most of the local minima can be avoided by introducing &vo empirical distributionsi(n;; n,) > 0 andd(n,; n,) =0,

wider family of modifications, that is, by filling the transitionif and only if n; = n,. Furthermore, from (37), we have that

matrix of the Markov chain. We could think, for examplef, = 1 only if d(n; n,) > /3; we decide that there exists a

of adding, removing, or translating two changes at a sambange at time if the empirical distributions before and after

iteration instead of one. t are significantly different.
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We must notice here that any other distance between ensj
pirical distributions could be used. Nevertheless, experiments
have shown that the distance defined above from the likelihood

gives better results than ady, —norm(p = 1, 2, oo) between

. [9]
histograms.
[10]
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