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Optimal Segmentation of Random Processes
Marc Lavielle

Abstract—Segmentation of a nonstationary process consists in
assuming piecewise stationarity and in detecting the instants of
change. We consider here that all the data is available in a same
time and perform a global segmentation instead of a sequential
procedure. We build a change process and define arbitrarily its
prior distribution. That allows us to propose the MAP estimate
as well as some minimum contrast estimate as a solution. One of
the interests of the method is its ability to give the best solution,
according to the resolution level required by the user, that is, to
the prior distribution chosen. The method can address a wide
class of parametric and nonparametric models. Simulations and
applications to real data are proposed.

Index Terms—Detection of changes, MAP estimate, minimum
contrast estimate, parametric and nonparametric distributions,
segmentation.

I. INTRODUCTION

L ET be a nonstationary real process.
We assume that is piecewise stationary. Then, there

exist instants such that is
stationary for all IN. The problem consists of detecting
the changes in the distribution of, that is, in recovering the
family when a trajectory of is observed.

First, we shall assume that the distribution of the process
depends on a parameter. Thus, the problem consists now
of detecting the changes of. The changes can affect the
mean and the covariance structure of the process, the transition
probabilities in a Markov random chain, etc.

When the detection delay (which is the time between
the change and its detection) needs to be well controlled, a
sequential detection is performed, which means to decide at
time if a change has occurred at time. Most of the
test statistics used by the detection algorithms are built from
the likelihood ratio or the Kullback distance [1]–[4]. The goal
of these procedures is to minimize the probabilities of false
alarms and omissions as well as the delay. Here, we assume
that all the data is available. The detection is off line. Thus,
the criteria of good recovery are only related to the detection
errors. Instead of a sequential procedure that does not use the
information provided by the future, we shall perform a global
segmentation of the process by detecting all the changes at
the same time.

To do this, we shall introduce a new random processthat
takes the value 1 at the change instants and is zero between
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two changes. Detecting the instants of changes consists of
recovering the change process. Without any additional prior
information, this change process is defined as a sequence of in-
dependent Bernoulli variables. When a particular realization
of the vector is observed, the maximuma
posteriori (MAP) estimate of the vector is
computed by maximizing thea posterioridistribution Pr

.
More generally, the instants of change are estimated by

minimizing a penalized contrast function of the form

(1)

where the first term measures the fidelity to the obser-
vation , whereas the second term is related to the number of
changes. Equation (1) defines the MAP estimate when
is the log-likelihood of for a sequence of changes.

The parameter is a tradeoff between these two criteria and
controls the probabilities of detection errors. Small changes in
the distribution of the process are detected with a small value
of . A bigger value of allows us to detect only the more
important changes.

When the contrast function (or energy function) to be
minimized can be decomposed into a sum of local potentials, a
simulated annealing procedure can be used to reach the optimal
configuration [5].

Numerical experiments with parametric models are pro-
posed in Section III. First, the algorithm is used for detecting
jumps in the mean of independent Gaussian variables. We see
with this example that the resolution level of the segmentation
directly depends on the prior distribution of, that is, on the
value of the parameter. A method is proposed for choosing
this parameter . In a second example, the changes affect both
the mean and the variance, and we show with a simulation
that the original changes can be well recovered. Finally, the
algorithm is used for detecting changes in the parameters of
an AR process. An application to an electroencephalogram
(EEG) is presented.

We show in Section IV that this algorithm can also be
used for detecting changes in a nonparametric distribution.
We consider a sequence of random variables that marginal
distribution is piecewise constant. A new sequence of random
variables with a parametric distribution is built from the
empirical distribution of the original variables, and the changes
are now detected in this sequence.

A simulation shows the very good behavior of the method.
An application to real data is proposed as well; the heart rate of
a newborn baby is segmented for identifying heavy and light
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sleep periods. In this example, the true instants of change are
known and well recovered by the algorithm.

In a same way, changes in the spectrum of a nonparametric
process are detected. The new statistic that is used for the seg-
mentation is built up from the empirical spectral distribution.
Then, we look for changes in the mean of this statistic. That
allows us to detect changes in some given bands of frequency.
Such a method is shown to be very useful in some applications
such as EEG analysis.

The optimization procedures are presented in Section V. The
global minimum of the contrast function is computed with a
simulated annealing procedure. The iterative conditional mode
(ICM) algorithm is much faster and leads to a local minimum.

II. THE MODEL

Let be a nonstationary-dimensional real
process. To assume that is piecewise stationary means that
there exist instants such that
is stationary for all IN. Here, we set .

We consider here that a complete trajectory
is observed, and we shall perform a global detection of changes
by using all the trajectory at the same time.

The problem of detecting the changes can also be seen as a
global segmentation of in stationary pieces.
In fact, it is equivalent to looking for the optimal family of
instants of change or for the optimal segmentation
of the process.

We say that the solution is optimal according to some criteria
of good recovery. For a global detection, the criteria of good
recovery are only related to the detection errors and define a
resolution level for the segmentation.

We shall introduce a random vector
that is defined by

if there exists such that
otherwise.

(2)

Then, takes the value 1 at the change instants and is
zero between two changes. Of course, detecting the instants
of changes is equivalent to recovering the vector.

Conventionally, we shall set such that the number
of changes is the same as the number of
segments. Let be the prior probability
to have the configuration. With no additional information,
we could think of defining as a sequence of independent
Bernoulli variables

(3)

where is a real parameter between 0 and 1.
When a particular realizationof the process is observed,

it is natural to look for the most likely configuration of changes
for this trajectory . In other words, we shall look for the most
likely value of , according to the observations and a prior
information. The MAP estimate is obtained by maximizing the
conditional probability .

In the case of a parametric model, the distribution of the
process depends on a parameter whose value remains
constant in each stationary piece. For a given configuration

of segments, let be the sequence of
parameters such that is the parameter in theth segment.
Define as the density function of the distribution of

conditionally to .
Then, can be estimated simultaneously withby maxi-

mizing thea posteriori distribution of

(4)

(5)

and is obtained as

(6)

Remark: In a Bayesian framework, is a Bayesian
estimate of . Let be the density of the prior distribution
of . Then

(7)

In most of the examples proposed below, the maximum
likelihood estimate of is used. For a given configuration of
changes , the maximum likelihood estimate of is computed
in segment as

(8)

where is the log-likelihood of . Now, let

(9)

Assuming that the different segments are independent, we have
that and that is obtained as

(10)

where .
More generally, any contrast function can be used for es-

timating instead of maximizing the log-likelihood function

(11)

Thus, is estimated by minimizing the penalized contrast
function defined by

(12)

where

(13)

and where is a tuning parameter that must be fixed to a
positive value.

The first term is related to the fit to the obser-
vation , whereas the second term is related to the number of
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(a) (d)

(b) (e)

(c) (f)

Fig. 1. Detection of changes in the mean of a Gaussian process obtained with (a)� = 10, (b) � = 5, and (c) � = 1. The autocorrelations of
the residuals are displayed in (d)–(f).

changes. The parametercontrols the probabilities of detec-
tion errors; the smaller is, the bigger the prior probability of a
change, and the fewer the omissions are. On the other hand, the
bigger is, the fewer the false alarms. Thus,is a parameter
that controls the resolution level of the segmentation; small
changes will be detected for small values of.

III. EXAMPLES WITH PARAMETRIC MODELS

A. Changes in the Mean of a Process

We consider the following process:

(14)

where is an additive noise. If is a Gaussian white noise
with variance , it is easy to show that is computed by
minimizing

(15)

where . Here, is the least-square estimate of
on the th segment of configuration

(16)

When is not a Gaussian white noise, it is important to
remark that this function can be used as a contrast function.
We just have to choose the value of.

We simply consider the case since the method does
not have any sense for a prior probability . In this case,

is negative, and the optimal segmentation is obtained for
, that is, by detecting a change a each instant.

We propose in Fig. 1 different segmentations of the same
process, obtained with different positive values of. It is clear
in this example that the parameter defines the resolution
level. If we want details, that is, to detect small changes of

, we must choose a small value for. On the other hand,
only the more important jumps of the mean are detected with
a bigger value of .
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(a)

(b)

Fig. 2. Detection of changes in the mean and the variance of a Gaussian process. (a) Observed series. (b) Segmentation. The original change points
are the dotted line, and the estimated change points are the solid line.

A main problem consists of the choice of. In the model
described above, the noise is assumed to be noncorrelated.
Thus, a natural choice for would be the greatest value for
which the residuals are considered to be noncorrelated. We
also display in Fig. 1 the estimated autocorrelation function of
the residuals obtained with the three segmentations proposed
in this example. We see that the hypothesis of noncorrelated
residuals is accepted with [Fig. 2(f)] but rejected with
greater values [Fig. 2(d) and (e)].

In many applications, the whiteness of the noise is a strong
hypothesis that does not have any physical sense. Indeed, the
resolution level will be selected empirically, depending on the
relevance of some details. The eye of the specialist is generally
the best way to select the best value of. The only job of the
algorithm is to compute the optimal segmentation according
to the resolution level chosen by the user.

B. Changes in the Mean and the Variance of a Process

We shall assume now that the changes affect also the
variance of the noise. That means that we have to detect
changes in both the mean and the variance of. Using the
log-likelihood of a Gaussian process, we must minimize
the contrast function

(17)

where . Here, is the estimated variance of on
the th segment, and is its length

(18)

(19)

A Gaussian process was simulated with changes in the
parameters [Fig. 2(a)]. In this example, the original changes
are perfectly detected for [Fig. 2(b)].

C. Changes in the Spectrum of an AR Process

We consider the process

(20)

where is the innovation process.
We can use the sum of the residual squares to estimate the

coefficients . In other words, are the
empirical estimates of the coefficients on the
th segment of configuration obtained by minimizing the

contrast function defined by

(21)

Then, is computed by minimizing

(22)
We present here an application to EEG analysis. The most

popular methods use an model to describe locally the EEG
[6]–[8]. In fact, the basic assumption that underlies this type
of processing is that of piecewise second-order stationarity. In
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(a)

(b)

Fig. 3. Detection of changes in the spectrum of a EEG with anAR(7) modeling. (a) Observed series and the estimated change points. (b) Three
estimated log-spectra, corresponding to the three segments.

other words, a spectral analysis of the EEG allows us to detect
changes in the electrical activity of the brain.

An was used to detect changes in the EEG displayed
in Fig. 3(a). The method successfully detected epileptic spikes
(1.3–3.0 s) in the background activity. The estimated coeffi-
cients were used to compute the estimated spectrum in each
segment [Fig. 3(b)]. In this case, the paroxystical activity is
clearly characterized as an activity in the range of frequencies
3.5–7.5 Hz.

IV. CHANGES IN A NONPARAMETRIC DISTRIBUTION

A. Changes in the Marginal Distribution

We consider now a process such that the marginal
distribution of the ’s is piecewise constant. The instants

are such that have the same
marginal distribution for all IN. Assuming that this dis-
tribution possesses a density with respect to a given measure,
we want to detect changes in the density function.

Assuming that is a sequence of independent random
variables, we shall build a new statistic from the empirical
distribution of .

Let be a sequence of real numbers such
that . For each , we define a new
variable that takes the value when .

The distribution of can be seen as the projected dis-
tribution of . Using the fact that the changes that affect
the distribution of also affect the projected distribution,
we shall recover by maximizing the posterior distribution

.

Let be the probability density function of in the th
segment. For any , let

(23)

Thus

(24)

where is the number of times that takes the value
in the th segment of configuration.
Since is estimated by

(25)

where is the length of the th
segment, the solution is obtained by minimizing

(26)

where .
A simulation is shown in Fig. 4. Independent Gaussian

variables were simulated in the first and third segments,
whereas a uniform distribution was used in the second segment
[Fig. 4(a)]. In these examples, the changes were well detected
by the algorithm for a number of classes and

[Fig. 4(b)]. The changes are not significant
enough to be detected with a value of greater than 12,
whereas a value smaller than 8 produces false alarms.
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(a)

(b)

Fig. 4. Detection of changes in the marginal distribution of a sequence of independent random variables. (a) Observed series. The variables have a Gaussian
distribution between 0 and 100 and between 300 and 400, and the distribution is uniform between 100 and 300. (b) Segmentation. The original change-points
are shown as a dotted line, and the estimated change points are shown as a solid line.

Fig. 5. Detection of changes in the heart rate of a newborn baby. The change points estimated with external measurements are shown as a dotted line,
and the change points estimated with the algorithm are shown as a solid line.

Another application of the method with real data is pro-
posed. Fig. 5(a) represents the heart rate of a newborn baby.
It can be very useful to identify automatically heavy and
light sleep periods from this series. In this example, external
measurements (such as that of the movement of the eye-lids)
let us know that the heavy sleep period is approximately
between data 1300 and data 3200. We can see in Fig. 5(b) that

the changes detected by the algorithm with
agree with the exact instants of change.

B. Changes in the Spectrum

In [4], Lavielle proposes a sequential procedure for detect-
ing changes in the spectrum of a multidimensional process,
assuming any kind of nonparameterized distribution. We shall
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(a)

(b)

Fig. 6. Detection of changes in the spectrum of a EEG. (a) Observed series and the estimated change-points. (b) Estimated spectral distributions corresponding
to the different segments. Here, five well-known bands of frequency were used for the segmentation.

see in this section how to extend this method for a global
segmentation of the process.

In the previous section, we used the empirical marginal
distribution for detecting changes in the marginal distribution
of the process in given classes . In a similar
way, we shall use now the empirical spectral distribution for
detecting changes in the spectrum of the process in given bands
of frequency .

We shall define a new statistic
, where

(27)

where is the periodogram computed on theth
segment of the configuration

(28)

and

(29)

The are asymptotically Gaussian variables, inde-
pendent in both time and frequency domains, that converge to
the spectral distribution of [4], [9], [10]. Indeed, let be

the spectral density of in the th stationary segment, and
let be the true configuration of changes. Let
and . Then, if when , it
can be shown that

(30)

and

if (31)

We look for changes in the spectral distribution of, that
is, in . To do that, using (30), we
detect changes in the mean of.

If we want to detect changes in the mean of a process, we
can remark that it is equivalent to estimatingby minimizing
the contrast function defined in (15) or by minimizing the
function defined by

(32)

Thus, for detecting changes in the spectrum of the process,
we shall estimate by minimizing the function defined by

(33)

An application to EEG analysis is presented in Fig. 6.
Five well known bands of frequencies (in hertz) were used:

and .



1372 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 5, MAY 1998

Each one of these bands of frequency correspond to a
particular electrical activity of the brain [8]. In this example,
a period of activity ( ) is well identified by the
algorithm around 4 s and a shorter one around 1.5 s. The
estimated spectral distribution for each segment is displayed
in Fig. 6(b).

V. THE OPTIMIZATION PROCEDURES

A. The Simulated Annealing Algorithm

For a process of length, a change can occur at the first
instants. Thus, takes its values in a space that contains
elements. Let be the configuration that minimizes .
An exhaustive research of by computing the values
of is not generally tractable. Nevertheless, a simulated
annealing procedure can be used to reach the solution.

The simulated annealing algorithm is an iterative procedure
that defines a nonhomogeneous Markov chain
that converges to the optimal solutionwith probability one;
see [5].

• Choose an initial configuration .
• At iteration

— choose a new configuration as a modification of
;

— let ;
— Set with probability one if

and with probability elsewhere.
[Here, is a decreasing sequence called temper-
ature.]

• Stop when no more modifications are accepted.

When the total energy is a sum of local potentials, a local
perturbation of the configuration will affect few terms of
this sum, and the energy variation will be easy to compute.
In our segmentation algorithm, the modifications consist of
adding a new change, in removing one, and in translating one.

B. The ICM Algorithm

The simulated annealing algorithm is very useful when we
need to obtain the global minima of the energy function
with probability one. The main limitation is the computational
effort required by the algorithm. In theory, the temperature
must decrease very slowly to ensure the convergence to, and
a big number of iterations is required; see [5].

Now, if we want to obtain much faster a “good solution”
with a “high probability,” the iterative conditional mode (ICM)
algorithm can be preferred; see [11], [12]. This algorithm is
the deterministic version of the simulated annealing procedure,
setting for any . Then, the ICM leads to a
minima of the energy function since only the modifications that
produce a decrease of this function are accepted. Nevertheless,
most of the local minima can be avoided by introducing a
wider family of modifications, that is, by filling the transition
matrix of the Markov chain. We could think, for example,
of adding, removing, or translating two changes at a same
iteration instead of one.

C. Example

Let’s go back to the example proposed in Section III, where
the changes affect the mean of the process. Let

be the estimated instants of changes at iteration .
If the local modification consists of adding a change at the

instant , then and , while
for . We assume thatbelongs to the th segment. Let
(resp., ) be the empirical mean of between and
(resp., and ). Let and . Then

(34)

If the modification consists of removing a change at time
, the energy variation is

(35)

where (resp., ) is the empirical mean of between
and (resp., and ) and

and .
This provides a simple condition to decide if or

, where is a minimum (local or global) of .
Indeed, by using (34) and (35), we set only if

. A change is present at
only if the empirical means before and afterare significantly
different.

One interesting aspect of this algorithm is that the decision
rule only depends on the empirical mean of the process (similar
calculus can easily be done when the modification consists in
moving a change).

We can do the same kind of calculus with the example
proposed in Section IV-A, where the changes affect the
marginal distribution of the process. Using the same notations
as above, let (resp., ) be the number of times that

takes the value between and (resp.,
and ). Let and . For any

, let

(36)

Then, in the case of adding a change at, the energy variation
is

(37)

Let (resp., )
be the histogram of , that is, the empirical distribution of

between and (resp., and ). Then, it is
easy to check that

(38)

is a distance between the two histograms, that is, between the
two empirical distributions and ,
if and only if . Furthermore, from (37), we have that

only if ; we decide that there exists a
change at time if the empirical distributions before and after

are significantly different.
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We must notice here that any other distance between em-
pirical distributions could be used. Nevertheless, experiments
have shown that the distance defined above from the likelihood
gives better results than any norm between
histograms.
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