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Abstract

We present some results of convergence for a minimum contrast estimator in a problem of
change-points estimation. Here, we consider that the changes a�ect the marginal distribution of a
sequence of random variables. We only consider parametric models, but the results are obtained
under very general conditions. We show that the estimated con�guration of changes converges
to the true con�guration, and we show that the rate of convergence does not depend on the
dependance structure of the process: we obtain the same rate for strongly mixing and strongly
dependent processes. When the number of changes is unknown, it is estimated by minimizing
a penalized contrast function. Some examples of application to real data are given. c© 1999
Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

The change-point problem is important in many applications, and has been well-
studied for more than fourty years (see, for example, the books of Brodsky and Dark-
hovsky (1993), or Basseville and Nikiforov (1993), and the many references therein for
a state-of-the-art). According to the method of data acquisition, there exist two di�er-
ent formulations of this problem. The a posteriori (or o�-line) change-points problem
arises when the series of observations is complete at the time to process it. In the
sequential change-points problem, the detection is performed on-line.
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We only consider in this paper the a posteriori problem. Then, our problem consists
in recovering the con�guration of change points using the whole observed series. The
detection of a unique change point has been widely studied by di�erent authors in
di�erent contexts. Among many others, Picard (1985) has proposed some test statistics
for detecting a change in the spectrum of a process or in the mean of an autoregressive
process, the order of which is known. Bai (1994) has extended these results for detect-
ing a change in the mean of a linear process. Kim (1994) has compared the likelihood
ratio and the cumulative sum test for detecting a change point in a linear regression.
The papers of Giraitis and Leipus (1992) and Giraitis et al. (1996) deal with nonpara-
metric situations for detecting a change in the marginal distribution function and the
spectral function.
In the case of multiple changes, the problem is much more intricate when the number

of changes is unknown, and few papers are dedicated to this problem. Various authors
consider the particular case of changes in a sequence of independent and univariate
random variables. In particular, Yao estimates the number of jumps in the mean of
an independent normal sequence via Schwarz’ criterion. Lombard (1987) and Mia
and Zhao (1988) propose some procedures based on a rank statistics to test for one
or more change points. Schechtman and Wolfe (1985) present a sequential algorithm
for estimating the number and the location of the change points. Some authors also
considered the problem of dependent data: Epps (1988) proposes a chi-squared statistics
for testing the stationarity of a Gaussian process. He con�nes attention to processes
which changes abruptly at some known instants. Vostrikova (1981) studies an iterative
method of detection, when the changes a�ect the mean of a process. Finally, Brodsky
and Darkhovsky (1993) also propose an algorithm for estimating shifts in a sequence
of mixing variables.
In a previous paper, Lavielle and Moulines (1999) study a penalized least-square

estimate of an unknown number of shifts in a time series. We extend their results to
the problem of detecting changes in the marginal distribution function of a sequence of
dependent – including strongly dependent variables. We consider that this distribution
depends on a parameter � that changes abruptly at some unknown instants. We show
with an example, that the method also applies to nonparametric distributions that are
discretized.
When the number of change points is known, the con�guration of change points is

estimated by minimizing a contrast function. We obtain some asymptotical results when
the length of each segment tends to in�nity, at the same rate as the total number of
observations n. It is shown, under very mild hypothesis, that, if the minimum contrast
estimate of �, computed in any segment of the true con�guration, is consistent, then,
the minimum contrast estimator of the con�guration of change points �̂n converges to
the true con�guration �?. The estimated parameter of vectors �̂n also converges to the
true vector of parameters �?. Furthermore, we precise the rate of convergence of the
estimator (�̂n; �̂n). In particular, we show that ||�̂n − �?||∞ = OP(n−1). An interesting
result is that this rate of convergence does not depend on the covariance structure of
the process: this rate holds for strongly mixing sequences and for strongly dependent
sequences. On the other hand, the rate of convergence of �̂n depends on the covariance
structure of the process. Indeed, this rate is the same as in the absence of changes.
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When the number of changes is unknown, it is estimated by minimizing a penalized
contrast function. The penalization term has the form �nK where K is the number
of segments, that is the number of parameters in the model. Then, this problem of
change points detection can be seen as a problem of model selection via penalization
(see Schwarz, 1978). This kind of method has been developed for estimating the order
of an ARMA process (see Akaike, 1974; Hannan, 1980) or for estimating the order
of a mixture (see Dacunha-Castelle and Gassiat (1997)). In a context of regression
and density estimation, some precise risk bounds have been obtained by Barron et al.
(1999), using theory of sieves. We show that the estimated number of change points
converges to the true number if �n goes to 0 at an appropriate rate. Indeed, if �n

decreases too quickly, the number of segments will be over-estimated. On the other
hand, this number will be sub-estimated if �n is too big. We must notice that Yao
(1988) already proposed this kind of criterion with �n = log n=n in the particular case
of independent data. In the case of dependent data, the choice of �n directly depends
on the rate of convergence of �̂n, that is on the dependence structure of the data.
Some examples of application are �nally proposed. First, we consider the problem

of detecting changes in the mean and=or the variance of a process. We also consider
the case of changes in a discrete distribution. We apply these methods to real data, for
detecting change points in the CAC 40 index and the heart rate of a new-born baby.
At this stage, it is important to underline that the results obtained in this paper are
asymptotical. Of course, in front of a real data sequence, the penalization coe�cient �n

takes a �xed value. The choice of this value is not justi�ed by theoretical considerations,
but by practical considerations: we choose �n in order to obtain a resolution level, that
is, a number of changes, that seems satisfactory (see Lavielle, 1997) for practical
prescriptions for the choice of this tuning parameter). An automatic choice of �n, for
any value of n would require nonasymptotical results, but this is beyond the scope of
this paper.

2. Detection of a known number of changes

2.1. Model and notations

Let � be a compact subset of Rd and #? a function from ]0; 1] to �. We consider
a sequence of random variables Y1; : : : ; Yn that take its values in Rp, and such that, for
any 16i6n, the distribution of Yi depends on the parameter #?(i=n): there exists a
function Fi : Rp ×� → [0; 1] such that, for any A⊂Rp and any 16i6n,

P(Yi ∈A) = Fi

(
A;#?

(
i
n

))
:

We do not assume here that the Fi’s are all identical. Indeed, consider the following
model as an example, where the mean of the process varies:

Yi = #?
(

i
n

)
+ �i; 16i6n (1)
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where (�i; 16i6n) is a sequence of centered random variables. Then, we can consider
the problem of estimating the mean #?, without assuming that (�i) is identically dis-
tributed. This problem attracts considerable attention in di�erent contexts. For example,
Dahlhaus (1997) assumes that the function #? is smooth, in order to guarantee that
the process has locally a stationary behavior.
We consider here that this function is piecewise constant. Then, there exist �?0 =

0¡�?1 ¡ · · ·¡�?K−1¡�?K =1 and �?
1 ; : : : ; �

?
K ∈�×· · ·×� such that, for all x∈ ]0; 1],

#?(x) =
K∑

j=1

�?
j 5�?j−1¡x6�?j

: (2)

This model means that K−1 changes a�ect the distribution of (Yi) at some unknown
instants (t?j ; 16j6K − 1) with t?j = [n�

?
j ]: for any A⊂Rp and any 16i6n,

P(Yi ∈A) =
K∑

j=1

Fi(A; �?
j )5t?j−1¡i6t?j

: (3)

In this context, estimating the function #? reduces to estimating the vector of pa-
rameters �? = (�?

1 ; : : : ; �
?
K ) and the con�guration of normalized change points �

? =
(�?1 ; : : : ; �

?
K−1) from n observations Y1; Y2; : : : ; Yn.

We use index j for the true con�guration of change points �? = (�?j ; 16j6K − 1),
and for the true vector of parameters �?=(�?

j ; 16j6K). We use index k for any other
con�guration. We denote by Y?

j the vector of observations that belong to segment j
in the con�guration �?, and by Yk the vector of observations that belong to segment
k in the con�guration � = (�k ; 16k6K − 1):

Y?
j = (Yt?j−1+1

; : : : ; Yt?j
);

Yk = (Ytk−1+1; : : : ; Ytk ):

The lengths of Y?
j and Yk are, respectively, n?

j and nk . Then, n?
j =n= �?j − �?j−1 is the

proportion of observations that belong to segment j in �?. The vector of observations
that belong to segment j in the con�guration �? and to segment k in the con�guration
� is

Ykj = (Yi; i∈ [tk−1 + 1; tk ] ∩ [t?j−1 + 1; t?j ]);

and the length of Ykj is nkj.
The aim of this paper is to study the behavior of an estimator of (�?; �?) when

n → ∞, when (�?; �?) is �xed. Then, the normalized lengths (n?
j =n) of the segments

in �?, as well as the jumps (||�?
j − �?

j−1||) are �xed, and bounded from below:

• There exists 0¡�?
� ¡ 1 such that �?j − �?j−1¿�?

� ; 16j6K .
• There exists �?

� ¿ 0 such that ||�?
j − �?

j−1||2¿�?
� ; 26j6K .

(Remark at this stage that we do not assume here that some minorants of �?
� and �?

�
are known.)
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2.2. Some preliminary hypothesis

Before estimating (�?; �?), it is clear that we must be able to estimate the parameter
�?
j in segment j of �?, for any 16j6K . Indeed, we shall assume that there exists a

contrast function Wn such that the minimum contrast estimator �̂j of �?
j , computed in

segment j of �?, and de�ned as the solution of the following minimisation problem:

Wn(Y?
j ; �̂j)6Wn(Y?

j ; �); ∀�∈� (4)

converges in P-probability to �?
j when n → ∞. More precisely, we make the following

hypothesis:
H1 (On the contrast function)
(i) There exist � : � → R,  : � → Rm two twice continuously derivable functions,

and � : Rp → Rm such that, for any �∈�, the contrast function Wn can be written as:

Wn(Yt : : : Yt′ ; �) =
1
n

t′∑
i=t

(�(�) + 〈 (�); �(Yi)〉) ; 16t6t′6n: (5)

(ii) There exists a function w of �×� in R such that, for any 16j6K and any
�∈�,

w(�?
j ; �) = �(�) + 〈 (�); E�(Yi)〉; t?j−1 + 16i6t?j : (6)

and such that, for any (�; �′)∈�×�, w(�; �)6w(�; �′), with w(�; �)=w(�; �′) if and
only if �= �′.
Furthermore, for any 16j6K , there exist a neighborhood V(�?

j )⊂� of �?
j and a

constant B¿ 0 such that

w(�?
j ; �)− w(�?

j ; �?
j )¿B||�?

j − �||22
for any �∈V(�?

j ).
For any (�; �′)∈�×�, let

v(�; �′) = w(�; �′)− w(�; �): (7)

Then, under H1, v(�; �′)¿0 for any (�; �′)∈� × � and v(�; �′) = 0 if and only if
�= �′.

Remark. We only consider here that the changes a�ect the marginal distribution of
the Yi’s, then, we assume in H1(i) that the contrast function can be written as a sum
(5). Let

g(y; �) =−�(�)− 〈 (�); �(y)〉: (8)

In many applications, g is the log-likelihood of a probability distribution G�. As an
example, we shall see in Section 4 that a Gaussian likelihood can be used as a contrast
function for detecting changes in the mean and=or in the variance of a sequence of
random (not necessarily Gaussian) variables. In such a case, v(�; �′) is the Kullback–
Lieber distance beetween G� and G�′ , and H1(ii) is satis�ed.
On the other hand, H1 is generally not satis�ed when the changes a�ect the joint

distribution of (Yi). The contrast functions that can be used for detecting changes in
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the spectrum of a random process, for example, are built up from the periodogram (see
Lavielle, 1998), that is from some quadratic forms, and H1 does not hold anymore.
In order to control the 
uctuations of the contrast process, we consider also the

following condition:
H2 (on the 
uctuations of the contrast process)
For any �∈�, let

�i(�) = 〈 (�); �(Yi)− E�(Yi)〉; 16i6n: (9)

Then, there exists 16h¡ 2, such that,

E

(
t+s∑
i=t

�i(�)

)2
6C(�)sh; 16t6t + s6n: (10)

Now, for any �∈�, let

Sn(Yt; : : : ; Yt+s; �) =
t+s∑
i=t

�i(�); 16t6t + s6n: (11)

Then, under H1, by using (5), (6), (9) and (11), Wn(Y?
j ; �) can be written as follows:

Wn(Y?
j ; �) = (�?j − �?j−1)w(�

?
j ; �) +

1
n
Sn(Y?

j ; �): (12)

Under H1 and H2, n−1Sn(Y?
j ; �) converges in probability to 0 at rate n1−h=2, uniformly

in �. Then, Wn(Y?
j ; �) converges in probability to (�?j − �?j−1)w(�

?
j ; �), and �̂j de�ned

in (4) converges in probability to �?
j at rate n1−h=2.

2.3. Some remarks on condition H2

As we shall see in the next sections, the consistency of the estimator and the rate of
convergence are obtained under H1 and H2, that is when the sequence �i(�) de�ned in
Eq. (9) satis�es condition (10) for some 16h¡ 2. In order to simplify the notations
in this section, we shall omit � and use the notation �i instead of �i(�), since the
results hold for any �∈�. It is useful to remark that inequality (10) is satis�ed for
a wide family of processes � = (�i). In fact, if � is a second-order stationary process
with zero-mean and autocovariance function 
�, we have

E

(
n∑

i=1

�i

)2
=

n−1∑
k=−n+1

(n− |k|)
�(k)62n
n−1∑
k=0

|
�(k)|: (13)

Thus, if 
�(k) = O(n−a) for some a¿ 0, then � satis�es condition (10) for h =
max(2− a; 1). For practical applications, it is necessary to obtain some conditions on
the process Y , instead of �. We shall see some situations where the relation between
the two processes is explicit.
(1) Y is a sequence of independent random variables. This is the simplest situation,

and � is also a sequence of independent random variables such that (10) is satis�ed
for h= 1.
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(2) Y is a second-order stationary �-mixing process, see Doukhan (1994) for the
de�nition. In this case, let (�Y (k)) be the sequence of mixing coe�cients of Y , such
that

�Y (k) = O(k−a)

where a¿ 0. Hence, � is also a �-mixing process such that

��(k)6�Y (k); ∀k¿0:
If E�206∞, and using the fact that, for any k¿0,

E(�0�k)62E(�20)(��(k))1=2;

� satis�es (10) for h=min(2− a=2; 1).
(3) Y is a second-order stationary �-mixing process, see Doukhan (1994). As before,

let (�Y (k)) be the sequence of mixing coe�cients of Y , such that

�Y (k) = O(k−a); ∀k¿0;
where a¿ 0.
If there exists �¿ 0 and A¿ 0 such that E|�i|2(1+�)6A, for any i¿0, then � satis�es

(10) for h=min(2− a�=(1 + �); 1).
We get this result by using the following inequality due to Davydov (1970):

E(�0�k)68(��(k))1=p
√

E(|�0|q)E(|�k |q); 2
q
+
1
p
= 1;

with q=2+2� and p=1+1=�. In particular, if � is bounded, then E(�0�k)6C��(k).
(Here, we can remark that more precise inequalities have been obtained more recently

in this context by Rio (1993).)
(4) Y is a strongly dependent stationary Gaussian process, see Taqqu (1977). Then,

there exists 06a¡ 1 such that

Cov(Y0; Yk) = O(k−a); ∀k¿0:
Because of the de�nition of �i in (9), we can see �i as a function of Yi and consider

the development of �i on the basis of Hermite polynomials when E�20¡∞:
�i = g(Yi)− Eg(Yi) =

∑
j¿m

cjHj(Yi): (14)

Here, m is the Hermite rank of �, that is the smallest value of j such that the coe�cient
cj of Hj in (14) is di�erent of zero. We shall see in the last section that m = 1 in
the case of changes in the mean, and m= 2 in the case of changes in the variance of
random variables.
In this context, the following inequality holds (see Taqqu (1977), for example): there

exists a constant D such that

E(�0�k)6D(Cov(Y0; Yk))m; (15)

and � satis�es (10) for h=max(2− am; 1).
Some results can also be obtained for non-Gaussian processes, using Appell poly-

nomials, instead of Hermite polynomials, see Giraitis and Surgailis (1986), for more
details.
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2.4. A useful maximal inequality

The following lemma will be very useful in the following.

Lemma 2.1. Let (�i) be a sequence of random variables with zero mean. We assume
that there exists C ¡∞ and 1¡h¡ 2 such that; for any t¿0 and any s¿ 0;

E

(
t+s∑

i=t+1

�i

)2
6Csh: (16)

Then; there exists A(h)¿ 0 and B(h)¿ 0 such that; for any �¿ 0; for any n¿ 0
and any m¿ 0; the following maximal inequalities are satis�ed:

P

(
max
16t6n

∣∣∣∣∣
t∑

i=1

�i

∣∣∣∣∣¿�

)
6A(h)

nh

�2
; (17)

P

(
max
t¿m

1
t

∣∣∣∣∣
t∑

i=1

�i

∣∣∣∣∣¿�

)
6B(h)

mh−2

�2
: (18)

Proof. The �rst inequality has been shown by M�oricz et al. (1982). The same kind of
proof by induction easily leads to the following generalisation of the H�ajek and R�enyi
(1955) inequality: under the conditions of Lemma 2.1 and for any decreasing sequence
b1¿b2¿ · · ·¿bn ¿ 0,

P

(
max
16t6n

bt

∣∣∣∣∣
t∑

i=1

�i

∣∣∣∣∣¿�

)
6A(h)

nh−1

�2

n∑
i=1

b2i : (19)

Then, we can show (18) by setting bt = 1=t and by splitting the set {t¿m} into the
union of subsets of the form {2pm6t ¡ 2p+1m} for p= 1; 2; : : : : We have

P

(
max
t¿m

1
t

∣∣∣∣∣
t∑

i=1

�i

∣∣∣∣∣¿�

)
6

∞∑
p=0

P

(
max

2pm6t¡2p+1m

1
t

∣∣∣∣∣
t∑

i=1

�i

∣∣∣∣∣¿�

)

6
∞∑
p=0

A(h)
�2

(2pm)h−1
2p+1m−1∑
i=2pm

1
i2

6
A(h)
�2

∞∑
p=0

(2pm)h−2

6
A(h)
�2

mh−2

1− 2h−2 : (20)

Remarks on Lemma 2.1. Inequalities (17) and (18) hold when (16) is satis�ed for any
1¡h¡ 2. Nevertheless, this result can be extended to h = 1, under some hypothesis
on �. For example, these inequalities still hold with h = 1 if � is a sequence of
independent variables, or if � is a linear process, the spectral density of which satis�es
some conditions of regularity, see Bai (1994). The same result also holds for strongly
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mixing processes when the sequence of strongly mixing coe�cients goes to 0 quickly
enough, see Oodaira and Yoshihara (1972). Under H1, let

∇Sn(Yt; : : : ; Yt′ ; �̃) =
t′∑
i=t

∇�i(�) (21)

where, using (9),

∇�i(�) =
@
@�

�i(�) = [∇ (�)](�(Yi)− E�(Yi)): (22)

Then, under H2, using (11) and (21), a direct application of Lemma 2.1 leads to the
following result: there exists A1¿ 0; A2¿ 0 and A3¿ 0, such that, for any m¿ 0,

P
(

max
16t6t′6m

sup
�∈�

|Sn(Yt+1 : : : Yt′ ; �)|¿�
)
6

A1mh

�2
; (23)

P
(
max
t¿m

sup
�∈�

|Sn(Y1 : : : Yt ; �)|
t

¿�
)
6

A2mh−2

�2
; (24)

P
(

max
16t6t′6m

sup
�∈�

||∇Sn(Yt+1 : : : Yt′ ; �)||2¿�
)
6

A3mh

�2
: (25)

2.5. De�nition of the estimator

Let TK be the set of con�gurations and �K the space of the parameters,

�K = {� = (�1; �2; : : : ; �K); �k ∈�};
TK = {� = (�0; �1; : : : ; �K); �0 = 0¡�1¡ · · ·¡�K−1¡�K = 1}:

We estimate (�?; �?) by minimizing the function Jn(�; �) in TK ×�K de�ned by

Jn(�; �) =
K∑

k=1

Wn(Yk ; �k); (26)

where Wn(Yk ; �k) is the contrast function computed over segment k of �.
For a given con�guration �; �̂k minimizes Wn(Yk ; �k). Then, we can remark that,

under H1 and H2 and when �=�?, the estimate of �? obtained by minimizing Jn(�?; �)
converges to �?.
For technical reasons, we will use the fact that, since Jn(�?; �?) is constant, (�̂n; �̂n)

minimizes Un(�; �) de�ned by

Un(�; �) = Jn(�; �)− Jn(�?; �?) = u(�; �) + en(�; �) (27)

where, using (7) and (11),

u(�; �) = EUn(�; �) =
K∑

k=1

K∑
j=1

nkj

n
v(�?

j ; �k); (28)

en(�; �) = Un(�; �)− u(�; �) =
1
n

K∑
k=1

K∑
j=1

(Sn(Ykj; �k)− Sn(Ykj; �?
j )): (29)

We shall establish now the consistency of this estimate, and compute its rate of
convergence, under very general conditions.
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2.6. Consistency of the estimator

We have the following result:

Theorem 2.2. Let �̂n be the estimate of the change-points sequence and �̂n be the
estimate of the parameters in the di�erent segments; obtained as the solution of the
following minimization problem:

Jn(�̂n; �̂n)6Jn(�; �); ∀(�; �)∈TK ×�K: (30)

Then; under H1 and H2; (�̂n; �̂n) converges in P-probability to (�?; �?).

Proof. First, we shall show the following lemma.

Lemma 2.3. If condition H1 is satis�ed; then there exists two constants C� ? ¿ 0 and
C�? ¿ 0 such that; for any (�; �)∈TK ×�K;

u(�; �)¿max(C� ? ||� − �?||∞; C�? ||� − �?||V ) (31)

where ||� − �?||∞ =maxj|�j − �?j | and ||� − �?||V =maxj v(�?
j ; �j).

Proof. For any 16k6K − 1, let
fk(� ?; �) = inf

�∈�
(�v(� ?

k+1; �) + (1− �) v (� ?
k ; �)):

Then, we have fk(� ?; 0)=fk(� ?; 1)=0. Furthermore, fk(� ?; ·) is a concave function
(as the inferior hull of a family of linear functions). Then, let

Ak(� ?) = 2fk(� ?; 12 ):

Thus,

fk(� ?; �)¿�Ak(� ?); ∀ 06�6 1
2 : (32)

We can see that Ak(� ?)¿ 0 if �?
k 6= �?

k+1, and we set

A(� ?) = min
16k6K−1

Ak(� ?)

with A(� ?)¿ 0. Let us consider now a con�guration �∈TK such that ||� − �?||∞6
�?

� =4. A change point �k can be on the left, or on the right of the original change-
point �?k :

• For any k such that �k−16�?k 6�k and using (28), we have that

u (�; �)¿
nk; k+1

n
v (� ?

k+1; �k) +
nkk

n
v (� ?

k ; �k): (33)

Let

�k; k+1 =
nk; k+1

nk; k+1 + nkk
:

By hypothesis, �k; k+161=2 and

u(�; �)¿
nk; k+1 + nkk

n
(�k; k+1v(� ?

k+1; �k) + (1− �k; k+1)v (� ?
k ; �k))

¿ (�k − �?k )A(�
?): (34)
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• For any k such that �k6�?k 6�k+1, we set in a same way

�k; k−1 =
nk; k−1

nk; k−1 + nkk
:

As before, and using the fact that �k; k−161=2,

u(�; �)¿(�?k − �k)A(� ?): (35)

Thus, if ||� − �?||∞6�?
� =4; u(�; �)¿A(� ?)||� − �?||∞.

On the other hand, from (28), u(�; �)¿maxk v(� ?
k ; �k)nkk=n. Now, if ||� − �?||∞6

�?
� =4; nkk =n¿�?

� =2 for any k, and then, u(�; �)¿�?
� ||� − �?||V =2.

If now ||� − �?||∞ ¿�?
� =4, there clearly exists a pair (k; j) such that nkj¿

n�?
� =4 and nk;j+1¿n�?

� =4. Let

�k;j+1 =
nk;j+1

nk;j+1 + nkj
:

For any �∈�K , we have

u(�; �)¿
nk;j+1 + nkj

n
(�k;j+1v (�?

j+1; �k) + (1− �k;j+1)v (�?
j ; �k))

¿
nk;j+1 + nkj

n
min (�k;j+1; 1− �k;j+1)A (� ?)

¿
nk;j+1 + nk;j+1

n
min

(nk;j+1

n
;
nk; j+1

n

)
A (� ?)

¿
�?2

�

8
A (� ?): (36)

Finally, using the fact that for 06a; b61; min(a; b)¿ab, we obtain that

u(�; �)¿ A(� ?)min
(
�?

�

2
; ||� − �?||∞

)

¿
�?

� A(� ?)
2

||� − �?||∞ (37)

and

u(�; �)¿
�?

�

2
min

(
�?

�

4
; ||� − �?||V

)

¿
�?2

�

8
||� − �?||V : (38)

Thus, setting C� ? = �?2
� A(� ?)=8 and C�? = �?2

� =8,

u(�; �)¿max(C� ? ||� − �?||∞; C�? ||� − �?||V ):
This achieves the proof of Lemma 2.3.

Proof of Theorem 2.2 (conclusion). For any �¿ 0, let us de�ne

TK;� = {�∈TK ; ||� − �?||∞ ¿�}; (39)

�K;� = {�∈�K ; ||� − �?||V ¿�}: (40)
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Thus, we have

inf
(�; �)∈TK; �×�K

u(�; �)¿C� ?�;

inf
(�; �)∈TK×�K; �

u(�; �)¿C�?�

and then,

P(||�̂n − �?||∞ ¿�)6 P
(

inf
(�; �)∈TK;�×�K

Un(�; �)¡ 0
)

6 P

(
sup

(�; �)∈TK;�×�K

|en(�; �)|¿ inf
(�; �)∈TK;�×�K

u(�; �)

)
: (41)

Using Lemma 2.3 and (29), we have that

P(||�̂n − �?||∞ ¿�)6 2P

(
max

(�; �)∈TK;�×�K

K∑
k=1

|n−1Sn(Yk ; �k)|¿ C� ?�
2

)

6 2KP

(
sup

16t6t′6n;�∈�
|n−1Sn(Yt; Yt+1; : : : ; Yt′ ; �)|¿ C� ?�

2K

)
:

(42)

In the same way, we show that

P(||�̂n − �?||V ¿�)6 2KP
(

max
16t6t′6 n; �∈�

|n−1Sn(Yt; Yt+1; : : : ; Yt′ ; �)|¿ C�?�
2K

)
:

(43)

From (23), the right-hand terms of (42) and(43) converge to 0 and (�̂n; �̂n) converges
to (�?; �?) in probability.

2.7. The rate of convergence

We have the following result concerning the rate of convergence of the sequence of
estimates {(�̂n; �̂n)}:

Theorem 2.4. Let

||�̂n − �?||∞ = max
16j6K

|�̂j − �?j | and ||�̂n − �?||∞ = max
16j6K

||�̂j − �?
j ||2:

Assume that conditions H1 and H2 are satis�ed. Then; the sequences (n||�̂n − �?||∞)
and (

√
n2−h||�̂n − �?||∞) are uniformly tight in P-probability:

(i) lim
�→∞

lim
n→∞ P(n||�̂n − �?||∞¿�) = 0;

(ii) lim
�→∞ lim

n→∞ P(
√
n2−h||�̂n − �?||∞¿�) = 0:

This result means that the rate of convergence of �̂n does not depend on the covariance
structure of the sequence (Yi). For strongly mixing sequences, as well as for strongly
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dependent sequences, ||�̂n−�?||∞=OP(n−1). On the other hand, the rate of convergence
of �̂n directly depends on the covariance structure of (Yi). Indeed, this rate is the rate
of convergence of �̂n in the absence of changes.

Proof of Theorem 2.4. We shall show �rst that, under H1 and H2,

lim
�→∞

lim
n→∞ P(n2−h||�̂n − �?||∞¿�) = 0: (44)

For any �¿ 0 and for 16h¡ 2, let

TK;�nh−2 = {�∈TK ; ||� − �?||∞ ¿�nh−2}:
Then, for any �¿ 0,

P(n2−h||�̂n − �?||¿�)6P

(
inf

(�; �)∈TK;�nh−2×�K

Un(�; �)¡ 0

)
: (45)

In (29), en(�; �) is decomposed into a sum. Since the consistency of �̂n is established,
�̂k converges to �?k for any k. Thus, only the pairs (k; j), such that |k−j|61, are present
in the sum. Thus, using (27) and(29), expression of Un reduces to

Un(�; �) = u(�; �) +
1
n

K∑
k=1

k+1∑
j=k−1

(Sn(Ykj; �k)− Sn(Ykj; �?
j )): (46)

Thus, using (45) and (46), Eq. (44) will be a direct consequence of the two following
equalities:

lim
�→∞

lim
n→∞ P

(
inf

(�; �)∈TK;�nh−2×�K

(
Sn(Ykk ; �k)− Sn(Ykk ; �?

k )
n

+ Cu(�; �)
)
¡ 0

)
= 0;

(47)

lim
�→∞

lim
n→∞P

(
inf

(�; �)∈TK;�nh−2×�K

Sn(Yk; k+1; �k)
n

+ Cu(�; �)¡ 0

)
= 0; (48)

for any C ¿ 0.
We establish (47) �rst. Recall that Ykk represents the observations that belong to

segment k in both con�gurations, � and �?: Ykk=(Yt;max(t?k−1; tk−1)¡t6min(t?k ; tk)):
Since the consistency of the estimate is established, n̂k = t̂k − t̂k−1 converges to n?

k =
t?k − t?k−1, and �̂j converges to �?

j . Thus, we only consider the con�gurations (�; �)
where nkk ¿n?

k =2, and where �k ∈V(�?
k ). Thus, using H1 (ii) and (28),

u(�; �)¿
nkk

n
v(�?

k ; �k)¿
nkk

n
B||�k − �?

k ||22
and, from Lemma 2.3,

inf
(�; �)∈TK;�nh−2×�K

u(�; �)¿max
(
C� ?�nh−2;

n?
k

2n
B||�k − �?

k ||22
)

: (49)

Under H1, there exists �̃∈� such that

Sn(Ykk ; �k)− Sn(Ykk ; �?
k ) = 〈∇Sn(Ykk ; �̃); �k − �?

k 〉 (50)
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where ∇Sn(Ykk ; �̃) was de�ned in (21). On the other hand, using the fact that
max(b=a; ca)¿

√
bc for a; b; c¿ 0, we have

P

(
sup

(�; �)∈TK;�nh−2×�K

(
1
n
sup
�̃∈�

|〈∇Sn(Ykk ; �̃); �k − �?
k 〉| − Cu(�; �)

)
¿0

)

6P


 max

t?k−1¡tk−1¡tk6t?k

sup
�̃∈�

||∇Sn(Ytk−1+1; : : : ; Ytk ; �̃)||¿
√

C� ?BC
(
n?
k

2n

)√
�nh




6
2A1

C� ?BC�

(
n?
k

n

)h−1
(51)

by using (25). This term converges to 0 when � → ∞ since n?
k =n is a constant.

We show now (48). Here, �k ¿�?k and Yk; k+1 represents the observations that belong
to segment k in � and to segment k + 1 in �?: Yk; k+1 = (Yt; t?k ¡ t6tk): (The case
�k ¡�?k would be treated in a same way: Yk+1;k represents the observations that belong
to segment k + 1 in � and segment k in �?.)
If �k − �?k 6�nh−2, that is, tk − t?k 6�nh−1, then

P

(
min

06tk−t?k 6�nh−1
inf

�∈�K

(
Sn(Yk; k+1; �k)

n
+ Cu(�; �)

)
¡ 0

)

6P

(
max

06tk−t?k 6�nh−1
sup

�k ∈�
||Sn(Yt?k +1

; : : : ; Ytk ; �k)||¿C� ?C�nh−1
)

6
A1

C2� ?C2�2−h
n(h−1)(h−2) (52)

by using (23). On the other hand, if �k − �?k ¿�nh−2, we can remark, from
Lemma 2.3, that u(�; �)¿C� ?(�k − �?k ). Then we have

P

(
min

tk−t?k ¿�nh−1
inf

�∈�K

(
Sn(Yk; k+1; �k)

n
+ Cu(�; �)

)
¡ 0

)

6P

(
min

tk−t?k ¿�nh−1
inf

�k ∈�

tk − t?k
n

(
S(Yk; k+1; �k)

tk − t?k
+ C� ?C

)
¡ 0

)

6P

(
max

tk−t?k ¿�nh−1
sup

�k ∈�

||Sn(Yt?k +1
; : : : ; Ytk ; �)||

tk − t?k
¿C� ?C

)

6
A2

C2� ?C2�2−h
n(h−1)(h−2) (53)

by using (24). Eq. (48) is satis�ed since the right-hand terms of (53) and (52) converge
to 0 when � → ∞, since 16h¡ 2.
That achieves the proof of (44). The point (ii) of Theorem 2.4 can be shown in a

same way. Indeed, for any �¿ 0, let �= B�2, where B has been de�ned in condition
H1, and let

�K;�nh−2 = {�∈�K ; ||� − �?||V ¿�nh−2}:
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Then,

P(
√
n2−h||� − �?||∞ ¿�)6 P(n2−h||� − �?||V ¿B�2)

6 P

(
inf

(�; �)∈TK×�K; �nh−2

Un(�; �)¡ 0

)
: (54)

Following the proof of (44), we show that the right-hand term of (54) goes to 0 when
� → ∞ and n → ∞.
We shall now be able to improve the rate of convergence of �̂n. For a given con�g-

uration �∈TK , let �(�)= (�k(�); 16k6K) be the value of � that minimizes Un(�; �).
Thus, using this notation, �̂n = �(�̂n).
Following again the proof of (44), we must show that

lim
�→∞

lim
n→∞P

(
inf

�∈TK; �n−1

(
Sn(Ykk ; �k(�))− Sn(Ykk ; �k(�?))

n

+C(u(�; �(�))− u(�?; �(�?)))
)
¡ 0

)
= 0; (55)

lim
�→∞

lim
n→∞ P

(
inf

�∈TK; �n−1

Sn(Yk; k+1; �k(�))
n

+ C(u(�; �(�))− u(�?; �(�?)))¡ 0
)
= 0

(56)

for any C ¿ 0. We obtain (56) exactly as we have shown (48). Indeed, (48) remains
true if we set h= 1 in (52) and (53).
We must now show (55). To do that, assume that �̂n is a con�guration of change

points where �k¿�?k for any k. From (44) and from Theorem 2.4, nk; k+1 = n(�̂k −
�?k ) = Op(nh−1) and �k(�̂n)− �?

k = Op(nh=2−1). Then, using the de�nition of u and Sn,
we can show that

u(�; �(�))− u(�?; �(�?)) =
K−1∑
k=1

nk; k+1

n
v(�?

k ; �?
k+1)(1 + Op(1)) (57)

and
Sn(Ykk ; �k(�̂n))− Sn(Ykk ; �k(�?))

n
=

nk; k+1

n
Sn(Ykk ; �?

k )
n

(1 + Op(1)): (58)

We use the fact that v(�?
k ; �?

k+1) is bounded from below, and that n−1Sn(Ykk ; �?
k ) goes

to 0, uniformly in � to show (55).

3. Detection of an unknown number of changes

Now, we assume that the number of segments K is unknown. Nevertheless, we
assume that that this number is upper bounded by a known �K .
We propose to estimate the con�guration of changes �, the vector of parameters �

and the number of segments K , by minimizing a penalized contrast function J̃ n(�; �; K)
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de�ned by

J̃ n(�; �; K) =
K∑

k=1

Wn(Yk ; �k) + �nK (59)

for any K ∈{1; 2; : : : ; �K}, and any (�; �)∈TK ×�K .
The sequence {�n} is positive and tends to 0 when n tends to in�nity. This method

is classical for many problems of model selection (see Akaike, 1974; Schwarz, 1978;
Hannan, 1980; Yao, 1988; Barron et al., 1999; Dacunha-Castelle and Gassiat, 1997).
The parameter �n is a trade-o� between the �t with the observations and the size
of the model, that is, the number of segments that cannot be too big. The particular
choice �n=log n=n corresponds to the so-called Schwarz criterion, already proposed by
Yao (1988) for estimating an unknown number of jumps in an independent random
sequence. In a more general framework, we must adjust the rate of convergence of
{�n} to 0 according to the rate of convergence of the estimate (�̂n; �̂n). Indeed, when
the number of changes is unknown, we have the following result.

Theorem 3.1. Let {�n} be a positive sequence of real numbers such that
�n →

n→∞ 0 and n2−h�n →
n→∞∞: (60)

Then; under H1 and H2; the minimum penalized contrast estimator (�̂n; �̂n; K̂n); ob-
tained as the solution of the following minimization problem:

J̃ n(�̂n; �̂n; K̂n)6J̃ n(�; �; K); ∀(�; �; K)∈TK ×�K × {1; 2; : : : ; �K}: (61)

converges in P-probability to (�?; �?; K?).

Proof. For any n¿ 0, we have

Un(�̂n; �̂n) + �nK̂n6�nK?; (62)

that is,

K̂n6− Un(�̂n; �̂n)
�n

+ K?: (63)

We de�ne now ||� − �?||∞ by

||� − �?||∞ =max
j
min
k

|�k − �?j |

and Lemma 2.3 still applies: u(�; �)¿C� ? ||� − �?||∞. Then, for any con�guration �
of K segments, with K ¡K?; ||� − �?||∞¿�?

� =2 and

u(�; �)¿
C� ?

2
�?

� ; ∀�∈�: (64)

Then, if K̂n ¡K?,

�nK?¿u(�̂n; �̂n) + en(�̂n; �̂n) + �nK̂n (65)

¿
C� ?�?

�

2
+ en(�̂n; �̂n) + �nK̂n (66)
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and

P(K̂n ¡K?)6P

(
max

16K6K?−1
sup

(�; �)∈TK×�K

|en(�; �)|¿C� ?�?
�

2
− �nK?

)
: (67)

We use the fact that �n converges to 0 and that en(�; �) converges to 0 uniformly to
conclude that P(K̂n ¡K?)→ 0 when n → ∞. On the other hand, we have

P(K̂n ¿K?)6 P

(
max

K?+16K6 �K
sup

(�; �)∈TK×�K

−Un(�; �)
�n

¿1

)

6 P
(

min
K?+16K6 �K

inf
(�; �)∈TK×�K

u(�; �) + �n + en(�; �)60
)

: (68)

Thus, we can adapt the proof of Theorem 2.4 by changing u(�; �) into u(�; �) + �n:
Let �n = �nn2−h. Under the hypotheses of Theorem 3.1, �n → ∞ when n → ∞.

Thus, by using Theorem 2.4, we have that for any K? + 16K6 �K ,

lim
n→∞P

(
inf

(�; �)∈TK;�n×�K

u(�; �) + en(�; �)60
)
= 0;

lim
n→∞P

(
inf

(�; �)∈TK×�K;�n

u(�; �) + en(�; �)60
)
= 0

where TK; �n and �K; �n have been de�ned in (39) and (40). Let

T̃K; �n =TK \TK; �n = {�∈TK ; ||� − �?||∞6�n};
�̃K; �n =�K \�K; �n = {�∈�K ; ||� − �?||V6�n}:

We have to show that, for any K? + 16K6 �K , for any �¿ 0,

lim
n→∞P

(
inf

(�; �)∈ T̃K; �n×�̃K; �n

�n + en(�; �)60

)
= 0: (69)

Thus, using the decomposition (29) of en(�; �) into a sum, it is enough to show that,
for any K? + 16K6 �K , for any pair (k; j), and for any C ¿ 0,

lim
n→∞P

(
inf

(�; �)∈ T̃K; �n×�̃K; �n

(
Sn(Ykj; �k)

n
− Sn(Ykj; �?

j )

n
+ C�n

)
60

)
= 0: (70)

Consider �rst that k and j are such that t?j−16tk−1¡tk6t?j : segment k of � is

included in segment j of �?. Since �∈ �̃K; �n , ||�k − �?
j ||6

√
�n=B and then,

P

(
min

t?j−16tk−1¡tk6t?j
inf

�∈ �̃K; �n

(
Sn(Ykj; �k)

n
− Sn(Ykj; �?

j )

n
+ C�n

)
60

)

6P

(
max

t?j−16tk−1¡tk6t?j

sup
�̃∈�

||�Sn(Ykj; �̃)||¿
√
BCn√
�n

)

6
8A1
BC2

(
nh−2

�n

)
: (71)
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Consider now that k and j are such that tk−1¡t?j ¡ tk : a part of segment k of �
belongs to segment j of �? and another part belongs to segment j+1. Since �∈ T̃K; �n ,
tk − t?j 6�nh−1, and then,

P

(
min

t?j 6tk6t?j +n�n

inf
�∈ �̃K; �n

(
Sn(Ykj; �k)

n
+ C�n

)
60

)

6P
(
max
s6n�n

sup
�∈�

|Sn(Yt?j +1
: : : Yt?j +s; �)|¿Cn�n

)

6
A1
C2
(n�n)h−2: (72)

When the conditions of Theorem 3.1 are satis�ed, the right terms of (72) and (73)
converge to 0 when n → ∞ since n�n → ∞ when n → ∞.
We �nally show that P(K̂n 6= K?) converges to 0.

4. Some examples of application

4.1. Detection of changes in the mean of a sequence of random variables

We consider the following model:

Yi = �(i) + �i; i = 0; 1; 2; : : : ; n (73)

where � is piecewise constant, and where (�i) is a second-order stationary process with
zero mean and variance �2(i). The function �(i) is assumed to be constant here and
the changes a�ect the function �, that is the mean of Y .
Here, for 16k6K , �k = �(i) for any tk−1 + 16i6tk , and the vector of parameter

to be estimated is � = (�1; : : : ; �K).
We estimate �k = �k in segment k by minimizing Wn(Yk ; �k) de�ned by

Wn(Yk ; �k) =
1
n

tk∑
i=tk−1+1

(Yi − �k)2: (74)

(Of course, �̂k is the empirical mean of Y computed in segment k: �̂k = �Y k .) We
estimate (�; �) by minimizing the function Jn(�; �) de�ned by

Jn(�; �) =
1
n

K∑
k=1

||Yk − �k ||2; (75)

that is, by minimizing the function Un(�; �) de�ned in (27) by

Un(�; �) = Jn(�; �)− Jn(�?; �?)

=
K∑

k=1

K∑
j=1

nkj

n
(�?

j − �k)2 − 2
K∑

k=1

K∑
j=1

nkj

n
�kj(�k − �?

j ) (76)

where �kj is the empirical mean of �kj, that is, the �t that belong to segment j in
con�guration �? and to segment k in con�guration �.
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Here, condition H1 is satis�ed, v(�1; �2) = (�1 − �2)2 and �(Yi) = Yi.
Then, using the de�nition of �i(�) given in (9), we have, for any 16i6n, and any

�= �,

�i(�) =−2��i; (77)

∇�i(�) =−2�i: (78)

Condition H2 is satis�ed when (�i) satis�es (16) for some 16h¡ 2. This example
was studied in detail by Lavielle and Moulines (1999).

4.2. Detection of changes in the mean and the variance of a sequence of random
variables

Here, we want to detect simultaneously changes in the mean and the variance of
(Yi) de�ned in (73). That means that the changes a�ect both function � and �. Let
�k = (�k ; �2k) for any k, where �k and �2k are the mean and the variance of Yi in
segment k. The set � has the form �= [A; B]× [C;D] where C ¿ 0. We estimate �k

in segment k by minimizing Wn(Yk ; �k) de�ned by

Wn(Yk ; �k) =
||Yk − �k ||2

n�2k
+

nk

n
log �2k : (79)

We estimate (�?; �?) by minimizing the function Jn(�; �) de�ned by

Jn(�; �) =
1
n

K∑
k=1

( ||Yk − �k ||2
�2k

+ nk log �2k

)
(80)

that is, (�̂n; �̂n) minimizes

Un(�; �) =
K∑

k=1

K∑
j=1

nkj

n
v(�?

j ; �k) +
1
n


 K∑

k=1

tk∑
i=tk−1

�i(�k)−
K∑

j=1

t?j∑
i=t?j−1

�i(�?
j )


 (81)

where

v(�; �′) =
(� − �′)2

�′2 + log
(
�′2

�2

)
+

�2

�′2 − 1 (82)

is the Kullback–Lieber distance beetween two Gaussian distributions. Here, for any
16i6n and any �= (�; �2),

�i(�) =−2 �
Var Yi

�i +
1
�2

�i (83)

where

�i = Yi − EYi;

�i = (Yi − EYi)2 − Var Yi:
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Theorems 2.2, 2.4 and 3.1 apply if both � and � satisfy (16) for 16h¡ 2. For example,
if � is a stationary Gaussian process with autocovariance function 
�,

E

(
t∑

i=1

�i

)2
=

t−1∑
l=−t+1

(t − |l|)
�(l);

E

(
t∑

i=1

�i

)2
=

t−1∑
l=−t+1

(t − |l|) 
2� (l):

Thus, it is enough to check that � satis�es (16).
In this particular case, (84) gives a decomposition of �i(�) in the Hermite polyno-

mials. We see that the rank of Hermite of �i(�) is m = 1. Hence, we can conclude
that, if 
�(t) = O(t−a) for some a¿ 0, the rate of convergence of �̂n is nmin(a=2;1=2−�),
for any �¿ 0.

Remark. Assume that we are looking for changes only in the variance of the process,
and not in the mean, �= (�2k). Assuming that EYi = � for any i¿1, we estimate (�; �)
by minimizing the function Jn(�; �) de�ned by

Jn(�; �) =
1
n

K∑
k=1

( ||Yk − �||2
�2k

+ nk log �2k

)
: (84)

In this case, for any �= �2,

�i(�) =
1
�2
((Yi − EYi)2 − Var Yi) (85)

and the Hermite rank of � is 2. Then, if 
�(t) = O(t−a) for some a¿ 0, the rate of
convergence of �̂n is nmin(a;1=2−�), for any �¿ 0.

We apply this method for detecting changes in the distribution of �nancial assests.
The series of the CAC 40 index is displayed in Fig. 1. We estimate the con�guration
of change points by minimizing the penalized contrast function proposed in (59) with
the function Jn proposed in (80):

(�̂n; �̂n; K̂n)

=arg min
16K6 �K

inf
(�; �)∈TK;�×�K

{
1
n

K∑
k=1

( ||Yk − �k ||2
�2k

+ nk log �2k

)
+ �nK

}
: (86)

The estimated con�guration displayed in Fig. 1 was obtained with �n=20. Of course,
with a �nite number of observations, we must adjust the parameter �n in order to
obtain a good resolution level in the segmentation.
We can see that there are no sudden changes in the mean which remains very close

to zero. However, we detect three regimes in the variances of returns, that is, three
di�erent regimes in the pattern of the market volatility: the second interval is very
short and corresponds to high volatility in the market place, the �rst and the fourth
interval may refer to a regime of low volatility, while the third interval corresponds to
a period of stable volatility.
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Fig. 1. Detection of changes in the CAC 40 index: (a) the observed series, (b) the estimated con�guration
of changes.

4.3. Detection of changes in a discrete distribution

We consider here the case where Yi takes its values in a �nite set,A={c1; c2; : : : ; cM}.
For any t?k−1 + 16i6t?k , let pkm = P(Yi = cm).
The changes a�ect here the vector of probabilities �k = (pkm; 16m6M), with∑M
m=1 pkm = 1. We assume that there exists 0¡a¡b¡ 1 such that a¡pkm ¡b

for any 16k6K and any 16m6M . Thus,

�=

{
�= (p1; : : : ; pM ); a¡pm ¡b;

M∑
m=1

pm = 1

}
:

We estimate �k in segment k by minimizing Wn(Yk ; �) in � de�ned by

Wn(Yk ; �) =−1
n

M∑
m=1

nkm logpkm (87)

where nkm is the number of observations in segment k that take the value cm. Here,

v(�k ; �j) =
M∑

m=1

pjm log
(

pjm

pkm

)
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is the Kullback–Lieber distance beetween two discrete distributions, and condition H1
is satis�ed. On the other hand, for any �∈� and any 16i6n, we have

�i(�) =
M∑

m=1

logpm(5Yi=cm − P(Yi = cm)) (88)

and condition H2 is satis�ed. Here, inequality (16) is satis�ed with a value of h
that depends on the autocovariance structure of (�i(�)), that is on the strong mixing
coe�cients of (Yi). In fact, there exists a constant C ¿ 0 such that, for any �∈�,

E�t(�)�t+s(�) =
M∑

m=1

M∑
‘=1

logpmlogp‘(P(Yt = cm; Yt+s = c‘)

−P(Yt = cm)P(Yt+s = c‘))

6C�(s) (89)

where (�(s)) is the sequence of strong mixing coe�cients of (Yi). Then, if �(s) =
O(s−a), the rate of convergence of �̂n is nmin(a=2;1=2−�), for any �¿ 0.
We present an application to real data to illustrate the method. Fig. 2 represents the

heart rate of a new-born baby. It can be very useful to identify automatically heavy
and light sleep periods from this series.
In this example, the observed process Z=(Zi) is not discrete. Nevertheless, we de�ne

a discrete process Y as follows:

Yi = m if xm−1¡Zt6xm

Fig. 2. Detection of changes in the heart-rate of a new-born baby: (- - -) the con�guration of changes obtained
with external measurements, (—-) the estimated con�guration of changes.
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where (xm; 06m6M) is a sequence of real numbers such that x0¡x1¡ · · ·¡xM .
For this application, we used a equally spaced sequence (xm) with M = 20. Assuming
that the changes that a�ect the distribution of Z a�ect the distribution of Y , we shall
recover the con�guration of changes as follows:

(�̂n; �̂n; K̂n) = arg min
16K6 �K

inf
(�; �)∈TK;�×�K

{
−1

n

K∑
k=1

M∑
m=1

nkm logpkm + �nK

}
: (90)

External measurements (such as that of the eye-lids’ movements) allow us to know
that the heavy sleep period is approximatively between data 1300 and data 3200. We
can see in Fig. 2 that the changes detected by the algorithm with �n =300 agree with
the exact instants of change.
Of course, looking at Fig. 2, one is tempted to introduce an additional change at

about t = 500. Indeed, this change is well detected with a smaller value of �n, but it
is very di�cult to decide, with only one trajectory, if there is really a change which
a�ects the marginal distribution of the data, or if this “jump” is due to the dependence
structure of the data. Nevertheless, this example is very interesting, since the two
signi�cative changes are well recovered without any assumptions on the dependence
structure of the data.
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