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Abstract. In this contribution, general results on the off-line least-squares estimate of
changes in the mean of a random process are presented. First, a generalisation of the
Hajek-Rényi inequality, dealing with the fluctuations of the normalized partial sums, is
given. This preliminary result is then used to derive the consistency and the rate of
convergence of the change-points estimate, in the situation where the number of
changes is known. Strong consistency is obtained under some mixing conditions. The
limiting distribution is also computed under an invariance principle. The case where the
number of changes is unknown is then addressed. All these results apply to a large
class of dependent processes, including strongly mixing and also long-range dependent
processes.
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1. INTRODUCTION

The problem of detecting and locating change-points in the mean of a random
process, and estimating the magnitude of the jumps has been around for more
than forty years. Most of the early efforts have been devoted to the detection/
location of a single change-point in the mean of independent identically
distributed random variables (see, among many other, Hinkley (1970), Sen
Srivastava (1975), Hawkins (1977), Bhattacharya (1987)). Many recent
contributions addressed the possible extensions of these methods and results to
the detection/location of single/several change-points in the mean of a random
(perhaps non-stationary) process. One of the pioneering contributions in that
field is Picard (1985), who considered the detection of a single change-point in
the mean a Gaussian AR process (whose order is known). The proposed method
is based on maximum likelihood and is thus rather computationally demanding
(moreover these results are not necessarily robust to deviations in the assumed
model). A complete bibliography on change detection can be found in the books
of Basseville and Nikiforov (1993) and Brodsky and Darkhovsky (1993).
Recently, Bai (1994) has proposed and studied a least-square estimate of the
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location of a single change-point in the mean of a linear process of general
type under rather weak regularity assumption. This work has been later
extended to multiple break points and weak dependent disturbance process
(mixingale) by Bai and Perron (1996). From a practical point of view, least-
squares estimates possess a main advantage over maximum likelihood methods:
it does not require to specify the distribution of the error process e.
Furthermore, it is straightfoward to implement and is computationally efficient,
even when the number of change-points is large. In this contribution, the results
obtained by Bai (1994) are extended in two directions:

e While Bai (1994) considered the detection of a unique change-point, we
consider the general case where multiple change-points can be present. As seen
in the sequel, this extension is not trivial, and is worth being developed. When
the number of change-points is unknown, the change-points problem becomes a
problem of model selection and a penalized least-squares method is proposed
(similar to that proposed in Yao (1988)).

e The results obtained by Bai (1994) and Bai and Perron (1996) hold only
for weakly dependent processes. The main reason of this restriction is the use
of a Hajek-Rényi type maximal inequality, extended by Bai (1994) to linear
processes and by Bai and Perron (1996) to mixingales. We show in section II
that it is possible to obtain this kind of inequality, under very mild assumption,
including, for example, weakly and strongly (perhaps non stationary) dependent
processes.

Exploiting this inequality, we show in Section III the consistency of the least-
squares estimate when the number of change-points is known. Using a precise
inequality obtained by Rio (1995) for stationary strongly mixing processes, we
show, under some suitable conditions, the strong consistency of this estimator.

The rate of convergence of the change-points location estimator is then
studied. It is shown, under very mild conditions (which includes, as a special
case, long-range dependent processes), that the rate is n, where n is the number
of observations (as in the case of independent and identically distributed
random variables). The limiting distribution of the change-point location is then
studied (when the magnitude of the jumps goes to zero at some specified rate).

Section IV is devoted to the number of change-points problem. This problem
has been first addressed by Yao (1988), who proved the consistency of the
Schwarz criterion when the disturbance is i.i.d. Gaussian with zero mean and
unknown variance. In this contribution, the number of change-points is
estimated by using a penalized least-squares approach. It is shown that an
appropriately modified version of the Schwarz criterion yields a consistent
estimator of the number of change-points under very weak conditions on the
structure of the disturbance.

A small scale Monte-Carlo experiment is presented in Section V to support
our claims. Some of the proofs are given in the appendix.
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LEAST SQUARES ESTIMATION OF SHIFTS 35

2. SOME RESULTS FOR THE FLUCTUATIONS OF PARTIAL SUMS

Let {&;} =0 be a sequence of random variables. We define the partial sums by

J
Sij=Y & l<i<j<n. (1)
t=i

2.1. A generalisation of the Hajek-Rényi inequality

Let {bs} be a positive and decreasing sequence of real numbers. Hajek and
Rényi (1955) have shown that, provided that {¢,} = is sequence of independent
and identically distributed variables with zero-mean and finite variance
Ee? = 0% <00,

2 —
o? L
P(mlggénbkmﬂ = a) = Cogy <mb2m + ) b?), )

i=m+1

with Cyp = 1. This result was extended to martingale increments by Birnbaum
and Marshall (1961), and later to linear processes by Bai (1994); recall that
{&:} =0 is a linear process if

& = zgfjw,_j 3)
J=

where {1} ez is a sequence of independent variables with zero-mean and finite
variance, such that 3°7%/|f;| <oo. In this context, the constant Cy depends on
the impulse response coefficients {f;} of the linear filter. It should be stressed
that the result obtained by Bai deeply relies on the linear structure (3) of the
process, and therefore, does not hold for non-linear processes. Moreover, the
condition ) j|f;| <oo is a ‘weak-mixing condition’ (typically, the normalized
sum Si.x/v'k asymptotically converges to a Gaussian random variable under
appropriate moment conditions); in particular, this condition does not hold for
long-range dependent linear processes (in such case, » f ? <oo, but
> jlfil = 00). We shall establish here an inequality of this kind, for a sequence
(not necessarily stationary) {e,},cz that satisfies, for 1 < ¢ <2, the following
condition:

e H1(¢) There exists C(¢) <oo such that, for all i, j,
E(S;)* < Cle)lj —i+1]°

Condition H1(¢) is fulfilled for a wide family of zero-mean processes
e ={e}wez. If € is a second order stationary process, H1(¢) is fulfilled with
¢ =1 whenever the autocovariance function y(s)= Ee, e, satisfies
> s=0ly(s)| <oo. This property is satisfied for linear processes of the form
(3) such that Z;io|a j| <oo, a class which includes, as a particular example,
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any ARMA process. Condition H1(¢) is also satisfied for strongly mixing
processes, under some conditions on the sequence of mixing coefficients (a(n))
and on the moments of &;, see Doukhan (1994), or the quantile function of &,
see Rio (1995). For example, if &, is bounded with probability 1, H1(¢) is
satisfied with ¢ =1 if a(s) < M/slog(s) (remark that, if |¢,] < C <oco with
probability 1, the autocovariance function is bounded by |Ee,, &, < 4C*a(s)
and we have ) =¢|y(s)| < o0). Finally, assumption H1(¢) is also verified when
€ is a zero-mean long-range dependent process, i.e.

supE(e,58/) < C'(e)|sP?™!, 0<d<1/2, 4)
teZ

where d is the long-range dependence parameter (see, for example, Beran
(1992)). Under these conditions, it is easy to see that there exists a constant
C(e) < oo such that, for j > i, ES}; = C(e)(j — i)'**? and H1(¢) is satisfied with
¢ =1+42d.

THEOREM 1. Let {&,},cz be a sequence of random variables that satisfies
condition H1(¢p) for some 1 <¢p <2. Then, there exists a constant A(¢) =1
(that does not depend on €) such that, for any n =1, for any 1 < m < n, for
any 0>0, and for any positive and  decreasing  sequence

by =b,= ... =b,>0, we have the following inequalities:
A@P)ICE) 4 1%~ 2
P(lr<n]f1§ b|Sixl >5> = n? ;bt, (5)

(6)

P( max bg|Six| >0

m<k<n

c ?p%, c A
) (5)(;721 (8) (¢) m)?~! Z bz

t=m+1

As a direct corollary of Theorem 1, we have

COROLLARY 2.1. Assume that H1(¢) holds for some 1 <¢ <2. Then, there
exists a constant C(¢, €) < oo, that depends on & only through the constant
C(¢) such that, for any m>0, any 6 >0, and any > ¢ /2, we have:

P(Ilga:; KPS| > 5) < C(¢, eym? . (7)

REMARK. Let € be a process satisfying H1(¢) for some 1 <¢ <2 with some
constant C(e), i.e. E(S:;)* < C(¢)|j — i+ 1|?. Any time-shifted/time-reversed
version of this process also verifies H1(¢) with the same constants ¢ and C(e).
Though the constants in the preceding theorems depend on & only through
C(¢e), the results in the preceding section are uniform with respect to the time-
origin. In particular, we have:

supP( max k|8 = ) < C(¢p, eym? . (8)
icZ k+i=m+i
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LEAST SQUARES ESTIMATION OF SHIFTS 37

We shall use these results in the sequel with b, = 1 for any k%, and b, = 1/k%.
We repeatedly use the following lemma, which is a direct application of
Theorem 1 and its corollary:

LEMMA 2.2. Let {&,},cz be a sequence of random variables that satisfies
condition H1(¢) for some 1 <@ <2. Then, there exist two constants A(¢p, €)
and B(¢, €) (that depend upon & only through C(¢)) such that, for any n>0
and any 0 >0, we have:

[
n
| = = —
ilelgp(iﬂrsn/gnﬂ'slﬂ 5) A(@. ) 02 ©)
|Si:k| m¢_2
P LA <B —_— 1
s (Qﬁ’fl raia @ &)~ (19)

2.2. A maximal inequality for strongly mixing stationary processes

We consider now that ¢ is a strongly mixing stationary process (or a-mixing),
see Doukhan (1994), or Rio (1995) for the definition of the sequence of strongly
mixing coefficient {a(n)},>o. Recall that ¢ is a-mixing if a(n) — 0 when
n — 0.
We define also the quantile function Q: P(e; > Q(u)) = u, for 0 <u <1.
We make the following hypothesis:

e H2 The process ¢ is a-mixing, and then exist p >0 and y >1 such that:

a) There exists a constant Cp and uo >0 such that Q(u) < CQu‘l/ P for any
0<u<uy.

b) There exists a constant C, and ny>0 such that a, <<Cy,n~ 7 for any
n> ng.

c) p>4y/(y — D).

Condition H2 means that we control the tails of distribution of &, together
with the mixing coefficients of &. Furthermore, H2-¢ means that, the less
mixing & is (i.e., the more dependent the sequence ¢ is), then, the more
concentrated the marginal distribution of & must be. (i.e. the lightest the tail of
distribution of & must be)

A sharp inequality obtained by Rio (1995) leads to the following result:

THEOREM 2. Assume that H2 is satisfied. Then, for any 0 >0 such that
_pG+y) +4y
2p(1+7)

for any sequence (u,) such that, for n large enough, u, > n°, and for any 6 >0,
we have:

an
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+00
ZP(lm]?x |S1.4] = au,,> < +00. (12)
1 sksn

Note that, under H2-¢, the term in the right hand side of (11) is strictly
bounded by 1. Hence, the sum in (12) is convergent for u, = n.

3. ESTIMATION OF THE CHANGE-POINTS LOCATION

3.1. Model assumptions and notations
It is assumed the following model
i=ur e o tlstsi,Il<ksr (13)

where we use the convention fo =0 and r*., = n. The indices of the break
points and the mean values u}, ---, u* are exphcltly treated as unknown. It is
assumed that min|u},, —u7|>0. The purpose is to estimate the unknown
means together with the break points when n observations (Yy, ---, Y,) are
available. In general, the number of breaks » can be treated as an unknown
variable with true value »*. However, for now, we treat it as known and will
discuss methods to estimate it in later sections. It is assumed that there exists
T, -+, TF such that, for | < k <7, £f = [nt}] ([x] is the integer part of x).
Following Bai and Perron (1996), (t}) are referred to as the break fractions and
we let 7f =0 and 7}, = 1.

The method of estimation considered is that based on the least-square
criterion. Let

Ay =0, t1, .. 1), L =0<t,<tr<-- - <t, <ty = n} (14)

be the set of allowable r-partitions. In the sequel, the following set of allowable
r-partitions is also considered.

A= {(to, 1y oy tr1); tk — ey = 0L} (15)

where A, is a sequence of non-increasing non-negative numbers such that
A, — 0 as n — oo at some prescribed rate (in some cases, one may simply set
A, =0 for all n, and . //A” = Anr).

For each t € .7, ,, the least square estimates of the means are first obtained
by minimizing the sum of square residuals, substituting them in the objective
function and denoting the resulting sum as Q,(t)

r+1 g

Q)= min 3" N (Y- )’

+1
(U1, rr1)ER” k=1 t=t_1+1
r+1 tr

_Z Z (Y, — Y(ti_1, 1))’ (16)

=1 t=t;_1+1
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LEAST SQUARES ESTIMATION OF SHIFTS 39

where, for any sequence {u,},cz, we denote u(i, j) (j>1i) the average
—_— B . B 71
u(i, j) = — 1) 4:i+1“t-

For any r-partitions t, t' € .7, ,, we define |t —t'||c = maxj<i<,|tx — 1%/

THEOREM 3. Assume HI1(¢p) holds for some ¢ <2. Let {A,},=0 be a
positive non-increasing sequence such that lim,_.. A, = 0 and lim,_., n*"?A,
=o00. Let fﬁ" be the value of t that minimizes Q,(t) over ./ﬁﬁ"r. Then,
T2 =4 /n converges in probability to T*.

More precisely, denote AY =min;<<,|t} 1 — T¢|. There exists a constant
Ky <oo such that, for all (uy, -, ,ufﬂ), all 0<d < Af and all n sufficiently
large, it holds

P75 — 7% = 0) < Kin? 2472071 (A, + 07 (/AP (17)

AN * * = A
where A =min < <,|u; | — uy| and A =maxi<i<,|trs1 — prl.

REMARK 1: In the above theorem, a minimum length nA, between two
successive change-points is imposed: instead of minimizing over all possible r-
partitions, only the partitions such that #; — #;_; = nA, are considered. Note
that, A, — 0 is chosen in such a way that consistent estimates of change
fractions are obtained even when the lower bound for the change fractions is
not known a priori. As seen later in this section, it is possible to remove this
assumption by imposing either stronger conditions on the disturbance process
or by constraining the estimates of the mean to lie within a compact set.

REMARK 2: Note that, since the constant K; does not depend on
(A1, -+, A,), the result (17) can be used in situations where these quantities
depend on the sample size n (goes to zero at a certain rate with 7). This
property will be exploited later on, justifying the exact amount of effort needed
to derive a uniform bound.

PROOF OF THEOREM 3: The proof is adapted from Bai (1994) and Bai and
Perron (1996). We must verify that the contrast function associated to this
contrast process has a unique minimum at the true value of the parameters, and
that the contrast process converges uniformly to the contrast function. Define
for any r-partition t € .7, ,, the following quantities
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Ju(®) = 171 (Qu(1) — Qu(t"), (18)
r+1 1y

Kuty=n"'>" > (BY, —E¥(ix1, tx), (19)
k+1 t=t;_1+1
r+1 t t* t) (Z 8)2

Vo) = n"! RN ElSh 20

() " ; k 1 (tk_lk—l) ( )

r+1 t:{k ti .

wuy=2n""3 3| > & u}t—( > a)EY(rk_l, f) ¢ (21)
k+1 ’:fziﬁl t=tp_1+1

Using these notations, J,(t) may be decomposed as

Jn(t) = Ky(t) + V() + W (1) (22)
We can show that K, (t) is lower bounded by
K,(t) = min(n ||t — t¥]| o, AF)A% (23)

Similarly, we need to obtain lower bound for V,(t) and W,(t). For V,(t), we
have

N 2 n 2
—2A—1
Vat) = —2n72A (r 4 1) max (;et> +1r23§n< > e,> (24)

t=n—s

Finally, note that

r+1 l;i-( 17
Wa® =2n' >0 D a— Y e | (uf - u®
k=1 [:t;k,1+l t=tr_1+1

r+1
S 3 aJei-erenw

t=tj_1+1

where u* é(z—&— 1)712;;11/11( Since for 1<, k<r+1, it holds that
U} — ui| < rd, we have |uy —EY(t,-1, tp)] < rA and |uf — u*| < ri, which

implies
) (25)

n
+ max E Et
I=s<n

t=n—s

Iss<n

|Wa(t) = 3n"(r+ 1)*4 ( max

s
D e
t=1

For any ¢ >0, define
— ¥ = 1o}

e

y A
v ={te 2y
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Since A, — 0, t* € .ﬁféﬁfr for sufficiently large n. Thus,
P(|72" — %o = ) < P min J,(t) <0,
ez

“ o

t=n—s

S 2 n 2
< P| max g g, | + max E e | = cA?nPA,0
Is=s=n 1 Is=s<n

N

+ P| max E &
1ss<n 1

for some constant ¢ > 0. The proof is concluded by applying Lemma 2.2 m

n

S

t=n—s

-+ max

Iss=<n

= c/iznézl>.

3.2. Alternative conditions

As mentioned above, it is possible to remove the constraint on the minimum
segment size A, by imposing some additional conditions. As seen in the proof of
Theorem 3, A, is used to obtain a uniform bound of V,(t) (see (24)). One can
obtain such bound under additional assumptions on the disturbance process. An
example of such condition is given below; let {3,} be a non increasing sequence
of numbers, such that 3, — 0 and nf3,, — oco. Consider the following assumption

e H3(5)
2
= nﬂ,,) =0

Extending the result obtained in Lemma 1 in Yao (1988), H3 is for example
satisfied when ¢ is a zero-mean Gaussian process, provided that the covariance
bound (4) holds. In such case, 3, may be set to: B, = 4C'(¢)log(n)/n'~24. We
have

)

>

t=t1+1

n—o00 0=H<tHh<n

lim P( max (t, — 1;)"!

THEOREM 4. Assume that H1(¢) and H3(B) hold Jor some ¢ <2 and some
sequence {f,} such that 8, — 0 and nf3, — co. Let t, be the value of t that
minimizes Q,(t) over .#, .. Then, Ty = ty/n converges in probability to T*.

The proof of Theorem 4 is a direct adaptation of Theorem 3. Uniform
bounds (w.rt. (AT, - -, Af)) similar to (17) can also be derived. To apply this
theorem in a general setting, the following lemma proves more explicit
conditions (in terms of the moments and of the dependence structure of the
process) upon which H3 is verified:

LEMMA 3.1. Assume that there exist constants s>0, 1 < hy <2 and C;>0
such that s>2/(2 — hy) and for all 0 < t; < t, <400,
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f 2s
E( Z g,> < Cy(t, — t)"". (26)

t=t1+1

Then, H3 holds with 8, = n@t(h=29/s Jog .

PrOOF OF LEMMA 3.1. The result follows directly from the relation

2
= nﬂn>

7]

D e

t=t;+1

P( max (f, — )"
1sn<tb<n

2

>

t=t1+1

= nfu(tr — tl))
and the Markov inequality. m

REMARK: When A = 1, the relation (26) is a Rosenthal’s type inequality. It
holds for martingale increments with uniformly bounded moments of order 2s.
These inequalities also hold for weakly-dependent processes under appropriate
conditions on the moments and on the rate of convergence of the mixing
coefficients (sse, for example, Doukhan and Louichi (1997) for recent
references). This inequality is also satisfied for (perhaps non-stationary) long-
range dependent Gaussian processes, provided that (4) holds and for long-range
dependent linear processes (3), under appropriate conditions on the f; and on
the moments of ;.

Another solution consists in constraining the values of the estimated mean
jty, 1<k<r to lie within some compact subset ©, of R"*'. More
specifically, for any (t, u) € .7, , X ©,, denote

r+1 ty
Ut ) =0 Z > (= w) 27)
=1 t=ty_1+I
02(t) £ min U, (t, p) (28)
peo,
tn@ 2 argmin Q(,? (t). (29)
te.”,,

This criterion may be seen as a robustified least-square fitting procedure, which
in a certain sense, trim the extreme values of the series by constraining the
estimated means to lie inside a feasible set. In such case, it is not necessary
to constrain the minimum length between the successive break points. Note
however that there is a price to pay, because the change fraction estimator
is consistent only if the subset ©®, is chosen in such a way that

(;u;k’ Y ;uj;-l) € ®r-
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THEOREM 5. Assume H1(p) holds for some ¢ <2. Then, for any compact
subset ©, of R™, such that (uf, ..., u’,) € O,, 70 =19 /n converges in
probability to T*.

PROOF OF THEOREM 5. Let u* é(ﬂ?‘, <o, W), By definition, (2, fin)
minimizes U,(t, u) — U,(t*, u™), where

r+1 r+l r+1 r+l1

Uit = 00" %) = 33 ] — —ZZZS"’(M . (30)

where,
ng=#{tei1 + 1, tk}ﬁ(fji], T tjf}}’ @D

Sy = > & (32)

te{ti Lot J0{EF ¥}

where, by convention, the sum over an empty set of indexes is zero. Note that
the dependence of ny; and Sy on the r-partitions t and t* is implicit. We can
show that there exists a constant C >0 such that, for all (t, p) € .7, , X ©, we
have

r+1 r+l

ZZ S — ) = Cmax(n ! lt— € s =D G3)

On the other hand, n~ 'S 7%} r+1|Skj\ converges to 0, uniformly in t € .7, ,.
Thus, since ©; is compact, n~ ZHI r“ ’(Mk 1% )Skj| converges to 0,
uniformly in (t, #) and (7,, fi,) converges to (r )/ ) if 4* € ©,. Once again, it
is also possible to obtain a uniform bound (w.r.t. u* € ©,) similar to (17). m

Finally, strong consistency of the estimate is obtained under mixing
conditions:

THEOREM 6. Assume that H2 is satzsﬁed For any A>0, let tﬁ be the value
of t that mmlmlzes Q,,(t) over 7{‘ ~ Then, if A< AT, t)/n converges
almost surely to T*

PROOF OF THEOREM 6. Since A < A, t* ¢ ./{éﬁ,r. Thus, following the proof
of Theorem 3, we have that, for any 6 >0,
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" 2
P(|#5 — 7¥e = 0 max Zst -+ max Z e, | = cA*n* Ao
1ss<n 1=s<n
t=n—s
_ cizmszl)

for some constant ¢ > 0. We conclude with Theorem 2 for the strong consistency
of 72 under H2, by setting u, = n, that is, 6 = 1. m

N

D e
=1

n

>

t=n—s

+ max

1ss<n

+P <1max

3.3. Rate of convergence

It is possible to derive the rate of convergence of the change-points estimate. It
has been shown by Bai (1994), for a single change-point and weak-dependent
disturbance that the rate of convergence is n (i.e. is linear with the sample size).
This result has later been extended to multiple change-points (and more general
linear regression models) by Bai and Perron (1996), under weak-dependence
conditions for the additive disturbance. It is shown in the sequel that the rate of
convergence of the change fraction is »n under general assumptions on the
disturbance process, which include, as particular examples, long-range
dependence processes;

In this section, t, =t,(. //A") is the estimate of t* obtained by minimizing
the contrast function Q,(t) over . 7/ '. The following theorem also holds under
the alternative conditions mentloned in the previous section.

THEOREM 7. Assume that H1(¢p) holds for some ¢ <2. Then, for all

I<js<vr t,,— —Op(l)
More precisely, denote A = m1n1<]<,+1|f 77:1 , and let 0<y<1/2.
Then there exists a constant K < oo such that for all (uf, -, ,u;kH) and all

0>0, it holds that, for large enough n,
PO 772 < [ta — %]
< nyA¥) < K,(n? A2+ 02721+ /D) + n 10071207 (34)

: * * i * *
where A = min <<, |t — uy| and A = max<j<,|uy,; — Uzl

REMARK: Perhaps surprisingly, the rate of convergence of the estimator of
the break fraction is not related to the rate of decay of the autocovariance
function of the disturbance process €. Once again, the need for a uniform upper
bound (34) is justified by the need for a limit theory with steps A; going to
zero with the sample size n.
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PROOF OF THEOREM 7: Define
Coym =t E App 04772 < ||t — t¥]| o < nyAF}. (35)

The proof consists in determining an upper bound for P(t, € “5y.n)- To that
purpose, first decompose 7y, , according as

Coyn =\ C oy N{t € Ay, tx = 15,V €7}
g

where the union is over all subsets .7 of the index set {1, ---, r}. We may
compute an upper bound for each individual set Z,,N{t €
Aprs tr = 17, Vk € 7}, Of course, this upper bound does not depend on .7,
and we consider, for notational simplicity, only the case where .7 = {1, - - -, r}.
Denote #§,,=%oynN{tE 2y, t =1tf, Vk€ {1, -, r}}. We show in
the Appendix that, for any 6 >0,

P(ta € Thyn) < Ky(n? 2272+ 0272(1 + (A/AP) + n7 1027122972, (36)

3.4. The limiting distribution

In this section, we derive the asymptotic distribution t, when the sample size
goes to infinity. As shown by Picard (1985) and later by Bai (1994), Bai and
Perron (1996), this limiting distribution can be used to construct confidence
interval for change fractions. The limiting distribution also carried information
on the way the estimator of the change fraction is linked with the other
parameters in the model. Following Bai (1994), it is assumed in the sequel that
the jump A;, 1 < j<r, depends on the sample size n and diminishes as n
increases. The limiting distribution for fixed jump size A; can be obtained in
certain cases, but it depends in a very intricate way on the distribution of the
disturbance and is thus of little practical use.

To stress the dependence of the jump in n, we use in this section the
notation A4, ; instead of ;. We note 4, = max <;<,4,; and 4, = minj<;<, 4, ;.
For some ¢ <2, we consider the following condition:

e H4(¢) For any 1 < j < r and for some 0 <v <1, it holds that

o —0 and  n'7"A) — + oo, (37)
/_lzlﬂ.n’jr:oaj 1<a;<oo (38)

where y QZ/(Z —¢).

The last requirement implies that the size of the jumps 4, ;, 1 < j < r goes to
zero with the sample size n at the same rate. For ‘short-memory’ processes
(¢ = 1), one may set v = 0 (which is not allowed in the assumption above). In
fact, it is in that case to weaken slightly this assumption. Typical conditions are,
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in such case n’lL(n)/i;2 — 00, where L(n) is a slowly varying function as
n — oo (see Bai (1994)). Since the main emphasis here is on processes with
long-range dependence, we do not pursue that road. In addition, the minimal size
A, of the interval between successive breakpoints (see Theorem 3) is set to
A, = n"®~2)_ Under these assumptions, one may show by applying Theorems 3
and 7 that the sequence {/_’Lflf,,} is tight in the sense that

Jim lim P ||ta — t*|lc = 0) = 0. (39)

Denote {By(s)}s=o the fractional Brownian motion (fBm) with self-similarity
exponent ¢/2 (for ¢ =1, By(s) is the standard Brownian motion). Recall that
the fBM is (the unique up to a scale factor) continuous Gaussian process with
stationary increments satisfying B;(0) =0, E(B4(0)) =0 and E(By(1)*) = 7.
Its covariance kernel is

Ty(t, s) = 1/2(s? + 12 — |s — 1]?).

For the derivations that follow, we also need to introduce the two-sided fBM.
This is, similarly, the unique (up to a scale factor) continuous Gaussian process
with stationary increments satisfying Bg(0) =0, EB¢,(t) =0, and EB¢(t)
= [#|*. Tts covariance kernel is given by

cov(By(1), By(s)) = 1/2(|t? + |s|” — [t — s|?).

The results below deeply rely upon an invariance principle, i.e. a functional
form of the Central Limit Theorem and a multi-dimensional Central Limit
Theorem. Define for n € N and m € N the following sequences of polygonal
interpolation functions {S,(m, s)}r, where S,(m, 0) = 0 and

m—+[ns] o >0
S, (m, s) = r=m+1€t +‘9m+[ns]+l(ns [ns]) § 40
(m 5) {z:”mﬂﬂmleﬁemﬂml(ns s s<o 0

We assume that

o H5-a(¢p) (invariance principle) {€,;}.c7 is a strict sense stationary process.
In addition, there exists a constant ¢ >0 such that, for all m € N,

n= 928, (m, s) = o By(s), se[-1,1],

where B® is a two-sided fractional Brownian motion. Furthermore, for any
sequence of positive integers {m, } ,en such that m,/n — oo, {S,(1, $)}se(—1,41]
and {S,(mn, $)}se[-1,+1] are asymptotically independent.

e HS5-b(¢p) (multi-dimensional CLT) For any positive integer » and any
sequence of non-negative integers {m,;}nen, | <i=<r, such that for all
neN, 1<m, 1 <---<my,,<n, and lim, oo m,1/n=m; with 1<m <
-+ <m, <1, it holds that
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W(i‘j mz Z e,> < 170, T)

t=1 t=m ,+1 t=m, +1

In the above expression, =—> denotes the weak-convergence in the space of
continuous function on [—1, +1] equipped with the uniform metric, and
A0, ) is the (7 + 1)-dimensional multivariate Gaussian distribution with
covariance matrix I

Assumption H5(¢) with ¢p = 1 is verified for a wide-class of ‘short-memory’
processes, e.g. for linear processes (Eq. (3)) under the assumption that
ZJ oJIfil <oo and {9}z is either a sequence of i.i.d. random variables
with zero-mean E(y,) =0 and finite Varlance E@W?) =02 or {y,} are
martingale increments such that E(y?)= 02, sup=o E(|1p,|2+‘5)<oo and
n IS E@AT -1) — oo, where .7, = o (s, l<s< f). H5(¢) also holds
with ¢ =1 under a wide range of mixing conditions, including mixingales
(McLeish (1975), Bai and Perron (1996)), strong-dependent processes (Doukhan,
(1994)), under appropriate conditions on the rate of decrease of the mixing
coefficients and conditions on the moments (or on the tail of the distribution of
g,). In all of these situations, the matrix I' is diagonal.

For our discussion it is more interesting to ask whether these assumptions
hold for strongly dependent processes. Invariance principles H5(¢) have been
derived for interpolated sums of non-linear functions of Gaussian variables that
exhibit a long-range dependence in Taqqu (1975; 1977). In that case, however,
matrix I' is no longer diagonal. Invariance principles have been also obtained
by Taqqu (1977) and Ho and Hsing (1997) for non-Gaussian linear processes
(Eq. (3)).

We have the following result:

THEOREM 8. Assume that H1(¢), H4(¢) and H5(¢p) hold for some ¢ <2.
Then, for any 1 < j <,

2220, — 155 02 argmin(v] + 2BY(v) 1)
veR

where Bg) is a two-sided fractional Brownian motion. Furthermore, }n, j and 3,1,;(
are asymptotically independent if j # k. A _

Denote m, the vector of sample means: /7,, =(Y(1, t1), Y(H +1,
1), - Y(t,+1,n) and p* é(Y(l ), Y& +1,6), -+, Y&+ 1, n).
Then, n'~?/*(@,, —ad) = 0p(1) Assume in addition that HS5-b(¢) holds. Then,
n' =23, — u*) is asymptotically normal.

Not surprisingly the limiting distribution of t, depends upon the memory
parameter ¢ through the normalizing constant y =2/(2 — ¢). This result is
fairly intuitive: for a given value of the memory coefficient ¢, the spread of the
estimated change-point instant 7, ; increases as the magnitude of the jump 4;
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decreases; on the other hand, for a given jump magnitude 4, the spread of 7, ;
increases as ¢ increases.

PROOF OF THEOREM 8: The proof is adapted from Bai (1994), Theorem 1.
Denote s =(sy ---s,) € [-M, +M] and define

Ku($) 2 KL+ 912700 - [0+ 5,277])

and define similarly 7,(s), W,(s) and J,(s). The following result plays a key
role in the derivations that follow.

LEMMA 3.2. Assume that H1(¢p) holds for 1 <¢ <2 Then,

sup nﬂ;zkn(s)—E siay " | =o(1), (42)
se[—M,M]" =1
sup  (nd227,(s)) = o(1), (43)
se[—-M,M]"

sup (m_l{ﬁ Wals) =23 ay ALY 1Sy (6s s k)) =o(l)  (44)
k=1 '

se[—-M,M]"

where Sl—vk(t}';, sy) is defined in (40).

Under assumption (HS5-a)(¢), the process Y ;_,a; Y/IW/ ZSA /(tk, Sx) con-
verges (in the space of continuous function on [—M, M; equlpped with the
supremum norm) to Oy ;_,a i VB¢)(sk) where (B(k l<k=<vr) are r
independent copies of the fractional Brownian motlon with self-similarity
parameter ¢/2. Then, Lemma 3.2 1mp11es that the process J #(s) (with
polygonal interpolation) converges to "(Isl +2OB (sk)) Let
v 2 52/C=Pg. Then, argming(|s| + ZOB¢(S)) = 02?(2 ?) argmlnv(|U| + 2B,(V)).
The result follows from the continuous mapping with argmin functionals,
see Kim and Pollard (1990) (using the same arguments as in Bai (1994),
Theorem 1).

Given the rate of convergence of the break dates, it is an easy matter to
derive the asymptotic distributions of the sample mean, along the same lines as
in Bai (1994). m.

4. ESTIMATION OF THE NUMBER OF CHANGE-POINTS

In the previous section, the number of change-points is assumed to be known. In
many applications however, the number of break fractions is not specified in
advance, and inference about this parameter also is important. Estimation of the
number of break points has been addressed by Yao (1988), which suggests the
use of the Bayesian Information Criterion (also known as the Schwarz criterion).
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Yao (1988) has shown that the estimate of the number of break points is
consistent when the disturbance is a Gaussian white noise. This work has later
been expanded by Liu, Wu and Zidek (1997). In both cases, the basic idea
consists in adding a penalty term to the least-square criterion, in order to avoid
over-segmentation.

The following result is a direct extension of Theorem 3:

LEmMmaA 4.1. For any r=0 and for any r-partition te .7,, let
It — t*||oo = max< <, ming<g<+1|tx — t;k| If r=r* and under the assump-
tions of Theorem 3, ||ty —T*||cc — O when n — oco. Moreover, the uniform
bound (17) still holds.

The proof is a straightforward adaptation of Theorem 3 and is omitted.
Lemma 4.1 means that, even if the number of changes has been over-estimated,
then, a sub-family (g, Tr,, - -, Tk,.) Of Ty still converges to the true set of
change fractions 7. Note also that the uniform bounds Egs. (24) and (25) hold
whatever the number r of estimated break fractions is. They even hold
uniformly (w.r.t. to the number of break fractions), if this number is upper
bounded.

We propose to estimate the configuration of change-points t* and the number
of changes r* by minimizing a penalized least-square procedure. For any
R €N, for any A =0 and any ©, C R"*!, we consider the following estimates
of (t*, r*):

A~

(tn, 7,) = argminargmin{ Q,(t) + ,r}, (45)
0<r<R te.7,,
(ff, ?ﬂﬁ) = argmin argmin{ Q,(t) + S,r}, (46)

SIS A
0srsR ¢c //W

(t°, ) = argmin argmin{ Q®(t) + .7}, (47)

0<r<R te.7,,
where the contrast functions Q, and Q(;) were defined in (16) and (28), and
where {f3,} is a decreasing sequence of positive real numbers. We denote 7, 72
and 79 the associated estimators of the break-fractions. The choice of the

penalty is discussed in the next theorem:

THEOREM 9.

i) Assume that H1(¢) is satisfied for some ¢ <2. Then, for any sequence
{Bn} such that B, — 0 and nf, — oo, and such that H3(f) holds, (Tn, I'y)
converges in probability to (t*, r*) if r* < R.

ii) Assume that H1(¢) is satisfied for some ¢ <2. Then, for any non
increasing sequences {A,} and {f,) such that A, —0, (,— 0 and
n?=A,B, — +oo, (td, #44) converges in probability to (t*, r*) if r* < R.

iii) Assume that H1(¢) is satisfied for some ¢ <2. Assume also that
n*=?B, — +oo. Then, for any compact subset © of R™!, (79, i) converges
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in probability to (t*, r*) if r* < R provided p* = (uf, ..., ’f*ﬂ) € 0.
iv) Assume that H2 is satisfied. Assume also that B, = n~¥ where
—-1)—4
" <P(V ) v (48)
p(I+7)

Then, for any A>0, (5, #%) converges almost-surely to (t*, r*) if r* < R
provided A < A

PROOF: We show (i) first. To establish the convergence in probability of
(Tn, ), it suffices to show that P(7, # r*) goes to 0. By definition of (t,, 7,),
we have

On(ta) + Buin < Oult™) + Bur™. (49)
Using (18) and (22), this latter relation implies
Ko(ta) + Vilta) + Wo(ta) + Bu(7n — ) < 0. (50)
Then,

P(iy = 1) < P(K,(ta) + Vultn) + Wo(ta) + Bu(r — 1) < 0),
< P(épin (Kn(®) + Vo) + W, (0) + Bo(r — 1) < 0). 51)

Note that under H3(3) and (20), it holds that, for any 6 >0,

lim P( sup |V,(t)] = 65,,) =0. (52)
n—oo te. A,

n,

Assume first that 7 < 7*. Note that, for »<r*, we have [[t, — t*|| = A¥/r*,
which implies that

. A¥
K,(ty) = r—;/_lz. (53)

Then, for any r < r*,
A*
P(#y = r) < P[ min (V,(t) + W,(t) + —=A* = B,(r* —r) <0
te A, 2r

: ka2 * *
= P<tglyglen(t)l = A A7 /Q@2r )) +P<{22}2|W”(t)| > AT). (54)

and P(7, = r) — 0 as n — oo, by application of (24), (25) and Lemma 2.2.
On the other hand, for any r* < r <R,
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P(r, = r)$P<én}n ( (t)—l—ﬁ ) <O> +P<m1n (W (t) + K, (1) >ﬁ—>

(55)
From (52), the first term in the right hand term of (55) goes to 0 when n — oo.
The second term requires additional attention. For any t € .7, ,, we have

1 7% ¥4

1 s I’lk,nk] 2
K, (t) = ;kz > A% (56)

1 i=1 j=1

~.

r+1 r +1r +1

W) =5 ZZ Z ’“,IUS,Q (57)

where l,-jéw;k — u}], and ny and Sy are defined in Eqs. (31) and (32),
respectively (the dependence of this quantity upon the r-partition t is implicit).
Then, for any 1 < k< rand any 1 < i, j < r*, let

ij = {t € ./?y;n,r, ng < I’lﬂn},
gkj = {t S '—/Zn,rs Ny = nﬁn}~
From Lemma 2.2, there exist two constants 4; >0 and A, > 0 such that, for any

c¢>0, forany 1 < k<rand any 1 <i j< r*, such that Aij >0,

Sy
P(mm i L (u Mjf)s,g+c(1<n(t)+ﬂn)so> sP( max |n ol = AkJ)
Rig=npn k_]

tcZy nng

Ay _
= ?(”ﬁn)(ﬁ ? (58)
P( min —(u, — Sk + c(Kp()+p,) <0) <P max [Sy|= ZnB,
tez y Nk ng=nfi l.'/'
A _
=S mp)". (59)

From (58) and (59), and using the fact that n8, — 400, we conclude that

nlllgoP(tén}n (Wa(t) + Ku(t) = %) =0. (60)
Finally, for any 0 < r < R, P(#*, = r) — 0 when n — oo if r # r*. (ii) and (iii)
can be shown along the same lines

We finally show the strong consistency of (T, 7,) using the fact that, for any
r#r*, Y ,=0P(fn = r)<oo under H2, if (B,) satisfies (48). Indeed, nf3,
> pn!=¥ with
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p(3+7y)+4y

1—yp>
v 2p(1 +7v)

We can apply Theorem 2 to P(#, = r), with »> r* by setting u, = nf3,. On the
other hand, we can apply Theorem 2 to P(#*, = r), with » < r* by setting u, = n
since B, — 0. m

5. NUMERICAL EXAMPLES

In this section, we present a limited Monte-Carlo experiment. The disturbance &
is a fractional Gaussian noise, i.e. a covariance stationary process with zero-
mean, and spectral density function given by

0,2
S = E(Sinl)_zd

d is the long-range dependence parameter. We use the Hoskings’s method to
simulate this time series (1992). In the simulation, we set 02 =1 and d = 0.3.
There are two change-points at time 7} = 0.25 and 75 = 0.5. The function u is
defined as follows:

2 0=<1<0.25
u()=40 025<1<0.5
1 05=r=<1

We simulate 50 realizations of the sequence Y, ... Y,, with different values of
n. A typical realization (n = 1000 samples) is displayed in Figure 1.

Since the number of change-points is assumed to be unknown, the penalized
least-squares estimator has been computed for each one of these realizations. If
the statistical structure of the process were exactly known, an upper bound of
the regularization factor could be computed:

Bn= 410g(n)/n172d'

Not surprisingly, the penalization is typically higher than in the i.i.d. case (see
Yao (1988)). The histograms of the estimated change-points are displayed in
Figure 2 while Table 1 gives the estimated numbers of change-points.

The coefficient of penalization 3, has been chosen by minimizing (45) in
order to obtain approximatively the same number of over- and under-
estimation of the change-points. It is clearly seen in this example that the
estimated number of changes converges to the true value »* =2 when n
increases. We remark also that the distribution of the estimated change-points
concentrates around the true change-points 7{ =0.25 and 75 =0.5 when
n— oQ.
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FIGURE 1. A realization of the process ¥ with n = 1000 and with change-points at 7} = 0.25 and
*
7, =0.5.
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7. PROOFS

PROOF OF THEOREM 1: The proof of proposition (5) directly follows the
proof proposed by Moricz, Serfling and Stout, (1982). Thus, for any m < n, we
have:

P( max ANT >(3) < Pb,y|S1:m| >(3/2)—|—P( max bi|Sms1:xl >5/2),
m<k<n m+1<k<n

C(e)m?b,, C -
<4%+4A(¢)§ n—m?"' Y b m(6l)

t=m+1
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FIGURE 2. The empirical distributions of the estimated change-points obtained with different values
of n: (a) n =500, (b) n=1000, (c) n=2000, (d) n=5000.

TABLE 1

ESTIMATION OF THE NUMBER 7 OF CHANGES, WITH DIFFERENT VALUES OF n. FOR
ExAMPLE, 0.86 MEANS THAT, WITH n = 1000, WE OBTAINED 43 TIMES AN
ESTIMATE 7 =2 AMONG THE 50 SIMULATIONS

n B F=1 F=2 F=3 F—4

500 20 0-12 0.74 0.14 0.00
1000 40 0.06 0.86 0.06 0.02
2000 100 0.04 0.96 0.00 0.00
5000 200 0.02 0.98 0.00 0.00

PROOF OF COROLLARY 2.1: Using Theorem 1, we have, for any p =0,
m=>0 and ¢ > 1:

, €@
62
JADICED 100 S

P( max 1 bk|S1;k|>6) <4 (2p )¢b2pm

2m<k<20tlpm
t=2P m+1
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For b, = k* and B> ¢ /2, we have:
oS 00 »—2p
pp2 2P ($—2B) mn
;(2"'%) By = m ; P T

On the other hand, there exists a constant D << oo such that:

2P m—1
(2P m)?~! b2 < Dm?—2P).
S 3
We conclude using the fact that:
00

P(I]?;-;libk|sl:k|>6) sZP( max bk|S1;k|>6). n

10 2 m<k <2ptlm

PROOF OF EQUATION (36): The set ©7,, can be decomposed as
Zoyn=U7C5yn(7), where the union is over all the subsets .7 of
{1, -, r}, and

Chyn(T)={t € Ay, 0372 < 1y — 17 < nyAl,
Ve 7,0<t,—tr <o), Vk¢ T}

For any te v 6j</m denote nkk—tk ti—1, nkk+l—[k_tk> Ny =ty — tr
and ny = ff — t;_,; the dependence of these quantities on t and t* is implicit.
Note that ny = nyx + ngr+1 and nk = N+ Nk—1.k and ngp/ng = (1 — y)Af.
For all t € Z§, ,, one may show that

1 r
K, (t) = ~ ZM;@N (62)

=

V() = an " (nk: (Skk Sk,k+1>2_ Rktlkt! (Sk+1,k+l B Sk,k+1)2>

R Mk, k+1 Ny Nt lk+1 Mhk+1

(63)

S n
Wa(t) = Zik <nk k+1ﬂ+n—1;k5kk+l> (64)

where, for 1<i<j j<r+1, S;=3/, & and Ay=u},, —ui. In
addition, we have, for all t€ 7, ,,

min K,(t) = (1 - y)A7O2 2277, (65)

oy.n
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1< S} S} S S
Vn(t)2—22<nk,k+1 kel | k,k+1+2|Sk,k+1|(| k+1,k+l|+| k,k|)

k=1 Mt 1,k+1 ng Mj41,k+1 Nk k

(66)

Using these expressions for K,(t), V,(t) and W,(t), and the above bounds, we
obtain sharper bounds for J,(t) on Cj, ,. First, by using Lemma 2.2 and its
corollary, these exist finite constants Cy, C,, C3 such that, for all 1 < k£ < r and
for all ¢>0,

t 2
Sk D0 iss1€il n?~
P max uBc <supP sup =T =) <
teVMn n 1e? an(li}/)A* S C
s T

(67)

o1
| =1/n(1 —y)cAf> < Cznc

(68)

S2 t+s o—1
P( max —ftL > c) < supP( max Qi (Qizeni®) =c| =G i (69)
c

t€Z8ym Mk k+1 teZ ISA?SnyAI s

Let .7 be an arbitrary subset of {1, ---, r}. There exist finite constants Cs, Cs
(that do not depend upon A, A, nor on the subset .7) such that, for all n =1

S s
P<max max 1Sk 20) ssupP( max | 2imei€il

k€T €5, 4(7) R k+1 te? s=0)/9-2 N

092

< (4 A2, (70)
c?
t+s
P(max max |S = ¢\ =supP|max max gl =c
(k¢.7 te%gw(y)' ks ) ,65 <k¢7 0=<s=042/9-2 A;I ' )
o7 20 /¢p—2
< ngi 9102 (71)

Using (64), (65) and (66), there exists ¢ >0 small enough so that it holds

P(ta € h,,) <P ( . mln (K () + Vu(t) + W, () < 0)

()yn
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r

%192 2 2
= P<C(1 —PAJL < re(}lgaxu)Sk+1,k+1/nk+1,k+1>
=1 7 ot

%12 2
+;;7P c(l —y)nAzA gtegj’n‘('y)sk,kﬂ/”k,kH)

# 3 P(cl =PRI < xS/

5.7
k¢7 te é,/,n(7)

+ 3 P(e(l — pAF A
ke7

< max |Skistl/ i1 Skt oot l/mest ke + |Sk,k|/nk,k)>
te% sy a(7)

+3p <c(1 p)AF§220
%4

<  max |Sk,k+1|(Sk+1,k+1|/nk+1,k+1+|Sk,k|/nk,k)>
te?’sy n(7)

~

-+ P CAS max |Sk,k\/nk,k
—l t€% 8y n(7)

+
(]

P(cig max |Sk,k+l|/nk,k+1>

€7 8y,u(7)

=~

%

+ Pl =AY H20 < max [Seanl). (73)
¢‘ te{dy,n(-7)

=~
N

The proof is concluded by bounding each term in the previous sum using

relations (67)—(71). m

PrOOF OF LEMMA 3.2 We prove these properties for the positive orthant:

0=<s;,< M, 1 <i=<r because of symmetry. Let

M2t e A0, =05+ 54,0, 0= s, < M, ke {1, r}}.

n,r’

Eq. (42) follows directly from (62). To prove Eq. (43), first note that (63) implies

that
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. r S2 S2 S S
nVu(s) < 88 npsir | + L +2Sk,k+1|(| el | "“”‘“')

| Me ke Wit kv1 Nk Myl ktl
1 1
2
+ Sk | —F (74)
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where, as before, n; = #(7 ), with
Ty =AU + i, 1+ L[ +sA, 71 0l + 554,71+ 1, [+ 5,471}

and S; =) re7 ;€ Now, for any 0 >0, we have

s ’ 52
(A, V()] = 0) < Y P max —E=coil | =(4)
k+1

€7 (M) 13
- p ISkl | ISkerint]\ o 5127 =
+ Z max |Sk,k+1‘ + = COA, = (B)

s te %% (M) Rk Nkt1,k+1

,
+ P max S2,.,=coA> 7 = (C). 75
PP (e, S = 27 ) = (O 5)

where ¢>0 is a sufficiently small constant. Using (67), we have
(4) = O(n?72)7%) = o(1). Similarly we have by applying (68)—(69)

I

S
(B) = Z( max [Sk 1] = /_'LL”nS/V> —i—P( max m = céinns/”),

= te 7% (M) e (M) Np

= O(n~ 7Y 4 O(n1=99=2)72) = o(1).

Finally, using again (67)—(71), we have (C) = O(n"'1,”) = o(1), concluding the
proof of (43). The proof of (44) is along the same lines and is omitted. m
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