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Abstract

The paper considers tests for structural change in time series regression models where both
regressors and residuals may exhibit long range dependence. The limiting distribution of the
test statistic depends on unknown parameters. While the unknown parameters can be
consistently estimated and asymptotic critical values obtained by simulation, the paper
proposes an alternative approach of approximating the distribution of the test statistic by a
bootstrap procedure. The asymptotic validity of bootstrap is shown and the performance of
the testing procedure is examined in a simple Monte Carlo experiment.
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1. Introduction

Parameter instability and structural change have been a subject of a large body of
statistical and econometric literature. The maintained hypothesis of parameter stability
has been tested both against specified and unspecified forms of alternative hypothesis.
When employed as a model-diagnostic tool, stability tests are constructed against all
possible functions describing the evolution of parameters over time. Such tests are based

*Tel.: +4420 7882 5000; fax: +4420 8983 3580.
E-mail address: s.lazarova@lse.ac.uk (S. Lazarova).

0304-4076/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.jeconom.2004.09.011


www.elsevier.com/locate/econbase

330 S. Lazarovd | Journal of Econometrics 129 (2005) 329-372

on the behaviour of regression residuals, as in CUSUM tests of Brown et al. (1975) and
Ploberger and Kramer (1990, 1992), or on the behaviour of parameter estimates, as in
the fluctuation tests of Sen (1980) or Ploberger et al. (1989).

Alternatively, parameter stability tests can be designed against a specific
alternative. Example of specific alternatives are one-time change in parameters as
in the papers by Quandt (1960) or Andrews (1993), or parameters following random
walk (Nyblom, 1989). Though constructed to detect specific parameter behaviour,
these tests are usually shown to have power against a broader range of departures
from the null of parameter constancy.

This paper considers tests for stability in slope coefficients in linear regression
model where both regressors and errors are allowed to be long range dependent. The
main contribution of the paper is twofold. First, the limiting distribution of the test
statistics considered in the literature is typically a functional of Brownian motion. It
is shown that this remains true for test statistics based on the slope coefficient
estimator in linear model with stationary long memory series. Secondly, as an
alternative to computing the critical values for the test statistic, a first-order
bootstrap approximation of the distribution of the test statistic is proposed and the
validity of the bootstrap procedure is shown.

The paper is organized as follows. Section 2 describes the model and the
hypotheses of interest and states distributional results for the test statistic. Section 3
proposes a bootstrap approximation of the testing procedure and shows its validity.
Section 4 offers a Monte Carlo study of the small sample performance of the
bootstrap testing procedure. Section 5 concludes. The proofs of the results stated in
the text are gathered in Section 6.

Throughout the paper, B denotes a p-dimensional vector of independent standard
Brownian motions on [0, 1] or on a set A C (0, 1), [-] signifies integer part, Z means the
conjugate of a complex number z, || - || denotes the Euclidean norm of a matrix, I(-) is
the indicator function of a set, “=="" denotes weak convergence in the space D(A)
of p-vectors of right-continuous functions with left-hand limits, endowed with the
uniform topology. For any real numbers a, b, aVv b =max{a,b} and arb =
min{a, b}. Starred notation in E*, var*, cov* and similar refers to quantities
conditional on data, taken with respect to the corresponding bootstrap probability
measure. The statement y; ~ xr is equivalent to the statement y;/xr — 1 as T —
oo. For generic functions f and ¢, f; = f(4;) where 4; =2nj/T, j=1,...,T are
Fourier frequencies, and g, = g(¢/T) for t = 1,..., T. For g-algebras #, 9, # v % is
their union, that is the smallest g-algebra containing all elements of % and %.
Finally, C and D stand for generic constants.

2. Model and asymptotic results

We are interested in testing for structural change in regression models with
processes that may possess long memory. We consider the model

Vi = o+ Bx +uy, (1)
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where y, is the observed dependent variable, « is an unknown intercept, f, is a
p-dimensional vector of unknown parameters, x; is a p-dimensional vector of
observations on the explanatory variables and u, is an unobserved stochastic
disturbance. Our hypothesis of interest is whether the parameter vector f3, stays
constant,

Ho: p,=p forsomef, forallt=1,...,T.
The alternative is that of general parameter instability,
H;: p,#p, forsome l<t, s<T.

Test procedures for the hypothesis of structural stability of general models are
based on test statistics that can be written as

Zr = ¢(ET)

where E7 is a stochastic process on [0, 1] or its subset with values in the space of
right-continuous functions with left-hand limits and ¢ is a continuous functional.
The process E7 is based on an estimator of parameters of a given model and its form
reflects the choice of the testing principle. For example, if {e,p<t<T} is the
sequence of cumulative recursive residuals from the OLS estimates of the model (1)
under the null as in the CUSUM test procedure of Brown et al. (1975), the stochastic
process E7 can be defined as Er = {E7(t) = ej;7), p/T <t<1}. Further examples of
processes considered in the literature are Wald-, LM- and LR-like test statistic
processes of Andrews (1993), CUSUM of squares process of Brown et al. (1975),
OLS CUSUM process of Ploberger and Krimer (1992), OLS parameter estimates
process of Ploberger et al. (1989) and Sen (1980) or MOSUM process of Chu et al.
(1994).

The functional ¢ measures the excess fluctuation of the process E7 with respect to
its hypothesised fluctuation. Depending on the belief about the form of the
alternative, the functional ¢ can be chosen to obtain good power of the test. A
functional widely used in literature is the supremum functional. The test statistic can
also be based on the L,-distance like Cramér—von Mises test statistic with ¢ = 2. The
range functional can have power advantage over the supremum functional in
detecting smaller fluctuations of a process which changes its sign, as argued by Kuan
and Hornik (1995). The average exponential functional of Andrews and Ploberger
(1994) is shown to enjoy asymptotic optimality with respect to a weighted average
power criterion.

In this paper, we base the test procedure on the OLS estimators of the coefficient o
in the model

yo=o+fx +0z +u @)
where

Xts ZS[TT],

2= 2 = { 3)

0 otherwise,
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where ¢ is a p-dimensional vector of parameters and where 7 lies in a subset A of
(0,1). In the interest of clarity, the explicit notation of dependence of z; on 7 is
sometimes dropped in what follows. The choice A4 = (0, 1) appears natural but for
technical reasons the set A needs to be restricted to have closure in (0,1). The
grounds for the restriction are discussed after stating Theorem 2 and its Corollary 1.
In addition to technical reasons, there may be other motives for restricting the set A
away from (0, 1). It may be suspected that the instability in question occurred in a
specific subperiod of a given period. For example, if data for postwar productivity
growth are examined, the attention might be focused on testing for an abrupt or
gradual change in a period around the 1973 oil price shock.

For any fixed t € A, the OLS estimator of the parameters f§ and ¢ in (2) is given by

(ﬁ(ﬂ) _ (Ele (x; —X)x; Zt (= ) <Zz (e — 7))’:) @)
o(7) ZIT:I (z: = 2)x; ZH (z: = D)z, Zz:l (z: = 2), ’

where x=T7"'"" x, and z=T"""1")x,. Alternatively, model (2) can be
translated into the frequency domain, becoming

wy(4) = fwy(2) + 0w +wu(4y), j=1,....,T—1, (5
where

T
wa(2) = J% > de”
=1

is the discrete Fourier transform of a sequence of p-dimensional vectors dy,...,dr
and 4; =2nj/T are the Fourier frequencies. Identifying w.(/) and w.(4;) as
regressors and w,(/,) as an error term, the OLS estimate of the parameters ff and J in
(5) for 7 € A is given by

<ff(r)) _ (Z-T:‘ L.0) Y5 ‘wuj))_l (Zji‘lllxy(ﬂﬁ») ©6)
3(x) SO LGy S Gy SO LG) )
where for any vector processes u;, vy,

Iuv()v) = Wu(j-)w/b(/“)

is the cross-periodogram matrix. Leaving out the zero frequency from the frequency
domain regression is equivalent to mean-correcting data before running the
regression in the time domain. The estimators defined in (4) and (6) are therefore
identical. Omission of the zero frequency permits inference on the slope parameters
when the intercept is unknown. It is worth noting that due to the symmetry of the
periodograms, (6) is equal to

-1
21[5/12] In(;g) Z,[ZZ] Ixz(ij) Re 21[2/12] I\}(/L])
Sy L 1Gy) S 1)

for T odd while when T is even, (7) differs from (6) only by the order of O,(1/T).

()
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For each 7 from a set A C (0,1), an estimator 5(1) of 6 can be obtained from (6)
and a process 5 can be defined as 6 = {5(1) 7 € A}. For any T and any realization of
processes {x;} and {u,} the function 5 is bounded and constant on the subintervals
J/T,(j+1)/T)NA, je N, and the process ¢ is a random element of the space
D(AY of p x 1 vectors of right-continuous functions on A with left-hand limits
endowed with uniform metric. . .

The test statistic based on the process o is then Z7 = ¢(+/T9) for any continuous
functional ¢ : D(A)’— R. For example, the Kolmogorov—Smirnov (or Bartlett) test
statistic is defined as

KS7 = sup VT5(0)]|
e
and the Cramér—-von Mises statistic is given by

CVMTZ/THS(‘E)HZd‘L'
A

where || - || is the Euclidean norm. Under the null hypothesis, the additional regressor
z, has no explanatory power and the process d is uniformly close to zero, whereas
under the alternative, 6 can be expected to differ significantly from zero on a set
Ay C A of Lebesgue measure greater than zero. The norm functionals like KS and
CvM constitute one-tailed tests, rejecting Hy for large values of the test statistic. In
principle, two-tailed tests can be constructed for functionals whose range includes
both positive and negative values.

It can be expected that the test procedure based on model (2) has power mainly
against one-time break alternatives of the form

. Bt={ﬁ+5’ t=1,....[tnTl

B, t=[eoT]+1,...,T @®)

for some 7( € A and some constants § #0, f§, but we show that our test procedure has
power under a broader range of alternatives.

Our analysis proceeds under the following assumptions. It is assumed that {x,} and
{u,} are covariance stationary linear processes that satisfy Conditions 1-5:

Condition 1.

oo o0
2
o=y @l > lal*<oo, ag=1,
J=0 Jj=0

o0 o0
u,:ijs,_j, Zb?<oo, by =1.
j=0 =0

Let F, and 9, be the o-algebras of events generated by &, s<t, and &, s<t,
respectively.
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Condition 2. {&,} is a stochastic process that satisfies

1. E(£,|97t,1 Vv g[) =0 a.s.,

2. B(EEIF 1V ) = B(EE) = £ as.. and

3. the joint fourth cumulants of &y, j; = 1,...,pandi=1,...,4, where ;; denotes the
Jjth component of the vector &,, satisfy

h=h=10=1,

, Kejiindsia 45
(s Coos St S| 97) = {O a.s. otherwise,

.....

Condition 3. {¢} is a stochastic process that satisfies

1. E(¢/|F,V%,_1) =0 as.,
2. B(2|F, Vv %,_1) = E(e?) = ¢ a.s., and
3. the joint fourth cumulant of &, i = 1,...,4 satisfies

Kas. 1 =1 =1=1,

Cum(‘c‘.h)glz)gl})gM"g—;T) = .
0 a.s. otherwise

with |k| <oo.

Condition 4. The functions
o) .. 0 e
AG) =Y @’ and B() = be'
7=0 7=0

satisfy the following assumptions:

1. there exist constants 0< Cy ., C, <00 and d,y,d, € [O,%), k=1,2,...,p, such that
| ()] ~ Crged™ ", |BO)| ~ Cui=™ as & — 0+,

2. A(X) and B(A) are differentiable on (0,7] and ||dA(A)/dA| = O(|AD)I/4),
|dB(Z)/dA| = O(|B(2)|/A) uniformly over (0, 7] and

3. |A(D)]| >0 and |B(4)| >0 for A € (0, 7].

Condition 5.

/ 1 Dl di<oo,  E(xx)>0,

where f(A) and f,, (1) are spectral densities of processes x, and u,, respectively.

The conditions are similar to those used by Robinson (1995a, b, 1998) and
Hidalgo (2003). A further remark is that while the fourth moments are assumed
constant, the third moments are free to vary and so only second order stationarity is
required.

Conditions 1-3 imply homoskedasticity of regressors and errors. This assumption
could presumably be relaxed to allow for a certain degree of heterogeneity.
Conditions 1-3 also imply that x, and u, are uncorrelated for all # and s and that
E(xuxgug) = E(x:x;)E(u,u,) for all £ and s and therefore that the spectral density of
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xu; at frequency zero is 27 ffn S oA (A dA if Condition 5 holds. One of the reasons
for imposing the condition E(x,u,x,u;) = E(x,x,)E(u;uy) is that it allows us to use

42 =1
e Ixx()ﬁj)luu(/ii)
T =

J

of Robinson (1998) to consistently estimate 27n ffn J oD (1) dA without having to
select a bandwidth. If the condition E(x,u,xu,) = E(x,x,)E(u;uy) is not valid, the long
run variance of x,u, has an additional component which is a function of the fourth
cumulants and which is not estimated by Q. When x;, and u, are short memory
processes, the results of Taniguchi (1982) and Keenan (1987) can be used to estimate the
additional component of variance, but no estimation methods are available for long
memory time series. Relaxing condition E(x;u,xus) = E(x,x;)E(u,uy) would thus come
at a price of a considerable amount of technical work. Therefore, though assumption of
no correlation between regressors and errors is admittedly somewhat restrictive and
excludes for example some cases of interest studied by cointegration literature, we do not
attempt to relax this assumption.

Condition 4 allows for a possible singularity at the zero frequency but the results
of this paper could be generalized to the case of a singularity at a nonzero frequency
or of more than one singularity. The validity of the bound |dB(4)/dA| = O(|B(2)|/ 1)
implies that |df,,(1)/dA| = O(f ., (2)/2) since f,, = 62/2r|B(2)|*. Similar implication
holds for the spectral density matrix f .. Examples of scalar processes that satisfy
Condition 4 are FARIMA model of Granger and Joyeux (1980) or Hosking (1981),
and fractional Gaussian noise of Mandelbrot and van Ness (1968). These models
satisfy f(1) ~ CA72? as 2 — 0+ for some memory parameter d € [0, %).

Condition 5 has been used by Robinson (1994) and Robinson and Hidalgo (1997).
The condition restricts the collective memory of regressors and errors. For regressors
with long memory parameter d, and errors with long memory parameter d,,
Condition 5 imposes restriction d, + d, < % This condition ensures that the standard
least-squares estimation procedure of the slope coefficients is +/7-consistent and leads to
a Gaussian limit distribution (Robinson, 1994). As Hidalgo (2003) remarks, the first part
of Condition 5 seems to be very mild and appears to be necessary and minimal for the
central limit theorem for OLS estimates of slope coefficient to hold. In a related
proposition of Giraitis and Surgailis (1990) an analogous condition is required for
convergence of quadratic forms in linear processes. The validity of the CLT carries over
to a functional CLT in the present paper.

The main result of this section can now be stated. Let B be a vector of p
independent standard Brownian motion processes restricted to A where A is a subset
of [0, 1] with closure in (0, 1).

Theorem 1. Under Conditions 1-5 and under the null hypothesis,
ﬁ<ﬁ(r) - /3)2> ! (2—‘91/%3(1) - rB(r)))

(1) (1 —1) \ 27'Q"2(B(r) — tB(1))
on A, where Q = 2n ffnfxx(i)fuu(),) dZ and X = E(x;x}).
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Theorem 1 implies in particular that

ﬁ5(1)=>;2*19‘/2(3(1) —tB(1)),
(1 —1)

so that for each fixed 7 € A4,

VT3() S N, V(1)) )

where

_ 1 “1oy—1
V(r)_r_r)z Qs .

It is interesting to note that when x; or u, are long memory processes, the limiting
distribution remains to be a function of a Brownian motion rather than of a
fractional Brownian motion that often arises in asymptotic results in long memory
environment. A result that is crucial for validity of Theorem 1 is that
T_I/ZZT: ;llzu(ﬂg-), which is asymptotically proportional to the partial sum
T’l/zz;ﬂx,u,, converges weakly to a Brownian motion. To achieve weak
convergence of the partial sum ZEZPX, for strongly dependent process
x;, normalization by 7~'/>~? is required and the limiting process is a fractional
Brownian motion. However, the case of the partial sum ZEZ] xu; 1s different.
Intuitively, while the memory of the processes x; and u; is of a long range,
their product x,u, displays short memory behaviour. This phenomenon may
be regarded as analogous to that of Robinson (1998) where the sample
autocovariances of processes x; and u, are stochastically dampening each other in
his estimator of Q.

To assess the power of the test procedure, we examine limiting behaviour
of the process (B(r),5(r)') under alternatives. We restrict ourselves to the local
alternatives

B, =P +%h(%) for some f3, (10)

where £ is a p-dimensional vector of bounded variation functions on [0, 1]. This
class of alternatives comprises many types of structural change that may
be of interest. For instance, a function A(t) = dl(tg<t) describes the alter-
native of an abrupt break of size 6 at time 73. A step function % defines
multiple structural breaks. A function /4 consisting of two constant segments
connected by a smooth curve depicts smooth transition between two steady levels of
a parameter. A general smooth function /& captures continual change of the
parameter.

For the limiting distribution under local alternatives the following result is
obtained.
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Theorem 2. Under Conditions 1-5 and under the local alternative hypothesis (10),
T [3(7i) AN S71QV2(B(1) — tB(x))
3(t) (1 =0\ -'Q"2(B(x) — tB(1))
1 i ' h(u) du
o=\ (7 hu) du — 7 J} h(u) du)

for t e A.

By the continuous mapping theorem, an immediate consequence of Theorem 2 is
the following corollary.

Corollary 1. Let ¢ be a continuous functional on D(AY. Let Zy = ¢p(~/T 3(1)) and

(1 —1)

1 T 1
+r(1—r)</0 h(u)du—‘t/0 h(u)du)).

Under the conditions of Theorem 2,

Zi=¢ (1 =1012(B(x) — <B(1))

d
ZT—> Zh.

The corollary shows that a test based on Z7 has nontrivial local power against a
broad range of alternatives. The limiting random variable Z, is indexed by functions
h specifying local alternatives. Under the null, when & =0, the test statistic Zr
converges in distribution to Zj,

(VTo) = qs< L s-10v2ry — ‘EB(I))).
(1 — 1)

The asymptotic test at a significance level o is based on a critical region C,

constructed from the asymptotic null distribution, P(Zy € C,) = «. The asymptotic

test rejects the null when Z € C,,.

The form of the limiting distributions in Theorems 1 and 2 explains the reason for
the necessity of bounding the set A away from 0 and 1. The restriction on A
guarantees that the convergence of the estimator 6, which is the basis of the test
statistic, is uniform. Moreover, it can be shown that for A = (0, 1) many functionals,
including the sup- and L,-norms, diverge to infinity in probability.

The trimming restriction on A can be avoided by allowing the limiting distribution
of the test statistic to be of a different form than a functional of the Brownian bridge.
The results of Jaeschke (1979) and Eicker (1979) suggest that the supremum of 6(7)
taken over subsets of (0, 1) increasing towards (0, 1) at an appropriate speed and
normalized by a suitable centring and rescaling sequences should converge to an
extreme value distribution. However, relaxing the restriction on A in such a way
comes at a cost. The rate of convergence of the test statistics to the extreme value
distribution can be expected to be very slow. The asymptotic critical values would
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not be appropriate for tests in samples of moderate size and an elaborate bootstrap
procedure would be required to improve on the performance of the asymptotic test.
We do not pursue this possibility in the current paper.

The variance of the process (B(t) — tB(1))/(z(1 — 1)),

B —tB(1) 1
r (-1  o(l—-1)

varies across A. This means that under the null, the probability that the process
l6(7)|| crosses any vertical line above the real axis is smallest at T = % This may lead
us to inquire whether the power of the test based on supremum and other functionals
can be improved by levelling the variance of the estimated process J across A. Given
the restriction of A away from (0, 1), we may normalize the process 6 by multiplying

it by [¢(1 — ‘c)]l/z. By Theorem 1, under the null,

[t(1 — )] /*VTé(1)= >~'Q'2(B(r) — tB(1))

[7(1 — 0)]'/?

whose variance is equal to X ‘192 ~! across A. The rejection probabilities of the test
based on the levelled process J in samples of moderate size is examined in a Monte
Carlo experiment in Section 4.

Our test procedure is based on the behaviour of the OLS estimator of f
coefficients. At the core of the limit behaviour of the test statistics lies the fact that
TV zzjifll\/vz(r)(ij)wﬁ(ij) converges weakly to a Brownian motion process. Using
this fact, the asymptotic behaviour of other tests based onAgle behaviour of OLS
slope coefficient estimators can be obtained. For example, if f§, is the OLS estimator
of B in the regression y, =a+ f'x,+u, for t=1t,...,t, then under the local
alternative (10)

T 1
fﬁ([;llrn_ 3f):>z—191/2(3(1)_13(1))+ ( / h(u)du — 1 / h(u)du)
0 0

in correspondence with the results of Ploberger et al. (1989). If 5 and Q are
consistent estimates of X and €, then the Wald-statistic process based on partial
sample slope estimators has limiting distribution

A[tT] AT rrxlor-\ 7! A[iT] AT ,
T(ﬂl - ﬁ[rT]—H) (m) (ﬂl - B[TT]H) =J (1) J(2),
where

1
J(r) = W(B(T) —1B(1))

1 B T |
+Wg 1/22</0 h(u)du—-c/0 h(u)du)

as in Andrews (1993).



S. Lazarovd | Journal of Econometrics 129 (2005) 329-372 339

On the other hand, the limiting distribution of tests based on behaviour of the
OLS residuals depends crucially on the weak convergence of T _1/22,21171 to a
limiting process. Under long memory, the asymptotic properties of this sum can be
expected to be different than under short memory.

3. Bootstrap procedure

The limiting distribution of the process in (9) depends on unknown parameters Q2

A

and 2. The process 5 can be normalized by consistent estimates Q, % of these
parameters. Such consistent estimates are for example

o 1
E=gd v
=1
and
. 4p2
j:l

Consistency of b follows from ergodicity of x; in the variance implied by Conditions
1 and 2. The estimator £ is based on results of Robinson (1998) and its consistency is
asserted in the following theorem.

Theorem 3. Under Conditions 1-5 and under the local alternative,

0% 0.

. ~ A—1/2 ok o C L
The normalized process (1) = Q2 / 2'6(7) has a limiting distribution which is free
of nuisance parameters,

B(t) — tB(1)
(1 —1)

In special cases, distributions of functionals of Brownian motion are known
analytically and quantiles of the distributions can be easily computed. Examples are
supremum of a Brownian motion and supremum of a Brownian bridge. In other
instances, critical values have been computed by simulation and tabulated, as in case
of the supremum of a standardized tied-down Bessel process in Andrews (1993).
However, in majority of cases, the critical values of the test statistic need to be
simulated by the researcher.

One alternative to computing asymptotical critical values by simulation is to
employ a bootstrap procedure. The core idea of bootstrap is to replace the unknown
distribution of a random variable by the empirical distribution of a random sample
drawn from that distribution. However, when the data are not independent and
identically distributed, the basic bootstrap of Efron (1979) is not valid. In the time
series context, an early adaptation of the basic bootstrap method rests on the

VTé(1) =
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assumption that the data are generated by a finite-order stationary ARMA process
with independent identically distributed innovations (Efron and Tibshirani, 1993). In
a direction towards nonparametric methods, Biithimann (1997, 1998) approximates
the linear infinite-dimensional process by a sieve of finite-dimensional autoregressive
processes whose order is growing with the sample size. Diebold et al. (1998)
propose a purely nonparametric bootstrap method. Their Cholesky factor bootstrap
replaces estimates of parametric models with nonparametric estimation of the
dynamics.

A different way of approximately preserving the temporal dependence structure of
the data is to resample blocks of data. Carlstein (1986) and Kiinsch (1989) propose
to resample from nonoverlapping and overlapping blocks of data, respectively, and
to concatenate the blocks to generate a bootstrap sample. Politis and Romano (1992)
introduce an idea of subsampling, regarding blocks of data—subseries—as new
pseudo-samples.

A problem shared by nonparametric bootstrap methods is that they require an
intervention by the researcher in choosing a dimension parameter of the procedure,
be it lag length, bandwidth or block length. The performance of time-series
bootstrap can be highly sensitive to the choice of the dimension parameter,
particularly in samples of moderate size. Although automatic procedures for
choosing the dimension have been devised for some methods, they can be
computationally expensive.

Nonparametric bootstrap procedures can alternatively be carried out in the
frequency domain where either frequency domain data or their squares, that is the
discrete Fourier coefficients or periodograms, can be bootstrapped. This approach is
motivated by the observation that converting a stochastic process from time domain
to frequency domain reduces serial correlation of the process though it induces
heteroskedasticity. Bootstrap method of Ramos (1984) for Fourier coefficients or
Franke and Hérdle (1992) and Dahlhaus and Janas (1996) for periodograms require
a consistent estimate of the spectral density and therefore a choice of a bandwidth.
Local periodogram bootstrap of Paparoditis and Politis (2000) avoids the need for
estimating the spectrum but again demands a bandwidth choice.

Hidalgo (2003) proposes a method that eliminates the dimension choice. He
suggests to bootstrap OLS residuals in frequency domain. His bootstrap procedure is
easy to implement and computationally inexpensive. Moreover, it is one the first
bootstrap procedures shown to be valid for long memory time series in a fairly
general context, adding to a still thin body of the literature on long memory time
series bootstrap.

In this paper we propose to approximate the critical values of the testing
procedure described in Section 2 by a bootstrap procedure based on the ideas of
Hidalgo (2003). The procedure consists of the following steps.

Step 1: Compute OLS estimates ﬁ(v:) and 5(1) from (4) or (6) for r € A. Compute
T = arg maxXqc 4 ||5(r)|| the OLS estimates [3 ﬁ(r) and 0= 5(1) and the OLS
residuals

=y, — Bx -8 z).
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Step 2: Compute

1 .
mz&,e% for j=1,....,T—1

~

wa(4y) =

and
witl) = (U/(T = D)3 iy witds) .
(LT = D)5 wal) = (LT = D)5 walol?

Step 3: Draw a random sample ”19---”7[T/2] from the distribution P*(; =
Wi(Ar)) = 1/[T/2] for k =1,...,[T/2] and generate a bootstrap sample

W) = Bows(4) + waGplnts j=1,...,[T/2],

where ﬁo is the estimate of f from the null regression of w,(4;) on w.(4;) alone.

Wa(4) =

Step 4: Compute (B (t),0 (1)) as
) - ) -1
(ﬁ (r)) ~ (Zjiﬁ Laly) S5 ey ’) s pef 1 L)
5 (x) S0 S G S ()
where the right-hand side depends on t through the definition z, = x, (¢ <[t T]) in (3).
Step 5: Compute the functional used for the original data, Z% = ¢(v/T. 5*).
The distribution of the bootstrap test statistic Z7% can be used to approximate the

asymptotic null distribution of Zr, that is to construct a bootstrap test. To show the
validity of the bootstrap procedure, we need to prove that the bootstrap process

(Zf*m—/%) DRSO vty SN
5 () SO LGy S Gy

Z/‘ s ]W‘c,/lwu,/m]
x2 Re ' (13)

Z —1 W'(r),/|Ww|’7/
consistently estimates the null behaviour of the process ([3(1)/ -p, 3(1)/)’. It must be
shown that under the null and under the local alternative the process

-1

2ReT QZ]Z{Z] W=(z),jIWa, |07, conditionally on data, converges weakly in probability
to the same process as T’I/ZZ]T:]IIZ“()L/), that is to (1/2m)Q'/2B(1),

[7/2]

1
2ReT Z w7(f)z,|wu’,|nl => o Q'2B(1),

where “=>” stands for the weak convergence in probability as defined by Giné and
Zinn (1990).
The consistency of the bootstrap is asserted in the following theorem.
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Theorem 4. Under Conditions 1-5 and under both the null and the local alternative
hypotheses,

JT ﬂgz)—ﬂ ] >1'Q"2(¢B(1) — 1B(1))
5 (1) (1 —1) \ 271Q"2(B(z) — tB(1))

in probability.

A straightforward consequence of Theorem 4 and the continuous mapping
theorem is the following corollary.

Corollary 2. Let ¢ be a continuous functional on D(AY. Let
Z; = ¢T3 (1)

and let Zy be Z;, of Corollary 1 with h =0, i.e.
Zo = ¢((x(1 =)' 27 QA(B() — 1B(1)).

Under the conditions of Theorem 4,
755 7,

in probability, that is

P(Z5<x|F 1V G1) > P(Zy<x)
for each continuity point x of the right-hand side.

The bootstrap test is constructed using a critical region C; based on the bootstrap
distribution in such a way that P(Z% € C}) = o, where o is a level of significance. The
bootstrap test rejects when Zy € C;. Let Fi(x) = P(Z7<x|F 7 VvV ) denote the
distribution function of Z% conditional on data and F(x) = P(Zy<x) the null
asymptotic distribution function. The bootstrap p-value for a one-tailed test is py =
1 — F(Zr). The bootstrap test rejects Hy when Zr is large, that is when p; is small.
By Corollaries 1 and 2, Zr — Z;, and F%=F in probability. The continuous
mapping theorem implies that p; = 1 — F(Z7) — 1 — F(Z};) in probability. The p-
values based on the bootstrap distribution F7 are therefore asymptotically
equivalent to the p-values based on the distribution F.

It should be noted that the proposed bootstrap is not the only possibility. The
variables n7 in Step 3 are drawn from the empirical distribution of normalized
discrete Fourier transform of the OLS residuals. Alternatively, external bootstrap
can be carried out by drawing »; from any complex distribution with zero mean, unit
variance and En;kz = 0. A natural choice is a complex normal distribution. The proof
of validity of the external bootstrap procedure remains identical to the current proof.
Another valid modification is to multiply #; in Step 3 by the value of w;(4;) instead
of its modulus. The proof of validity in this case goes through with only minor
alterations as noted at the end of the proof of Proposition 7 in Section 6 below. A
simulation study suggests that none of the methods above dominates the others in
performance.
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Hidalgo (2003) interchanges the resampling with the Fourier transformation,
resampling first from the normalized time-domain residuals and then transforming
the resampled data into the frequency domain. His simulation results seem to suggest
that there is no substantial advantage in exchanging the order of the operations. In
the simulation experiments in this paper we use the procedure given in Steps 1-5.

4. Monte Carlo

In order to assess the performance of the bootstrap procedure in finite samples, a
small Monte Carlo study is conducted. Data are generated according to a simple
linear model

Y=o+ Bx; + u,

where scalar series {x,} and {u,} follow a FARIMA(O0, d, 0) process and where o = 0.
The long memory parameters d, and d,, for the regressor x; and errors u, are either 0
(short memory) or 0.2 (stationary long memory). The series x, and u, are generated
using the Davies—Harte (1987) algorithm. The set A of feasible break dates is taken
to be the interval [¢7,(1 —¢)T] where ¢ = 0.05, so that approximately 5% of
potential break dates are discarded from each side of the 1, ..., T range. The sample
sizes considered are 32, 64, 128, 256. While a sample of length 32 may be too short to
yield satisfactory results in the long memory case, the Monte Carlo simulation can
still offer useful insights into the performance of the method for the short memory
case. Two functionals are chosen on which to base the test procedure: a
Kolmogorov—Smirnov- (or Bartlett-) type statistic, whose discrete version is

)

and a Cramér—von Mises-type statistic based on L,-distance, with a discrete version

[(1—8)7"]A2 j
M = = .
Cv Z 0 (T)

=y

KS = sup JT
TI</<[(1-8)T]

The bootstrap test is based on the estimated process 5 obtained from (4) or (6). Since
the limiting variance of the process d(z) varies with 7, we also consider a normalised
version [t(1 — r)]l/ 25(t), whose variance is level across A.

The asymptotic test is based on the process o(t) = 9_1/223(1), where 2 and Q are
computed as in (11) and (12), respectively. A levelled version [t(1 — r)]l/ 25(z) is also
considered. The values of the Kolmogorov—Smirnov and Cramér—von Mises test
statistics are compared with quantiles of their asymptotic distribution. These
quantiles are estimated by approximating the limiting processes by their discrete
versions over a grid of 10,000 points spaced equally across the interval [0, 1] and by
simulating the distribution of functionals of these processes by Monte Carlo. The
number of Monte Carlo replications is 10°.
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The results in each of the tables are all obtained conditionally on a set of 5000
replications of a 256 x 2 matrix of independent identically distributed N(O, 1)
elements. Within each replication, 1000 bootstrap samples are generated. The
rejection probabilities are based on 5% nominal significance level.

For the examination of the level of the bootstrap and asymptotic tests, the results
are given in Table 1. In this table and in Table 2, the heading “raw’ denotes the size
of the test based on the original process d(t) defined in (4) or (6) whereas the heading
“norm” refers to the size of the test based on the levelled process [t(1 — )]/ 23(1).
The bootstrap test is nonconservative, with level approaching the nominal value
from above as the sample size increases. Overall, neither KS nor CvM test statistic
can be said to generate better test as far as level is concerned. The actual level tends
to be closer to the nominal value when the memory of the error is of short range.
Levelling the variance of the process é does not seem to bring substantial changes in
the rejection probabilities under the null.

The asymptotic test performs poorly for the range of sample sizes under
consideration. Again, neither of the Kolmogorov—Smirnov and Cramér—von

Table 1
Level of test at 5% nominal level
Bootstrap test Asymptotic test

KS CvM KS CvM
d, d, Raw Norm Raw Norm Raw Norm Raw Norm
T=32
0 0 9.9 9.9 9.4 9.3 46.7 41.5 52.3 34.6
0 0.2 12.3 12.2 11.9 10.5 48.8 43.1 54.6 36.1
0.2 0 9.9 10.4 10.2 9.4 49.7 44.6 56.9 41.0
0.2 0.2 12.2 12.6 12.3 11.0 50.5 45.5 58.8 429
T =064
0 0 9.1 9.2 8.8 7.7 17.9 15.0 15.7 9.4
0 0.2 10.2 9.6 8.3 7.5 18.7 15.8 17.1 10.1
0.2 0 8.8 8.6 8.7 8.1 20.7 18.2 21.6 13.5
0.2 0.2 10.1 9.4 9.3 8.5 19.9 18.2 22.6 15.5
T =128
0 0 6.5 6.3 6.7 6.5 7.6 4.6 6.4 4.7
0 0.2 6.9 6.4 6.7 6.5 8.2 5.0 6.8 4.5
0.2 0 6.4 6.5 6.9 6.7 9.5 6.2 8.5 6.1
0.2 0.2 7.4 7.3 7.2 7.1 8.7 6.4 9.6 7.4
T =256
0 0 5.3 5.7 59 5.9 3.7 1.7 4.0 3.3
0 0.2 5.8 5.5 5.9 5.9 4.0 1.9 4.2 34
0.2 0 5.4 53 6.1 6.1 4.8 2.4 5.2 4.1

0.2 0.2 6.3 6.0 6.1 6.0 4.0 2.2 5.5 4.7
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Table 2
Power against the alternative of one break at 5% nominal level
Bootstrap test Asymptotic test

KS CvM KS CvM
d, d, Raw Norm Raw Norm Raw Norm Raw Norm
T=32
0 0 11.0 19.8 24.9 36.9 43.0 52.1 75.8 70.0
0 0.2 13.0 20.9 26.5 38.4 49.9 53.0 76.8 71.0
0.2 0 11.9 21.0 26.2 37.9 52.3 58.9 81.1 76.2
0.2 0.2 14.3 22.5 27.9 38.4 52.6 58.9 80.5 75.8
T =64
0 0 15.5 53.1 68.3 80.9 17.5 54.7 78.9 82.4
0 0.2 15.6 51.4 66.6 79.6 11.7 54.4 78.4 81.8
0.2 0 16.8 53.4 68.9 81.5 22.4 65.0 84.3 87.5
0.2 0.2 17.5 50.8 66.0 77.1 21.5 60.5 81.0 83.8
T=128
0 0 32.3 91.9 97.5 99.1 16.0 91.5 97.1 98.5
0 0.2 31.0 90.3 96.5 98.7 16.0 89.9 96.3 98.0
0.2 0 34.7 92.5 98.1 99.4 24.5 94.8 98.3 99.2
0.2 0.2 323 89.2 95.0 97.9 19.9 88.8 95.7 99.2
T =256
0 0 79.4 100.0 100.0 100.0 61.7 100.0 100.0 100.0
0 0.2 74.6 99.9 100.0 100.0 100.0 100.0 100.0 100.0
0.2 0 81.5 100.0 100.0 100.0 73.7 100.0 100.0 100.0
0.2 0.2 71.6 100.0 100.0 100.0 49.3 99.9 99.8 100.0

Mises tests dominates the other. Levelling the variance of the process 5
actually seems to slightly damage the null rejection probabilities for a range of
sample sizes.

In order to explore the power of the test, the alternative is set up as a break in the
middle of the sample, 79 = 1/2, with unit size of the jump, 6 = 1. In the experi-
ment the alternative is fixed, that is the size of break does not change with the
sample size. The outcome of the simulation of power is reported in Table 2. In
terms of power, the CvM test appears to be strictly preferable to the KS test for
both the bootstrap and the asymptotic test. This is in agreement with expectation
of Ploberger and Kridmer (1992) who suspected that L,-norm CvM test might
perform better than sup-norm KS test in case of the one-time structural break.
The rejection probabilities of the asymptotic test are larger than those of the
bootstrap test in a majority of parameter combinations. However, such a
comparison is not informative since the actual critical values have not been
corrected to yield 5% level of the tests. An important observation is that levelling the
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variance of the process 5 unambiguously and substantially improves the power of all
forms of the test.

Overall, the outcome of the simulation exercise provides evidence that the
bootstrap procedure proposed in the paper performs reasonably well already for
samples of moderate size. The results of the exercise further seem to suggest that (a)
the bootstrap test is preferable to the asymptotic test, at least for small to moderately
sized samples, (b) Cramér—von Mises-type of test statistic is preferable to the
Kolmogorov-Smirnov-type, at least for one-time change alternatives, and (c)
levelling the variance of the test process ¢ across A may be recommended at least for
some forms of the alternative hypothesis.

5. Conclusion

The paper examines a test for parameter instability in a linear model where
memory of both regressors and errors is allowed to be of a long range. The testing
procedure is based on a process of OLS slope coefficient estimators. The choice of a
continuous functional of this process for constructing the test statistic can reflect
beliefs about the form of alternative and can improve the power of the test
procedure.

A bootstrap procedure is proposed to approximate the distribution of the
test statistic to the first order. The procedure is carried out in frequency domain
and does not require choice of any tuning parameter such as block length
in block bootstrap methods. A Monte Carlo study suggests that the bootstrap
produces good results and is superior over the asymptotic test for moderate size
samples.

There are several natural directions in which the current work can be extended.
First, the condition that Q<oo could be relaxed to allow for greater degree of
collective memory of regressors and errors. In this case, the OLS estimation
procedure could be replaced by a GLS-type procedure. Second, partial structural
change could be considered and gains in efficiency from allowing partial change
evaluated. Third, a bootstrap procedure might be shown to approximate the
distribution of the test statistics to an order higher than first.

Further, under the assumption that the alternative hypothesis holds and is of the
one-time structural break form, the date of break could be estimated and, based on
the distribution of the break date estimator, inference conducted.

6. Proofs

For notational simplicity, the process {x,} in Theorems 14 is taken to be scalar.
Asymptotic results for vector processes can be obtained using Cramér—Wold
device for stochastic processes as defined for example in Lemma A4 of Andrews
(1993).
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Validity of Theorems 1, 2 and 4 rests on the fact that under Conditions 1-5, as
T — o0,

1 A 1
—= Y L= -2 B), (14)
ﬁ; 2n
| =1 b 1
?thmw}mz/—);‘j /0 Iy (t)ha(1) dt (15)
J=1
and
[Tz/z IRy
2 Re— W) jlWa il => Q< B(7) (16)
VT = T 2m
over [0,1], where for any function h, {wj.;,j=1,...,T} is the discrete Fourier
transform of the sequence {A(¢/T)x,,t = 1,..., T} and where the random variables 17;‘

are defined in Step 3 of the bootstrap procedure. In all three cases, the convergence is
shown in two steps. First, convergence is proved for weighted innovation processes {&,}
and {g;}. The result for the processes {x,}, {u,} is then established by showing that the
difference between the left-hand side of (14)~(16) and their weighted-innovation
analogues converges to zero in probability uniformly over [0, 1]. Auxiliary results are
given in Lemmas 1-5 and Propositions 1-7 establish convergence in (14)-(16). The
validity of Theorems 1-4 is then argued employing Propositions 1-7.

Lemma 1. Let h be a bounded variation function on [0, 1]. Let H(A) = 2;1 h(t/T)el".
Then for some 0< C < oo independent of T,

(a) [HI<C/IA] for 4 € (0,7,
(b) [ |H(2)di = O(log j) uniformly over 1<j<[T/2].

Proof. (a) Letting D,(/) = >_;_,e**, noting that

|Dt(i)| =

ei/l(H-l)/Z Sin;ut/z <X I
sina/2 ] |/

for 0<A<m, and using summation by parts, we have

1
h%y-c;ﬂ+mﬂmm|

(4 - (fﬂﬂmﬂ

due to the boundedness cl)thhe total Varlatlon of the function {z.T .
0 Jo 1HG) 12 = [T IHOY 2+ [{ 1 HO) 12 < T /T di+ [l Sdi=
Odogj). O

T—1
WW<Zwm|

%@

Q
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Lemma 2. Let h be a bounded variation function on [0,1]. Let {x,} be a covariance
stationary process satisfying Conditions 1, 2 and 4. Let Hp(1) = Z,Tzl h(t/T)e” and
Kunr(Z) = (1/2nT)|H7(2)|*. Then

LI

uniformly over integers 1 <j<[T/2].

2
1
—1| Kpr(A—=4)dA = O(J—) as T — oo

)

Proof. The function A satisfies assumptions Al, A2 of Robinson (1995b).
Furthermore, the kernel Hr has the property
T

IHT(2)|<M|, 0<i<m T>1

by Lemma 1. Therefore the lemma is valid by the arguments of Robinson (1995b) in
the proof of his Lemma 3. [

Lemma 3. Let {x,}, {x} be scalar covariance stationary processes satisfying
Conditions 1, 2 and 4. Let hy, hy be bounded variation functions on [0, 1]. Denote by
Ay the transfer functions of the processes {xy}, k=12. Let vi(4)=
mvka/(agAk(/lj)) where {wyj,j =1,..., T} is the discrete Fourier transform of the
sequence {hi(t/T)xx,t = 1,...,T}. Then

(@) E{oe()ui(4)} = T-'S°F, It/ T)hy(t/ T) + O(log j /) and
(b) E{ox(4)oi(2)} = O(1)

uniformly over integers 1 <j<[T/2], for k, I =1,2.
Proof. (a) We have

2 T B
o= 3 (13 (P () J i

N -
= %/_R(Ak()v)/ll(l) — Ak(/lj)Al(/Lj))Kklu- - )v_,') d/,
where

Ku2) = 5 HLG)HIG)

and

T
AN
H()=> (=)™ k=12
A ; "(T)e

Condition 4 implies that we can choose >0 such that for 4 € (—#,0) U (0,#), for
some di, d;€[0,)) and for some 0<C<oo, [Ax(2)A;(2)|<CIA~ @+ and
|(d/d2)Ax(A)A[(2)| < C)A|~“+dD=1  Furthermore by Lemma 1 the kernels K;; and
H), display properties required in the proof of Theorem 2 of Robinson (1995a),

namely Ky(4) = O(l/T/lz) for 0<|A|<=m and f?gz, |H(4)|dA = O(log j), k=1,2.
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The proof of part (a) therefore follows as in the first part of case (a) of Theorem 2 of
Robinson (1995a). We obtain
2 (1< t t log j
A s s — *(dAer/)
By = o <T;h"<T>h’<T> Ay = O( Fg )

from which it can be deduced that

Ev v, = %i i (%) hu (%) +0 (loJﬂ> .
pan

as required.
Part (b) follows from part (a) by the Schwarz inequality. O

Lemma 4. Let g be a complex-valued function on [0,n] which satisfies (a) |g|* is
integrable on [0, 7], (b) g(1) = o™ for A — 0+ for some d < % and (c) g is bounded
on any subinterval of (0, ). Then for any =0, >0 such that 2do. + f<1,as T — oo,
20 n 20
oG, L [y,
27'C 0 }vﬁ

1 22

TZ

Proof. Fix ¢>0. For any small 7,

jmum” IWW
T = ,115
i”WWW+L/WWWM
= B B
= :
[7/2] 1\ ]20 T 20
1 ; 1 A
+ Ig(ﬂjﬂ)l _2_/ lg( ;I al a7
=Ty T4
By assumption, for small enough #>0 and 0<i<1,
20 .
|g(flz| < Ci_Zda_ﬁ < Ci—l-&-()
s

for some 6 >0. Therefore

1 7] |g(ij)|2% [nT] —1+6 s
LTy () <on

J=1 Y J=1

Similarly

1[I
2no W

di<crl.
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The third term in (17) converges to zero as T — oo by integrability of |¢|*>. For small
enough 5 and large enough T, the left-hand side of (17) is smaller than ¢&. [
Lemma 5. Let g be a function satisfying assumptions of the previous lemma. Then for

any 0>0,$>0,0=0 and y=1, as T — oo,

N (s o Oog’T), et =1,
(@) (T7)>2,20 " l9(4p1~1og’) /j { o(D), gt B> L,

(b) (T~ *l)cz[m S g(;,)kg(ﬂk) (5218 k) 2 b = (1) if o+ > 1, where
1j = kI = max{1,]j - k|}

Proof. (a) We have

T/2] [T/2 “
& O )|2xlog1 log’ 7'} ”Ig(/t])IQ
N e N
First, for a small positive # as in the previous lemma:
log’ T ¢ Ig(/l )|2‘ log’ TV o, 2(2d—1)] B & 2do—f
Tot+ﬂ Z <C TaﬁLl; Z) CTy IOg TZ]
j=1 =1
O(TW DogT), 2da>1-—p,
= O(T""*Plog’'T), 2do=1-8,
O(T'" " Plog’T),  2da<1-—p.
Second,
T/2 ‘ n
1 [Z” G L[ gD
; )
Tyt % 2 oy I

by integrability of |g|* and 1/ over any interval [2ne, 7], ¢ € (0,%). Therefore

log’T {2 19U _ (1o T _ [Ollog’ 1) atf=1,
TP A1 o(1), a4+ p>1

J=inT1 4

and part (a) is established.
(b) By the Schwarz inequality, the sum in question is bounded by

[T/2 [7/2] T/2] 5-17/2]

lo
T%Z| g0 g’Z kr, \TWZ| ek g’Zk
lo
_CTﬁﬂ ~O(log T) = o(1)

from part (a). O

Proposition 1. Let g be a complex-valued function on [0, 7] which satisfies (a) g(—4) =
G(2) for all 2 € (0,7), (b) |g|? is integrable on [0, 7], (c) g(A) = O(L~%) for ) — 0+ for
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some d < % and (d) g is bounded on any subinterval of (0, 7). Under Conditions 1-3, as
T — oo,

o =1 1/2
2 Ui U= (oio / 91 di) B() (18)
=T
on [0, 1], where B is a standard Brownian motion and where the sequence {{,(t)} is

defined as {{;(v)} = (@< [T)), t=1,...,T}.
Proof. The left-hand side of (18) can be written as

[t7]
Gr(t) = Z ¢ <Z EsCr— \)

where

= -
¢ = 7 ; ().

Denoting d; = (1//T )Elegsc,_s, the process Gy can be written as

[zT]
Gr(t) =Y _ &d,.
=1

The realizations of the process G belong to the space D[0, 1] of real functions which
are right continuous with left-hand limits. The sequence {{,d;, ;-1 VvV 91, 1<t<T}
is a martingale difference sequence. The first two moments of the process G are

EGT(‘E) = 0

E|Gr(0))* = 262 LR LS G ? = EREIG (D).

The variance of the process G therefore increases asymptotically linearly in t and
the weak convergence of the process G7 in (18) holds if the following two conditions
of Scott (1973) are satisfied:

(a) Z, 1E(|d,gt| |F V@T)—> o'C g 27[ |g())|2 dias T — oo and
(b) lel E(d/&,121(1d,E,| > 0)|F 11 Vv %T)—p> 0 as T — oo, for any positive J.

These two conditions have been checked by Hidalgo (2003) under similar
assumptions on the weight function g and identical assumptions on the processes
{&,), {e}. After making appropriate adjustments for complex weight functions and
replacing Lemma 1 there with our Lemma 4, the proof remains valid in our case. [

Proposition 2. Under Conditions 1-5,
LZ-T"Ixu(/lj) Lo'2B(1)
=\ 1L o2
Z 1 zu()v/) ZQ B(T)
over [0,1] as T — oo, where Q = 2n ffnfxx(i)fuu(/l) dJ.
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Proof. It suffices to show that l/ﬁZjT hu(ij)=> Q'2B(z) over [0,1]. The
function

g(A) = *A(J)B(A)

satisfies the conditions of Proposition 1. The present proposition is then proved if

1 A _ Woe)(A)Tu(2)

— Y A()B) | =Ty () we(A,) | ==0. 19

ﬁ; (4)B( ,)( 4GB, etm) (19)

Denoting f; = f(4;) for any function f, the left-hand side of (19) can be written as
Yi(r) + Ya(r) + Y5(1),

where

T— _
W Wy
Yi(x) = Z ( A0/ W:m,./) <% - WsJ)»

T
Wy _
Y)(z) = T_Z ( @)y — W), j) Wej
and
Ys(t) = — §A§v (W”J W ) (20)
300 = 7= BiWi. | = T Wei |-
ﬁj:l B;

Processes Y, Y, and Y3 are of the form
1 Ti _
Yi(f):— ng(T)Wa i = 1a2a3a
VT

where D is a generic constant and V;(t) and W; stand for the third and the fourth
factor, respectively, of the summands of the processes Y;. To prove that Y;—0 for
7 € [0, 1] it suffices to show that finite dimensional distributions of the process Y;
converge to zero in probability and that the process Y is tight. Take any n € N, any
numbers 7y,..., 7, from the interval [0, 1] and any finite complex constants a, ..., d,.
The first moment of >} ,0;Y (7)) is zero for i = 1,2,3. The second moment is

lr 17— - (/21[7/2) -
GaESKEW; W<y > 100l Esi|EW; Wil,
/:1 k=1 J=1 k=1
where
n n
Sjke = ZZW%V @) Vi(tm).
=1 m=1

For i =1,2 the factor V(1) is equal to wyy);/A; — wew),. The total variation of
functions /.(x) = 1(0<x<r1), 7 €(0,1] is equal to one, therefore by Lemma 3
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part (a)
2 .
~(z Dl
sup E’ L Wi < (.)g] (21)
7€[0,1] J

as T — oo uniformly over integers 1<;<[7/2]. Using the Schwarz inequality,

log jlogk\ "> <x & log jlogk\'/?
|ES]k|<D< Tk S loullawml <D %

=1 m=1

When i = 3 the factor V;(t) equals wyr),;. For any 7, ¢ € [0, 1],

[tT] [oT] 2 | [@2o)T]

EWg(‘L’),]M)g(a)k =3 TZZEé 6 en‘)-_mk — 271:7 Z 1t(/1,—/1k).

t=1 s=I t=1

For j = k, the last expression is equal to (a%/2n)[(r A 6)T]/T, while for j#k,

[(tAo)T]

Z elt(/l —2x)

L |sin(((z A 0)T] *‘“) 1

CT| sin(h T|sm(‘f S
1 T 1
ST — Akl 2|j—k|'
In sum,
1
Ewgo i Weork = O ———— 22
W), W)k <| = k|+) (22)

uniformly over (t,0) € [0,1* and 1<j,k<[T/2], where |j — k|, = max{l, |j — kl|}.
Therefore when i = 3,

. 1 D
|Esic| <D LAk
<03 bl <

Turning to the factor W, for i = 1,3 it is equal to w,;/B; — w,;. By Lemma 3 part
(a),
Dlogj

2
< — (23)
J

Wy,

— WF/'
Y
B;

E

as T — oo and by the Schwarz inequality

1/2
EW, Wk|<D<10Jgle]§k> .

In case i =2, W; = w;; and

I K& 111 2 K o2
EWejWor = 5 TZ > Eeggge i = 3T D e = 7,00 =K.
s=1 t=1
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Collecting the bounds obtained for moments of the factors V;(r) and W; and using
Lemma 5, the following results are obtained:

2 plTAITA

TZ > lag u“’gﬂogk o(1),

plrAT/2
log jlogk
Zzuu( eJ g) 1(j = k)

plrA

Z | ,|21°g’ o(1),

(7/217/2)
D log jlogk 1
722 lus k|( & /1o ) o,

|j—kl4

An application of the Cramér—Wold device together with the Markov inequality
establishes convergence of finite dimensional distributions of processes Y;,i = 1,2, 3,
to zero in probability.

Tightness of the processes Y; is implied by the moment condition of Billingsley
(1999, Theorem 13.5, p. 142):

E|Yi(p) = Yi@)P|Yi(D) = Yi(p)’ S(F() — F(0)”", i=12.3, (24)
where o> %, o<p<rt and F is a nondecreasing, continuous function on [0, 1]. The
fourth moment of the difference Y;(r) — Y;(o) is given by

E[Yi(1) - Yio)l*

16 (T/21[T/2[T/2)[T/2]

Z Z Z |gj§kglym”EVjI_/k VIVmHEWjWk WIWI‘H'!
j=l k=1 I=1 m=1

~

T2

where V; = V(1) — V(o). For i = 1,2, V; = (Wxo),j — Wxo). )/ Aj — Wew),j — Weo), ;)
and

Cum( Vja I_/lu le —m)

A(4) A(p) A(0) A(—2—u—=0
= o Tz// ( 1)(2—,71)(71‘1)(4% ‘l>

x H(.+ i) H(u — )H(C + AH(=2 = jt = { = 2 d2dpdL,

where x: = cum(&,, &, &, &), H(A) = Zthlh(l/T)e”;' and h(x) = l(c<x<1). Pro-
ceeding as in the proof of (4.8) in Robinson (1995b), we get

jcum(V;, Vi, Vi, V)| < DP)* P> P)> Pl

m 2
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where

he |
Denoting K, (1) = aT) Y H(2)|?, it can be seen that
14 )
P =(t— 0)/ -1
J . Aj

Ki_oyr(A+4;)di
1
=(t—0)0O (—)
J

uniformly over (z,0) € [0, 1]* and 1 <j<[T/2] by Lemma 2.
Likewise
——1

2 rm
_2_2/
HVE= o )L,

= DP; = (1 —0)O (l>
J

By the Schwarz inequality,
|EVj?k Vlvm|
<leum(V;, Vi, Vi, Vi)l + 3BV PEIVi PEIV I PEIV [

—12 12 ~1/2 —1)2
<Ctt—o)j "k T "m .

2
1 RN
m |H(/L + /L])| dAa.

A4
A;

2

A(2) NE
m|H(i + A7 dA

(25)
Fori= 3, Vj = W¢)—E(o)j and

_ _ ke 1 [T )
cum(V,, Vi, Vi, Vip) = (ZTC)SF/_H//H(AML-)
xH(u— 2 )H( + ADH(—4 — p— { = Ax)dadud]

which by using periodicity of H and the Schwarz inequality can be shown to be
(t — 0)*0(1) uniformly over (z,0) € [0, 1]* and 1<}k, [,m<[T/2]. Similarly,

E|V|* = Ay H(+ )P di<C
Vil = o7 | 1HO+ I dI<C@—0)
and so for i = 3, [EV, ViV V,ul = (t — 0)*O(1).
Regarding the factor W, for i = 1,3 we have W; = w,;/B; — w,; and reasoning as
in case of V; (i = 1,2) we obtain

-7

- Es 74 1/2 51/2 p1/2 p1/2
jcum(W,, Wi, Wi, W,)|<DPy PPy Py

and

E|W, = DPy,,
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BG)y |J* 1

Pg; = —~ 1| —|H &
B, /_ B S HU A+ )P

with H(2) = Y. h(t/T)e" and h = 1. By Lemma 2, Pg; = O(j""), therefore

EW Wi W W, =0G k21712172

uniformly over 1<), k,[,m<[T/2].
Finally, when i =2, W; = w,,

T
e = ke 1 UG It d—dm) 1
cum(W;, Wi, Wi, Wm)—mF;C Ik =0 T

and
— 1
EW;Wi=—I1(G=k) =0(1)
2n

uniformly over 1<), k,[,m<[T/2].
Due to the bounds obtained above for moments of V; and W;, the following
inequalities hold:

[T/2]
EIYi(0) = Vi@ <=5 Y 1991919, — o) k17 m™!
Jikel,m=1

LY
= D(t — o)’ <T1/2 ]f> = D(t — 0)*o(1)

=1

uniformly over (t,6) € [0, 1] by Lemma 4,

[7/2]
BIY>(0) = V2@l S 5 Y 19,00919ul(e — o) 2k 2 2112
Jok,lm=1
L\
= D(t — o)’ (T—1/2 1—;2) = (1 — 0)*0(1)
=17

by the Schwarz inequality and Lemma 4. The same bound applies to E|Y3(t) —
Y3(0)[*. By the Schwarz inequality,

E|Yi(p) = Yi0)P| Y1) = Yp)P <D((p — 0)’(r = ) > < D(x - 0)°
for i = 1,2,3 and the moment condition (24) is verified with « = 2 and F(r) = D7>.

This proves the uniform convergence in (19) and the proposition is established. [

Proposition 3. Let g be a function satisfying the assumptions of Proposition 1. Let hy,
hy be bounded variation functions on [0,1]. Let {wpzj, j=1,...,T} be the discrete
Fourier transform of the sequence {h(t/T)¢,,t = 1,...,T}. Under Conditions 1 and 2,
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as T — o0,

o T-1 0.2 n ) 1
T2 a0 S 5 [ 10@Pa [ m@hd
= —n

Proof. Denote g; = g(4)), hu = hi(t/T) and

T-1
2n ) -
=T E 1gj 1" Wi, & jWhyz -
1

Then
2 T7-1 1 T T ) .
EZ =20 lg P 5= D B&lihhne ™
j=1 =1 s=1
O-g T-1

n 1
= i Zhuhz,e—; [ oo [ oo
b 0

by Lemma 4. Further,

lTl T

BIZP = —5 > Mgl D EEEEE sl e =0k
k=1 t,s,r,o=1
o, T=17-1 ), gd =171 T 2
:Ff‘ 9,911 Zhnhzz 72 1996 D il
j=1 k=1 =1 j=1 k=1 =1
o4 T=1T-1
+_§1 | gk| th 1t()-—)k)zh2 —it(Aj—Ag)
j=1 k=1
ot T=1T-1 T G
F 250D lgjorl | i)
J=1 k=1 =1

The first term is O(1/T) by Lemma 4. Proceeding as in the computations leading to
(22), it can be seen that

T
th 1[(? )k)< cr ] = 1,2,
=1 |] k|+

where |j — k|, = max{l, |j — k|}. Therefore the third term is bounded in absolute
value by

[T/2][T/2]

T2 Z Z |g]gk| k|2

Jj=1 k=1

which is o(1) by Lemma 5.
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Similarly, the fourth term is o(1). The second term is dominant and converges to

2 rm 1 2
<§—n [ e az | hl(z)hz(z)dz>

by Lemma 4. In sum,
2

2 T 1
EZ - ;i;/ |g(x)|2dz/ I (Oha(6) dt

and E|Z|?> — |EZ|*. An application of the Markov mequallty completes the proof of
convergence of Z in probability to (a%/2n) [” lg(2)]? dA fo hi(Hhy(H)de. O

Proposition 4. Let hy, hy be bounded variation functions on [0,1]. Let {wpe,j =
I,...,T} be the discrete Fourier transform of the sequence {h(t/T),,...,t=
., T}. Under Conditions 1-5, as T — o0,

1 T—1 _ p 1 1
T;WIHX’/WMX’/_)EZ/(; hi(hy (1) dt

where 2 = Exf.

Proof. The function g(1) = A(1)/+/2x satisfies the conditions of Proposition 1. It is
sufficient to prove that

Wh x,/wh X, Jj — P
—Z| 4l ( IIA |27 — Wi, Whe,j | =0, (26)

where 4; = A(4;). The left-hand side is equal to

T-1 —_
1 Whx. i Wiy x.j
2 Whix,j hxy  —
—E |4 — Wpé&,j —— — Wp¢j
T = J A] 16,/ A] &,
T—
M}hl)v;]
E = Whiéj | What.j
hyx,j
+ = § |A | Whlg,]< = — Wiy, j)

By the Schwarz inequality, the expectation of the modulus of the first term is

bounded by
N 172 N 12
> <E M/hzx‘j ‘ >

W, Whixj

— Whéj — Whye¢
16/ Aj 26,/

T/2]
Z |4 |2<
[T/2

Z| 8 — o)
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by Lemma 3 part (a) and Lemma 5. A bound for the expectation of the absolute
value of the second term is

[T/2]
ZIA |2<
[T/2 1/2
lo

ZlAI( g’) — o(1)

by Lemma 3 part (a) and Lemma 5. The third term can be bounded in the same way
as the second term. Therefore (26) holds and by Proposition 3

Wh, ‘c,/

) 1/2
241/2
Whlg“,j (E|Wh2§“J| ) /

1 T—1 p O-% T 1 5 1
?j:zlwmx’/w}lzx’j_) E/O %|A(/L)| d)v/o hi(Ohy (1) dt

1
= L2/ hi(Hhy (1) dt. O
21 0

Proposition 5. Under Conditions 1-5, with a function g satisfying the conditions of
Proposition 1,

20.2 n

4m2 2n

|g(z)|2 d

1%
= Z 9GNP Wi W0
=

uniformly over (t,0) € [0, 1].

Proof. Denote g(4;) = g;. First moment of the expression on the left-hand side is

T-1 2.2 1 T-1
[(tAo)T]o:0; 1
Z |gJ| Ew, (T),,wg(r)i,E|W;,,|2 T 4;28 ?Zl |g,-|2
o*%og 1
— (T A0) - |g(/1)| dz
by Lemma 4 because
1 [7] [e7] [(t A 0)T] 0%
AT s i(1=9)4 _ _¢
EWC(:),/WC(G)J = Z Z E(f E e\t T o (27)

Second moment of that expression is

1 T-1T-1 5 ) ) . 5
72 > 199k PEwio (o) Wi Weior kElwe P Wi
Jj=1j=1
1 T-1T-1
2 - - 2 2
2 |gjgk| Cum(WC(r),/a We(a)j> Weo) ks WC(J),k)E|We,j| |Ws,k|

j:l =1

~.
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~

_|_
S =
iy

~.
Il

—17-

Z 19,9k EWeo) W) e Wiy k EWweg [P Wi |
1

~
|
~

2 - - 2 2
19,9k " EWe0)j Wi s EWee) i Wi k ElWe " [ We k|

+
=
i
g

\J
L
.

19,9k Ewee) jwiio)k EWeey kW) jEDWes [P (28)
1

+
=

1

~.
Il

~.
Il

Now
cum(We(o),j> Weio)is We()ks We(o) k)

(A -1 T 1
Ke 1[@no)T] _ o(-)

= W ; Cum(éty 6[3 ét» éf) = W? 7 -

uniformly over (z, o) € [0, 1]*. The fourth moments of ¢ are finite, therefore the first
term of (28) is bounded by (D/T?) Z[T/z Z[T/zllg/gk|2 which is O(1/7) by Lemma 4.
Further, from (22),

C

Ewg) e < —

IEWe(0)jWeo).kl kL.

uniformly over (z,0) € [0,1]* and 1<j,k<[T/2], where |j — k|, = max{l, |j — kl},
and the third term of (28) is bounded by (D/TZ)Z[T/2 Z[T/zllg,gkl 1/1j — k|2 which
is o(1) by Lemma 5. Similarly, the fourth term is 0(1) Therefore we are left with the
dominant second term:

T-1
T Z |gj| I/VL(‘L'),]I/Vg(O'),]|WF,/|

[(T/\G)T) T—1T-1 5 s s

- 7 |g'gk| E|Wz:‘| |Wsk| +0(1)
2 T2 ] J 2

( T 4n> T oo

Since

_ _ K
Cum(wz:,/'y Wejs We ks Wz:,k) Ar P T2 Z cum(s,,, S5 €15 6[) - m
and Ew,jw.x = (62/2m)I(j = k), we have

T—1T-1

2 2 2

- 19;91c|"Elwe 1" we k|
=1 =1

T-1T-1 1
1

1 | T=17-1
4TZTTZZZ|QJ . 2Tzzz;|g]gk|
j=

Jj=1j=1 J
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4 4 ot 1 = 4
+ 377197l 452?;"%'

T—1T-1

40;;'2 77 Z Z |g;9¢|? + o(1)

by Lemmas 4 and 5. That means that

T-1 2 2 2 2
R A WPNCRY
jz: |g]| WZ(T)/WL(J)/|W£,]| - (T A O-) 47'[2 E . |g(/“)| L .

The second moment of the process (1/ T)ZjT:_l1 |gj|2w5(r) ey IWej|* therefore
converges to the square of the limit of its first moment. By the Markov inequality,

2 2

1 = 0,0z 1 ,
_ZU/I WL(r),/WZ(a),/|W£,/| _>(T/\O') . 2 2 |g(/“)|2d}~
j—l

for each (,0) € [0, 1]*. Since the limiting function is continuous and increasing in t
and o, the convergence is uniform. [

Proposition 6. Let hy, ..., hy be bounded variation functions on [0,1]. Let {x,} be a
covariance stationary process satisfying Conditions 1,2 and 4. Let {wy, x;,j = 1,..., T}
be the discrete Fourier transform of the scalar sequence {h.(t/T)x,t =1,...,T}, r =
1,....,4 Let I \pxj = WhxjWhy,j Then

T-1

1
T Z Ihl,’c,hgx,jlll3x,h4x,j = Op(T)'
=1

Proof. We have

Tl Tl

TZIIZ1‘C/12‘C,/I/13’C/’!4Y,] = TwaJ(aj +b + ¢ +d) (29)
=1 =1

where

| Lnxoxi ) Tniemej \ [ Lnaxhaxi 5 Thie ey
a; = —2n 5 —2n 5 s
fxx,j O-g fxx,i O-cj

Lpyx o Themey\ o Inehaei

bj = —2n 5 21 5 5
f i g
XX,/ <

(1
Dz (Lnsxhaxj Lnye gz
¢ = D ey 3NN 36,1146y

<
2 2
O¢ o ¢
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di = — Ineme inse e j-
O¢

The second moment of the first factor of a; is
. 512
Efuyjtiy; — 10" = ayj + @,
where

N2 W V2n

u,,zj = , Ur,j = —Wh,f,/'a
s A o

ay; = cum(uyj, Uy, Uy, ty;) — cum(uyy, iy, Dy, U2))

— cum(vy;, Baj, U, Uzj) + cum(vy, Uaj, Bij, U2)
and, denoting A, = + t V(8 Thg(t/T) for r,s = 1,2,

ay = (Bujiiny — hyo)(Bliyjug — hiz) + (Buyjiiy; — hiy) + (Bttyju — hio) + b,
+ (Buyuy; — hi)(Bigjua; — hyn) + (Buyty; — hyy) + (B — hao)
+ hithy + BuyjuyEugitiy; — (Buyjitn; — hio)(Eoyjv0; — hin)
— (Bujiiyy — hi2) — (EByjvy; — hio) — Iy — (BuyByj — b )(Etigjvg) — )
— (Buyjo1j — hn) — (Baigjvg; — ho) — hiihay — Bunjuy Bt vy
— (Bvyjvo; — hio)(Buyjuz — hia) — (Bvyvy; — hin) — (Buyjug; — hiy) — h

— (Bvyjuy; — hi)(Evyun; — hap) — (Bvytty; — hiy) — (Evyjua; — ha)
— hi1hy — BvyjugiEvyjuy; + (Bvyjvo; — hi2)(Evyjvy — hia)

+ (EvyBy) — hia) + (EByva5 — o) + Ity + (Bvyjty; — b )(Evyv; — )
+ (Ev1jv1; — hi1) 4+ (BDyjvpj — ho2) + hiihao + Evyv Evoyvy.

The term ajy; is equal to

ADAW _\ [(ADAA—p =0
aé(znf TZ/ //( genly )( |A(2)° 1)

X H (4 2)Hop = A H\ (4 A Ho(—7 — = = 7 ddpdz, (30)

where H,.(A) = S h(t/T)e", r=1,2. Proceeding as in the proof of (4.8) in
Robinson (1995b), expression (30) can be written as a sum of components of three
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types. The first component is

A\ (AW
a(zn)3T2/ //( )(Aj_1>
A©) A=A —p—=90)
X (T]_ 1) (T— 1)

X H (4 + ) Ho(u — ) H(C+ A)Ho(—=A — p— { — A;)didud]

where 4; = A(/;). Using the Schwarz inequality, periodicity of the integrand and the
fact that ffn |H.(7)|> dA = O(T), this component can be shown to be bounded in
absolute value by

CPy Py,

2

where
A(A
(4) K.(A—A)di

py= [0
B

and K.(1) = (1/2zT)|H, ().
A typical representative of the second type of component of (30) is

k 1 1 (7 A(J) A(p) A0
%@?FL//CZ‘Q<4_QGZ_Q
X H (4 + ) Ho — Z)H1(C + A Ha(—2 — o — C = 7;)d2dudl

whose absolute value can be similarly shown to be bounded by

-1

cp, P! 1/2

The last type of component is exemplified by

ot (271)3 TZ/ / / (A(i) ><A(f) 1)

xH,u + /b)Hz(M — AH (4 I Ho(— — p— = ;) didpdC

"ot (2n) T2/ //(A(A) ><A(f) 1)

s H\ (o4 A Ha(—=A = { = 0 = i) H\(C + A)H(0 — 77) d7.d0dL

“sarr O )0

X H (G + A)H\(C + 2)HP (=4 — £ —22;)dAdl (31)

since

/ H,(u+ )H, (v — 2)d/ = 2nHP (u + v),
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where H?(2) = Y.L 1i2(t/ T)e*. Since [*_|H?(2)|d). = O(T), the modulus of (31)
is bounded by
CcT~'?py;.

By Lemma 2 the term aj; is O(G~2 432 4 j~'T~'/?). Applying Lemma 3 gives
ay; = O(1). Therefore the first factor of g; is O(1). Likewise, the second factor of g,
and therefore g; itself, is O(1).

Denoting h,, = h,(t/T), the second moment of Ij,¢,¢; is

E|Ih16hzs,/| in 2TZZZZZ/111h1vh2rh2bE&8 €,6,€ 1(1‘ s+r—v));

=1 s=1 r=1 v=

1 4 ! 212 4 L 242
= 42 T2 Ee; Zhlrhzr + 0, Zzhlths
=1 py

=1 s=1
SF#L

T T T T
O'g E E /’llthlshz,/’lzsel(t_‘v)ﬂj+O'g g E hithighoshy,
=1 =1
S#EL

—0(1)

because the fourth moments of ¢ are finite. In the same way, the factor Ij,¢p,¢; is
O(1). Using the Schwarz inequality, the sum a; +b; + ¢;+d; in (29) is O(1)
uniformly over integers 1<j<[7"/2]. The proof of the proposition is then completed
by applying Lemma 5 part (a) with g(1) = 4(4). O

Proposition 7. Under Conditions 1-5, as T — oo,

T/2 *
S /]wlw,,,-lnj b [(LQV2B()
—

2 Re
L Q2 B(r)

Z =1 w7(1),1 lwaln;

over 7 € [0,1].
Proof. Define n}._; =7 for j=[T/2]+1,...,T — 1. Then

[7/2]

2Re—Zw~(r)J|ww|nl \/_Z Wo il way lnf + (o),

where  r(1) = T_I/ZWZ(T),T/2|W17,T/2|77*T/2U(T even) = O,(T~'/?)  uniformly  over
7€[0,1]. It is therefore sufficient to show that T*I/ZE]-T:_IIWZ(T),;lwl;ﬂ
ny =p>(1/2n)QI/ZB(7:) over 7 € [0, 1]. We need to prove that

(a)

1 T—1

p 1
7 2 i) = 50! B, (32)
=1
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(b) T-1 .
7F > GwewiWegln} = wa fwuln) =0 (33)
=1
and
(© T-1 b
N > ey jlwigln; = wajlwaln?) =0 (34)
=1

over 7 € [0,1] for any &>0 where g(1) = A(A)B(4) and g; = g(4)).

To prove the convergence in part (a), we need to show that finite dimensional
distributions of the process Y = T’l/zziT:]I gWi(e),jIwe,iln; converge in probability
to the finite dimensional distributions of a centered Gaussian process with
covariance function K(t,0) = (t A ¢)(1/47°)Q and that the process Y7 is tight.
First, E*Y7(z) = 0 and

T—1
var* Yr(1) = TZ'%' W 1P 1we I,

where E* and var* denotes mean and variance, respectively, taken conditionally on
data. By Proposition 5, the last expression converges in probability to

1 T
T 4 lg(2)2 dA—4—Q

Second, we need to show that the Lindeberg condition is satisfied,
-1 »
> BTV A Bywiey jlwi I PUT 2 AiBiweoy jlweg Inf 1> >2) = 0 (35)
j=1

for each ¢>0.
We examine sup,(1/T)|A4;B;j|*|I¢¢1..;]. From An et al. (1983), we have

(2 ! |w |2><1 a.s
..... [T/Z] o2logT" " o
and
2n 1
sup —7|W3‘|2 <1 as.
j=1,..., [T/2]<0'§510gT “)
Therefore

sup |AB| |I%JI,38J|<Dsup |AB|2log T as.
j=1,.., T/2]

<DT2‘1_]log2 T as.,
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where d =d, +d, < % As 77, given the data, are independent identically distributed
variables, the sum in (35) is bounded by

[7/2]
iy 2 2
Xl PUim P> eT' 2 Mog 2 1) 2 > 148y e 1
=1

The first factor converges to zero as T — oo since 57 has finite moments and
1 —2d>0. The second factor is Oy(1) by Proposition 5 with g; = 4; B,. Therefore
the left-hand side of (35) is o,(1) dnd by the Lindeberg—Feller central 11m1t theorem
the pointwise convergence

T-1

1
fzgj‘vl(f),/|‘vs,/|ﬂj —>N(0 y 29)

j=1

in probability is proved.
Further,

-1
covi(Yr(7), Yr(0)) = Zlgjl W) W)W

which converges in probability to (t A ¢)(1/4n%)Q by Proposition 5. The proof of
convergence of the finite dimensional distributions in part (a) is completed by using
the Cramér—Wold device.

We now prove tightness of the process Y 7(t). By Theorem 13.5 of Billingsley
(1999) it is sufficient to check the moment condition

E*| YT(p) — Y7(@)P|Y7(x) = Yr(p)* <(1 + op(D)(F(2) — F(0))", (36)

where oc> , 0<p<r1, Fis a nondecreasing continuous function on A and op(1) is
uniform over (t,0) € A*. Denoting w; = Wwy(); — We(s);» We have

T—
4
E*|Y7(1) = Yr(o)* = Z lg;1* 1wyl w1V E* I 1
=
o) T-1T-1
2 2
+ |g;9x 71wy 1w 2w P w2 E* 7 1P 7 |
j=1 k=1
k#j
1 T-1T-1
2 %2
+—= 2 g W Wk|“’z,/| |Wzk| E*Vlj* '/Ilt
j=1 k=1
k#j
C T—-1T-1
< Z| 911w P 1w w1 we e
J=1 k=1

1 T—1 2
202 2
=C 7 N T I
=

~.
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By Proposition 5,

2
lel . 1
C<7j;|9/|2|wjlzlws,;|2> = C(t —0) 42

over (t,0) € [0, 1]>. It follows that by the Schwarz inequality the left-hand side of (36)
is bounded by D*(r — 0)*(1 + op(1)) since (1 —p)p — o)< (T — 0)’. The moment
condition (36) is thus verified with F(t) = Dt and o = 2. This establishes tightness in
probability of the process Y7 and completes the proof of the uniform convergence in
part (a).

For the convergence in part (b), we have

E* Wes > (A Bwio)j1Wes| = Wegey WD}
=
p ! Wa(2),j Wy i
<= MABI= T = Wil = Wa
S YPLIC e

p ! Wo(r),
+ 77 Z: Ay By |~ = o e
Jj=
p = Wi
+ T ; |4;Bj| W), 7;’ — W

and proceeding as in the proof of Proposition 2 above it can be shown that the last
expression is op(1) uniformly over 7 € [0, 1].

To verify the convergence in part (c), we write the difference between errors and
residuals under the local alternative as

N o ~ A 1
U — iy = (& — o) + (B — P)x; + 62, — —=x,hy,

vT

where Z, = z,(%) = x,0(¢<[tT]) and h, = h(¢t/T). Therefore

A A 1
Wiy — Waj = (B — B)wy,j + 0w, — \/—Twhx,/a

j=1,...,T =1, where wy,; is the discrete Fourier transform of the sequence
: 2 2

{hix,, 1<t<T}. Since [[wy, ;1 — [wi jII7< wy,j — wa, ;17

2

=
E* ﬁzl W) (IWasl = was g
j:
71

1 2 2 2
= ?Zj W1 IWg| — Iwag IPE* 7|
J=

T-1
2 2
< ?Z W) |7 Wi — wayl
=
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. 1 -1
3B =B D W Plw
J=1

R I =L ) )
+ 36 ?;IW:(I)JI (W2l

3 Il
+ FZ IWz(r),/'|2|thJ|2- (37
=

By Theorem 2, B— p= Op(T_l/z) and 6 = Op(T_l/z). Also, by Proposition 6 with
functions /1(x) = hy(x) = 1(0<x<1) and h3(x) = hy(x) = [(0<x <),

| =1 , )
7 2 W=l Wz 1™ = 0p(T)

=1
uniformly over t € [0, 1] and similarly for the other sums. Therefore the right-hand
side of the last displayed inequality is o,(1) uniformly over [0, 1]. The uniform
convergence in (34) is established by using the Markov inequality. [J

Replacing |w,;|, |wy,;| and |wg;| in (32)-(34) by w,;, w,; and w;;, and drawing
n; from any complex distribution with mean zero, unit variance, finite fourth
moment and with En}“z =0, it can be seen that the proof remains valid with only
small modifications. In particular, expressions for var* Y r(t) and cov*(Y r(z), Y r(0))
do not change, inequalities in part (a) for suprema in the Lindeberg condition and
for E*| Y 7(t) — Y 7(0)|*, in part (b) for the conditional first moment and in part (c)
for the conditional second moment continue to hold with minor changes in
intermediate steps where required. This observation shows that there are several
valid modifications of the basic bootstrap procedure described in Section 3.

Proof of Theorems 1 and 2. Under the local alternative,

ﬁ<[>’(f)—ﬁ>

3(1)
_ ) _ ) -1 T-1
(XA ) S5 ) 72 Ll %y)
- T-1 -1 -1
% j=1 sz(;tj) l]*z]g] Izz(;hj) ﬁzj‘:] Izu(ij)
_ _ -1 T—1 _
lT jilllxx(/lj) % ]'Tzlllxz(/lj) ﬁijl Wx,jWhx,j
+ | ~T-1 , | ~T-1 1 T-1. ’ (38)
7 2=t L)) 7201 1==(%) T7 D=1 Wi Whj

By Proposition 4 with 41(x) = 1 and h(x) = I(x<71),

IT_I P T
- ; I..(0)— ZZ‘
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Similarly, (1/7)3/' Le(i) =>(1/20)% and 1/TS 15" 1.2(2)) > (¢/21)%, and there-
fore

o TG 350 1)) Loy 1
L~T=1; (3 1<=T-1 = ® ﬂz
Tijl sz(/hj) TZ/=1 Izz(ij)

over [0, 1] as T — oo. Since matrix inverse is a continuous function for 7 € 4,

_ _ -1
(%Z,_Hlmuj) %zf_#zﬂw)> =><1 .
Gy 5 )

T T

-1
) ®2nx!
T T

over A. Under the null, that is when & = 0, the second term on the right-hand side of
(38) vanishes. By Proposition 2,

JR(Bo-B\_ 1 (2'Q"aB) - Bw)
(1) (1 —1) \ 27'Q"2(B(r) — tB(1))

and Theorem 1 is proved.
Under the alternative, ##0 and by Proposition 4

1 T-1 1 T
— Wi j=—=>=—2 [ h(t)dt
\/T ; Wz iWhyj= e /0 ( )

over [0, 1]. Therefore the second term in (38) converges to

1 t [! h(u) du
(=) \ (f7 hu) du — © f, h(u) du)
and Theorem 2 is established. O

Proof of Theorem 3. By Theorem 1 of Robinson (1998):

47‘62 T-1 . )
T 2 L) = €. (39)
j=1

Proceeding as in part (¢) of the proof of Proposition 7, write
. A 1
Wi — Waj = (B — B)wxj + 0wy — ﬁwhx,/-

Therefore

2 _
11212,/' - qu,[ = |Wu,j - Wﬁ,}" - 2R€(Wi:,/' - Wu,j)wu,/
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and

1 T—1
S =Y wlP 1wy — wayl?
S T Xy u,j u,j

J=1

1 T-1
T Z Ixx(ij)(lflit,j - ]uu,j)
=1

1 7=l
2
+TZ W il“ Wiy — wajllwel.
J=1

The first term is op(1) as shown for (37) in Proposition 7, part (c). By the Schwarz
inequality, the second term is bounded by

= 1/2 = 1/2
D Py —wa P | Y P

=1 =1

whose second factor is Op(1) because of (39). Therefore indeed 020 O

Proof of Theorem 4. Write

B —p I )+ 35 ey)
T( 5 >= I Ty gy AT
d (7) 7=t A=) 7205 =)

T/2
J7 4wl
x2 Re

T/2
S S lwig

Applying Propositions 4 and 7, it can be seen that Theorem 4 holds. [
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