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Abstract

In this paper, we consider the problem of testing for a change of the marginal density of a strong mix-
ing process. The test statistic is constructed based on the sequential kernel estimate. In order to derive the
asymptotic distribution of the test statistic, we 0rst show that a functional central limit theorem holds for the
sequential density estimator under some regularity conditions. Based on the result, we show that the limiting
distribution of the test statistic is a function of independent Brownian bridges.
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1. Introduction

Since Page (1955), the problem of testing for a parameter change in random samples has generated
much interest in many areas of statistics. For a review of earlier work, readers are referred to Hinkley
(1971), Brown et al. (1975), Zacks (1983), Cs=orgő and Horv?ath (1988), Krishaiah and Miao (1988),
Brodsky and Darkhovsky (1993) and Cs=orgő and Horv?ath (1997). Since economic time series
are frequently aBected by monetary policy and critical social events, the change point problem
in time series models has attracted considerable attention from many authors. See, for example,
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Wichern et al. (1976), Picard (1985), Kr=amer et al. (1988), Tang and MacNeil (1993), Incl?an and
Tiao (1994), Antoch et al. (1997), Lee and Park (2001), and the papers cited in those articles.
Bai (1994) considered the problem of testing for a distributional change of the errors in stationary

ARMA models and proposed a test based on the residual sequential empirical process. See also
Kanagawa et al. (1997). The concept behind Bai’s approach is to compare the diBerences between
the empirical process based on the 0rst part of the residuals and that based on the rest of the residuals,
and accept the existence of a distributional change when the diBerences are large. In his paper, the iid
assumption imposed on the errors plays an important role since in that case the residual sequential
empirical process converges weakly to a Kiefer process. However, his result does not hold for
dependent observations since the relevant empirical process has a limiting process whose covariance
structure depends upon their autocorrelations. As pointed out by Durbin (1973) and Lee and Wei
(1999), this causes serious problems in calculating the critical value for a given signi0cance level.
It is well known that the diJculties arising in the empirical process from dependent observations
are often circumvented by adopting the density estimation approach. For example, see Takahata and
Yoshihara (1987) and Lee and Na (2000). Motivated by this viewpoint, we consider a procedure to
detect a distributional change based on density estimates.

This paper is devoted to testing for a change of the marginal density of dependent observations. In
particular, we focus on strong mixing processes since they cover a large class of stationary processes
including the famous ARMA and GARCH models. The organization of this paper is as follows. In
Section 2, we provide the main result of this paper: we introduce the sequential kernel estimate
of the marginal density in the same spirit of Bai, and construct a basic process from which a test
statistic is generated. Then a functional central limit theorem for the sequential kernel estimate is
established under certain regularity conditions. Based on this result, the limiting distribution of the
test statistic is derived. Finally, in Section 3 the proofs of the results presented in Section 2 are
provided.

2. Main results

Let {Xt; t¿ 1} be a stationary strong mixing process satisfying

�(k) = sup{|P(A ∩ B)− P(A)P(B)| : A∈Mt
1; B∈M∞

t+k} → 0; (2.1)

where Mb
a = �(Xa; : : : ; Xb) is the �-0eld generated by Xa; : : : ; Xb and 16 a¡b6∞. Suppose that

one wishes to test a change of the marginal density of {Xt}. Towards this end, we set up the null
and alternative hypotheses:

H0: X1; : : : ; Xn have a common marginal density f vs.
H1: For 0¡�¡ 1,

(i) X1; : : : ; X[n�] have a common marginal density f1,
(ii) X[n�]+1; : : : ; Xn have a common marginal density f2,

where f, f1 and f2 are all assumed unknown.
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For 06 s6 1 and x∈R, the sequential density estimate is de0ned by

f[ns](x) =
1

[ns]h

[ns]∑
j=1

K
(
x − Xj
h

)
;

where h is a bandwidth satisfying

h= hn → 0; nh→ ∞ as n→ ∞;
and K is a kernel function.
When s = 1, f[ns](x) becomes the usual kernel density estimate fn(x). Provided that H1 holds,

f[ns] can be viewed as an estimate of f1 in (i). Similarly,

f∗
n−[ns](x) =

1
(n− [ns])h

n∑
j=[ns]+1

K
(
x − Xj
h

)

indicates an estimate of f2. Therefore, it is natural to consider f[ns](x) − f∗
n−[ns](x) as an estimate

of f1(x)− f2(x). Keeping this in mind, for 06 s6 1 and x∈R, we de0ne

dn(s; x) =
(

nh
fn(x)‖K‖2

)1=2 [ns]
n

(
n− [ns]
n

)
(f[ns](x)− f∗

n−[ns](x)); (2.2)

provided fn(x) �= 0. If fn(x)=0, (2.2) is de0ned to be zero. Here, ‖K‖2 denotes
∫
R K

2(t) dt which
is assumed to be 0nite. A large value of dn(s; x) will indicate a situation in favor of H1.

Provided that H0 is true, we can de0ne a partial sum process, which provides an insight for
dn(s; x),

gn(s; x) = (fn(x)‖K‖2=nh)−1=2 [ns]
n

(f[ns](x)− Ef[ns](x))

= (nhfn(x)‖K‖2)−1=2
[ns]∑
j=1

(
K
(
x − Xj
h

)
− EK

(
x − Xj
h

))

if fn(x)¿ 0, and gn(s; x) = 0, otherwise. Then we can write

dn(s; x) = gn(s; x)− [ns]
n
gn(1; x): (2.3)

Note that for 0xed x, the partial sum process {gn(s; x); 06 s6 1} can be viewed as a random
element in the D space generated from a double array of random variables {K((x − Xj)=h); j =
1; : : : ; n; n = 1; 2; : : :}. It is well known that for independent X1; : : : ; Xn and for 0xed x, the process
{gn(s; x); 06 s6 1} converges weakly to a standard Brownian motion if and only if the sequence
{gn(1; x); n=1; 2; : : :} converges to a standard normal random variable in distribution (cf. Billingsley,
1999, pp. 147–148). We will see later that an analogous result can be shown to hold in a strong
mixing process.

Before we state our main results in this paper, we need to list some conditions imposed on the
kernel function K and the density f.

(K1) The kernel function K is a symmetric density function such that

‖K‖∞ = sup
t∈R
K(t)¡∞; lim

t→∞ tK(t) = 0;
∫
R
t2K(t) dt ¡∞:
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(D1) The marginal density f is positive, twice continuously diBerentiable and

sup
x
f(x)¡∞; sup

x
|f′′(x)|¡∞:

(D2) For each t1¡t2, the joint density ft1 ;t2 of (Xt1 ; Xt2) exists and

sup
t1¡t2

sup
x1 ;x2
ft1 ;t2(x1; x2)¡∞;

and for each t1¡t2¡t3¡t4, the joint density ft1 ;t2 ;t3 ;t4 of (Xt1 ; Xt2 ; Xt3 ; Xt4) exists and

sup
t1¡···¡t4

sup
x1 ;:::;x4

ft1 ;t2 ;t3 ;t4(x1; x2; x3; x4)¡∞:

Remark 1. Condition (K1) is assumed in many studies, and Condition (D1) is satis0ed by a large
class of densities including normal densities. For independent samples, Conditions (K1) and (D1)
are suJcient to guarantee the consistency of the density estimator. However, for the strong mixing
case, we need the additional Condition (D2) (cf. Bosq, 1996, Theorems 2.1 and 2.3).

The following result shows the weak convergence of {dn(s; x); 06 s6 1} to a Brownian bridge.

Theorem 2.1. Suppose that (K1) and (D1)–(D2) hold, the strong mixing coe7cient �(k) de8ned
in (2.1) satis8es

�(k) = O(k−�) for some �¿ 3

and the bandwidth h= hn satis8es

hn = cnn−1=5; (2.4)

where cn is any sequence with cn → ∞ and cnn−� → 0 for all �¿ 0. Then under H0, as n→ ∞,

dn(s; x)
w→W 0(s);

where {W 0(s); 06 s6 1} is a Brownian bridge.

Remark 2. Condition (2.4) is a usual condition in the density estimation context and log n can be
considered as a possible candidate for cn. The order except for cn is optimal in a minimax sense
(Bosq, 1996, p. 44).

If we de0ne

Tn(x) = max
06s61

|dn(s; x)|;

it is transparent that a large value of Tn(x) indicates the distinctness of f1(x) and f2(x), which
implies the existence of a change point. However, judging from only one point can lead to a false
conclusion since a small value of Tn(x) at only one value of x does not necessarily mean the
coincidence of f1 and f2. Hence we should consider Tn(x) at several values of x simultaneously.
The following theorem concerns the weak convergence of dn(s; x) for 0nitely many values of x.
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Theorem 2.2. Let x1; : : : ; xm be distinct real numbers. Under the conditions in Theorem 2.1, as
n→ ∞,

(dn(s; x1); : : : ; dn(s; xm))
w→(W 0

1 (s); : : : ; W
0
m(s)); (2.5)

where W 0
1 ; : : : ; W

0
m are independent Brownian bridges.

Remark 3. It seems impossible to guarantee the weak convergence of {dn(s; x); 06 s6 1;
x∈ (−∞;∞)} since random elements in the D space, all of whose projections to Euclidean space
form independent random variables, may not exist.

Now we are ready to de0ne the test statistic. For distinct x1; : : : ; xm, we de0ne

Tn = max
16i6m

Tn(xi):

Then we obtain the main result of this paper.

Theorem 2.3. Assume that the conditions of Theorem 2.1 hold.

(1) Under H0, as n→ ∞,

Tn
d→ max

16i6m
sup

06s61
|W 0
i (s)|;

where W 0
1 ; : : : ; W

0
m are independent Brownian bridges. We reject H0 if Tn is large.

(2) Suppose that both f1 and f2 satisfy Conditions (D1) and (D2). Then under H1, as n→ ∞,

Tn
P→∞

if

f1(xi) �= f2(xi) for some xi ∈{x1; : : : ; xm}:

The above theorem demonstrates that Tn constitutes a consistent test for testing H0 vs. H1. It
is worthwhile to point out that one has to 0x the points x1; : : : ; xm; note that if the number of
An={xn1; : : : ; xnm} goes to ∞ as n→ ∞, Tn de0ned over An diverges to ∞ with probability 1 under

H0, viz., Tn =maxx∈AnTn(x)
P→∞.

3. Proofs

Since Theorem 2.1 is a special case of Theorem 2.2, we only prove the latter.

Proof of Theorem 2.2. It suJces to show that

(gn(s; x1); : : : ; gn(s; xm))
w→(W1(s); : : : ; Wm(s)); (3.1)
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where W1; : : : ; Wm are independent standard Brownian motions, since (3.1) implies (2.5) in view
of (2.3). In order to prove (3.1), we use the Cramer–Wold device to verify that

Gn(s) =
m∑
i=1

%ign(s; xi)
w→

m∑
i=1

%iWi(s) (3.2)

for all %1; : : : ; %m.
Towards this end, we will introduce the processes approximating {Gn(s)}: {G(1)

n (s)}, {G(2)
n (s)}

and {G(3)
n (s)} in the following. The last one will give the weak convergence result in (3.2) as we

will see later.
Replacing fn(xi) by f(xi), we de0ne

g′n(s; xi) = (nhf(xi)‖K‖2)−1=2
[ns]∑
j=1

(
K
(
xi − Xj
h

)
− EK

(
xi − Xj
h

))
; i = 1; : : : ; m;

and

G(1)
n (s) =

m∑
i=1

%ig′n(s; xi)

= (nh)−1=2
[ns]∑
j=1

m∑
i=1

%i
(f(xi)‖K‖2)1=2

(
K
(
xi − Xj
h

)
− EK

(
xi − Xj
h

))

let= (nh)−1=2
[ns]∑
j=1

Knj:

We split {Knj} into blocks of large size p = pn and small size q = qn. For this task, we de0ne
Yn1; Y ′

n1; : : : ; Ynr; Y
′
nr as follows:

Yn1 = Kn1 + · · ·+ Knp; Y ′
n1 = Kn;p+1 + · · ·+ Kn;p+q;

...

Ynr = Kn; (r−1)(p+q)+1 + · · ·+ Kn; (r−1)(p+q)+p;

Y ′
nr = Kn; (r−1)(p+q)+p+1 + · · ·+ Kn;r(p+q);

where r = rn = [n=(p+ q)]. Assume that p= na and q= nb, where the numbers a and b satisfy:

0¡b¡a¡
2
5
; b¿

1
�

(
13
10

− a
)
; a

(
�+

3
2

)
¿

13
10

+
b
2
: (3.3)

Rewrite G(1)
n (s) as

G(1)
n (s) = (nh)−1=2

(
u∑
k=1

Ynk +
u∑
k=1

Y ′
nk + Kn;u(p+q)+1 + · · ·+ Kn; [ns]

)
;

where u= un(s) is the largest integer such that

(p+ q)u6 [ns]: (3.4)
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Note that by (K1)

‖Yn1‖∞ = esssup |Yn1|6 2p
m∑
i=1

|%i| ‖K‖∞
(f(xi)‖K‖2)1=2 ¡∞:

Owing to Bradley’s coupling theorem for strong mixing random variables (cf. Bosq, 1996, p. 18),
there exist iid random variables Zn1; : : : ; Znr , such that Zn1 has the same distribution as Yn1 and

P(|Ynk − Znk |¿
√
nh

r log n
)6 11

(‖Yn1‖∞√
nh

r log n
)1=2

�(q); k = 1; : : : ; r: (3.5)

We de0ne

G(2)
n (s) = (nh)−1=2

u∑
k=1

Znk ;

where u is the largest integer satisfying (3.4). We claim that

sup
06s61

|G(1)
n (s)− G(2)

n (s)|= oP(1): (3.6)

We write

G(1)
n (s)− G(2)

n (s) = (nh)−1=2

(
u∑
k=1

(Ynk − Znk) +
u∑
k=1

Y ′
nk + Kn;u(p+q)+1 + · · ·+ Kn; [ns]

)
:

Then,

sup
06s61

|G(1)
n (s)− G(2)

n (s)|6 (nh)−1=2

(
r∑
k=1

|Ynk − Znk |+ max
16u6r

∣∣∣∣∣
u∑
k=1

Y ′
nk

∣∣∣∣∣
+ sup

06s61
|Kn;u(p+q)+1 + · · ·+ Kn; [ns]|

)
: (3.7)

First, note that by the 0rst condition of (3.3), (2.4) and (K1),

(nh)−1=2 sup
06s61

|Kn;u(p+q)+1 + · · ·+ Kn; [ns]|= oP(1); (3.8)

since at most p+ q terms are involved in the above equation. Next, using (3.5) we obtain that for
each ,¿ 0,

P((nh)−1=2
r∑
k=1

|Ynk − Znk |¿ ,)6 rP(|Yn1 − Zn1|¿ ,
√
nh=r)

= O(r5=4p1=4�(q)h−1=4(log n)1=2):

This together with the second condition of (3.3) yields

(nh)−1=2
r∑
k=1

|Ynk − Znk |= oP(1): (3.9)
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Now it remains [for us to deal with the second term in (3.7). Let Z ′n1; : : : ; Z ′nr be iid random variables
such that Z ′n1 has the same distribution as Y ′

n1 and

P

(
|Y ′
nk − Z ′nk |¿

√
nh

r log n

)
6 11

(‖Y ′
n1‖∞√
nh

r log n
)1=2

�(p); k = 1; : : : ; r; (3.10)

where

‖Y ′
n1‖∞ = esssup|Y ′

n1|6 2q
m∑
i=1

|%i| ‖K‖∞
(f(xi)‖K‖2)1=2 ¡∞:

Note that

max
16u6r

∣∣∣∣∣
u∑
k=1

Y ′
nk

∣∣∣∣∣6 max
16u6r

∣∣∣∣∣
u∑
k=1

Z ′nk

∣∣∣∣∣+
r∑
k=1

|Y ′
nk − Z ′nk |:

Using the fact that var(Z ′n1) = O(qh) and Kolmogorov’s maximal inequality, we can see that

(nh)−1=2 max
16u6r

∣∣∣∣∣
u∑
k=1

Z ′nk

∣∣∣∣∣= oP(1): (3.11)

Furthermore, using (3.10) and the third condition of (3.3) we have

(nh)−1=2
r∑
k=1

|Y ′
nk − Z ′nk |= oP(1): (3.12)

Then (3.6) follows from (3.8), (3.9), (3.11) and (3.12).
If we put

G(3)
n (s) = (nh)−1=2

[rs]∑
k=1

Znk ;

it follows from the de0nitions of r and G(3)
n (s) that

sup
06s61

|G(2)
n (s)− G(3)

n (s)|= oP(1): (3.13)

Here, checking Lyapounov’s condition (Bosq, 1996, Theorem 2.3), we have

G(3)
n (1) d→N (0; %21 + · · ·+ %2m);

and therefore G(3)
n (s) converges weakly to (%21+· · ·+%2m)1=2W1(s) (cf. Billingsley, 1999, pp. 147–148).

Since the two processes
∑m
i=1 %iWi(s) and (%21 + · · · + %2m)1=2W1(s) have the same distribution,

we obtain

G(3)
n (s) w→

m∑
i=1

%iWi(s);

which with (3.6) and (3.13) implies that

G(1)
n (s) w→

m∑
i=1

%iWi(s):
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By this result and the fact:

fn(xi)
P→f(xi) for i = 1; : : : ; m;

which is due to Theorem 2.1 of Bosq (1996), we obtain (3.2).

Proof of Theorem 2.3. (1) The result follows from Theorem 2.2 and the continuous mapping
theorem.

(2) Suppose that there exists a change point � with 0¡�¡ 1. Without loss of generality, assume
that f1(x1) �= f2(x1). Note that

dn(�; x1) =
(

nh
fn(x1)‖K‖2

)1=2 [n�]
n
n− [n�]
n

(f[n�](x1)− f∗
n−[n�](x1))

and

fn(x1) =
[n�]
n
f[n�](x1) +

n− [n�]
n

f∗
n−[n�](x1):

In view of Theorem 2.1 of Bosq (1996), we have

f[n�](x1)
P→f1(x1); (3.14)

f∗
n−[n�](x1)

P→f2(x1); (3.15)

and thus

fn(x1)
P→�f1(x1) + (1− �)f2(x1): (3.16)

From (3.14)–(3.16), we obtain

|dn(�; x1)| P→∞:
Since Tn¿ |dn(�; x1)|, we establish the theorem.
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