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A test for stationarity in the presence of a structural break is proposed. An unknown

break point is endogenously determined at the value minimizing the test statistic.

The break point can be estimated reasonably well under the null hypothesis of
stationarity, especially when the magnitude of the break is large.

I . INTRODUCTION

The pioneering work of Perron (1989) illustrates the need

to allow for a structural break when testing for a unit root

in economic time series. Since Perron’s break point is given

exogenously, subsequent literature has incorporated an

endogenous break point. Allowing for a break point endo-

genously determined from the data, Zivot and Andrews

(1992), and others, consider a minimum unit root statistic

for which a break point is determined at the level giving the

minimum t-statistic. These tests examine the null hypoth-

esis of a unit root in the presence of a structural break. Lee

et al. (1997) have shown that tests examining the null of

stationarity are also aŒected by the presence of a struc-

tural break. They show that the stationarity tests of

Kwiatkowski et al. (1992, hereafter denoted KPSS) diverge

in the presence of an unaccounted for structural break.

This ® nding illustrates the need for developing stationary

tests that allow for a structural break.

This paper proposes a version of the minimum test for

the null hypothesis of stationarity in the presence of a

structural break. To determine an unknown break point

endogenously from the data, a minimum statistic is con-

sidered for which the break point is selected at the value

minimizing the test statistic. The performance of the test is

then investigated, and as to how well it can detect an

unknown break point is examined. This task is more mean-

ingful when testing for stationarity than when testing for a

unit root, since the null hypothesis of the former implies a
stationary process involving a break, while the null distri-

bution of the latter is shown not to depend on the break

point. Throughout the paper, `!’ indicates weak conver-

gence as T ! 1.

II . TEST STATISTICS WITH A FIXED
BREAK POINT

As in KPSS, an unobserved components representation is

considered in which a time series yt, t ˆ 1; 2; . . . ; T , is

decomposed into the sum of a random walk and a station-

ary error term as follows:

yt ˆ rt ‡ "t

rt ˆ rt¡1 ‡ ut

…1†

where "t is assumed stationary and ut is idd …0; ¼2
u†. KPSS

test the null hypothesis of stationarity around a level

r0 by examining the null hypothesis ¼2
u ˆ 0. When

rt ˆ ® ‡ rrt¡1‡ut
the null hypothesis implies stationarity

around the trend function ®t.
To allow for a structural break, the following models

using diŒerent speci® cations for rt are considered.

…M1†¤ rt ˆ ¯1Bt ‡ rt¡1 ‡ ut …2a†

…M2†¤ rt ˆ ® ‡ ¯1Bt ‡ ¯2Dt ‡ rt¡1 ‡ ut …2b†
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where Bt ˆ 1 for t ˆ TB ‡ 1 and zero otherwise; Dt ˆ 1 for

t 5 TB ‡ 1 and zero otherwise; and TB stands for the time
period when a structural change occurs. The following cor-

responding models are then considered.

…M1† yt ˆ ¬ ‡ ¯1Dt ‡ et …3a†

…M2† yt ˆ ¬ ‡ ®t ‡ ¯1Dt ‡ ¯2DT ¤
t ‡ et …3b†

where DT¤
t ˆ t ¡ TB for t 5 TB ‡ 1 and zero otherwise.

Perron (1989) previously considered these models. M1

describes a stationary process with a one-time shift in the
level and M2 allows for a sudden change in the level

followed by a change in the slope of the trend function.

Here stationarity tests that allow for a structural break

are proposed. For the time being, it is assumed as in Perron
(1989), that the break point is ® xed and known a priori.

Consequently, the DGP and the test regressions are

referred to as either M1 in (3a) for a level stationarity

test, or as M2 in (3b) for a trend stationarity test. The

null hypothesis implies stationarity around a break point
for M1, or stationarity around a trend function for M2. The

level stationarity test statistic ~²²· allowing for an exogenous

break is given by:

~²²· ˆ T¡2
T

tˆ1

~SS2
t =~ss2…l† …4†

The residuals ~eet from the regression (3a) are used to con-

struct ~SSt ˆ t
jˆ1 ~eej . ~ss2…l† is the estimate of the long-run

variance ¼2 ˆ lim T¡1… et†
2. The long-run variance is

constructed via non-parametric estimation of

ŝs2…l† ˆ ¡̂¡0 ‡ 2 wj¡̂¡j by choosing a truncation lag par-

ameter l and a set of weights wj, j ˆ 1; . . . ; l, where ¡̂¡j is

the j th sample autocovariance of the residuals ~eet. The cor-

responding trend stationarity test statistic ~²²½ is obtained in
the same manner from the regression (3b).

The next theorem states the asymptotic null distribution

of the ~²²· statistic under the strong mixing regularity con-

ditions of Phillips and Perron (1988, p. 336).

Theorem 1. Suppose that the DGP is subject to a struc-
tural break as in (3a). Under the null hypothesis of sta-

tionarity around the break, ¼2
u ˆ 0,

~²²· ! ¶2
1

0

V1…b1†2db1 ‡ …1 ¡ ¶†2
1

0

V2…b2†2db2 …5†

where V1 and V2 are two independent Brownian bridges;

Vi…bi† ˆ W…bi† ¡ biW…1†, for i ˆ 1, 2, with 0 < b1 ˆ
b=¶ < 1 and 0 < b2 ˆ …b ¡ ¶†=…1 ¡ ¶† < 0, where W is a

Brownian motion.

Proof. See Lee (1996b).

For the ~²²½ statistic, a partial sum of the residuals is
obtained from the regression (3b). The resulting asymptotic

distribution is the same as in expression (5), except that the

term Vi…bi† is replaced by the second-level Brownian bridge
whose expression appears in KPSS (1992, p. 167). The lim-

iting distribution is expressed as a weighted sum of two

independent terms. Each of them can be obtained from

the regression using the subsample of before or after the

structural break. The symmetry of the distribution around

¶ ˆ 0:5 is easily observed, since we can interchange ¶ and

(1 ¡ ¶) in this case. The asymptotic distributions of the test

statistics ~²²· and ~²²½ can be simulated accordingly. Critical

values are calculated via Monte Carlo simulation using a

sample size of 2000 with 50 000 replications. Results are

shown in Table 1.

III . TEST STATISTICS WITH AN UNKNOWN

BREAK POINT

In practical estimation, one rarely knows the break point

TB a priori. To determine an unknown break point
endogenously from the data, a minimum stationarity test

is considered. The estimation scheme for the minimum sta-

tionarity test is to choose a break point that gives the most

favorable result for the null of stationarity around a break.

This means that the estimate of ¶ is obtained at the value
that minimizes the stationarity statistic . This scheme diŒers

in principle from that of the minimum unit root test that

adopts the least favourable result for the null hypothesis.

Both the minimum stationarity test and the minimum unit

root test share the notion of taking the minimum of the

statistics over a range of ¶ between 0 and 1. It appears
obvious that a supreme test is not appropriate for testing

stationarity, because it tends to maximize the error sum

of squares. Therefore, we consider minimum level and

trend stationarity statistics with an endogenous break as

follows:

Inf ~²²· ˆ inf
¶2¤

~²²·…¶† …6a†

Inf ~²²½ ˆ inf
¶2¤

~²²½…¶† …6b†
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Table 1. Upper tail critical values for ~²²· and ~²²½

¶ 10% 5% 2.5% 1%

Upper tail percentiles of the distribution of ~²²·

0.1 0.2880 0.3809 0.4712 0.6009
0.2 0.2301 0.3028 0.3819 0.4842

0.3 0.1880 0.2452 0.3064 0.3878
0.4 0.1597 0.2004 0.2431 0.3003

0.5 0.1531 0.1891 0.2256 0.2690

Upper tail percentiles of the distribution of ~²²½

0.1 0.0981 0.1223 0.1467 0.1788

0.2 0.0794 0.0984 0.1171 0.1429
0.3 0.0654 0.0792 0.0933 0.1134

0.4 0.0556 0.0656 0.0761 0.0904
0.5 0.0528 0.0615 0.0701 0.0814



where ¤ is a closed subset of (0, 1) and ~¶¶ ˆ ~TTB=T . ~TTB is the

estimated break point from a sample of size T . Here, ~¶¶ has
a well-de® ned probability distribution over ¤, and the true

value of ¶ is included in the sample space of ~¶¶. The same is

true for ~TTB de® ned over …0; 1; . . . ; T†. Then the asymptotic

distribution of the minimum statistic Inf ~²²· is given by:

1

0

©‰~²²·… ~¶¶† j ~¶¶ ˆ ¶ŠP… ~¶¶ ˆ ¶† d¶ …7†

where ©‰~²²·… ~¶¶† j ~¶¶ ˆ ¶Š is the asymptotic distribution of

Inf ~²²· conditional on ~¶¶ ˆ ¶, and P… ~¶¶ ˆ ¶† is the probabil-

ity that ~¶¶ ˆ ¶. The asymptotic distribution of Inf ~²²½ is

obtained in a similar manner.
As an extreme case, suppose that P… ~¶¶ ˆ ¶† ˆ 1 and a

break point is correctly estimated. Then the null distri-

bution of Inf ~²²· approaches asymptotically that of ~²²·,

which assumes an exogenous break.

Corollary 1. Suppose that ~TTB ! TB and ~¶¶ ! ¶ as

T ! 1. Then, the asymptotic null distribution of the

Inf ~²²· statistic converges to that of the ~²²· statistic.

Proof. See Lee (1996b).

The same is true for the Inf ~²²½ test. It is worth noticing that

the asymptotic null distribution of Inf ~²²· is not free of ¶.

An intuitive reason is that the null hypothesis of the sta-

tionarity statistic should imply ¶. This property diŒers

from that of the minimum unit root test of Zivot and
Andrews (1992) , since the asymptotic distribution of the

minimum unit root statistic is free of ¶.1 The method of

the minimum stationarity test can be accordingly viewed as

a procedure for identifying a break point under the null of

stationarity. The break point needs to be correctly esti-
mated to have correct size under the null of stationarity.

On the other hand, the minimum unit root test allows us to

identify a break point when the alternative hypothesis is

stationary. In their test, a break point must be correctly

estimated to increase power.
When testing for stationarity, a break point cannot be

consistently estimated under the alternative hypothesis of a

unit root. Nunes et al. (1995) provide evidence of the di� -

culty of obtaining a precise ML estimate of a break point

when an integrated process is involved. The same is true for

the minimum stationarity test under the alternative unit
root hypothesis. However, the di� culty of estimating ¶
does not negate the validity of the minimum stationarity

test, since the test statistic simply diverges under the alter-

native. Thus, stationarity tests have power to reject the null

of stationarity if the DGP implies the alternative hypoth-
esis. Simply put, we can say that it is only the estimated

break point that is not reliable when the stationary null

hypothesis is rejected.

IV. PERFORMANCE

This section shows Monte Carlo simulation results on the
performance of the stationarity statistic. Because the be-

haviour of the trend stationarity tests ~²²½ and Inf ~²²½ is not

much diŒerent from those of the level stationarity tests ~²²·

and Inf ~²²·, we focus on the latter in the simulations.

Pseudo-iid N(0, 1) random numbers were generated using

Gauss procedure RNDNS, and all calculations were con-
ducted using the Gauss software version 3.1.4. The DGP

implies (3a). Initial values y0 and e0 are taken a random

numbers, and assume that et are i:i:d : and ¼2
e ˆ 1. The

Gauss application software COINT version 2.0 (Ouliaris

and Phillips, 1994) is used to obtain the estimate of the
long-run variance in Equation 4. For the choice of a trun-

cation lag, we employ three ® xed values of l: l0 ˆ 0,

l4 ˆ int ‰4…T=100†1=4Š, and l12 ˆ int ‰12=…T=100†1=4Š, where

ìnt’ takes the value of the nearest integer to the expression

in parentheses. The optimal bandwidth selection procedure
of Andrews (1991) is also employed. The pre-whitening

procedure of Andrews and Monahan (1992) is not used,

since it makes stationarity tests inconsistent.2 The choice of

lag window does not signi® cantly change the results and

the Fejer lag window will be used here. All simulation

results are calculated using 5000 replications and the size
(rejection frequencies at the 5% level when the null hypoth-

esis is true) and power (rejection frequencies when the

alternative hypothesis is true) of the tests are evaluated

using the upper 5% critical value.

The performance of the statistics under the null hypoth-
esis of stationarity is examined. The sample size is given as

T ˆ 100. Results are reported in Table 2. Experiment A

examines whether ~²²· and Inf ~²²· are invariant to changes of

a structural break under iid errors for which using l0 is

most appropriate. Results from both tests show that size
is not aŒected by the location of the break. The size

remains similar when ¶ ˆ 0:5 or 0.2. In addition, ~²²· is

mostly invariant to the diŒerent magnitudes of the level

shift parameter d , where d ˆ 1, 2, or 3. This is an import-

ant result, indicating that the stationarity test statistic ~²²·

does not depend on the parameters describing the break.
As expected, Inf ~²²· is aŒected by the magnitude of d . The

Inf ~²²· test rejects the true null hypothesis less often than

it should when d is small. This result occurs because

P… ~¶¶ ˆ ¶† departs from one. This phenomenon, though

not critical, leads to a mild size distortion. However, as d
gets bigger the size of the test gets closer to its nominal size
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1 Recently, the assumption of no structural break under the null of a unit root for the Zivot and Andrews test has been criticized by Lee et al. (1998). This
assumption might be necessary to have the null distribution free of ¶. Since the null hypothesis does not include a break, rejection of the null hypothesis
does not imply rejection of a unit root, but implies rejection of a unit root without break, potentially leading to spurious rejections of the unit root null.
2 See Lee (1996a) for further discussion.



of 5% . Figure 1 provides empirical distributions of the

estimated break point ~¶¶ for diŒerent values of d. The

empirical distribution shows that ~¶¶ centers on the true

value of ¶ (0.5) in the DGP, while its variance gets smaller

as d increases. When d is large enough the estimated ~¶¶

converges to a mass point ¶, and the distribution of the

corresponding Inf ~²²· test would be the same as that of the

~²²· test, which assumes a given ® xed break point. This result

indicates that the distribution of Inf ~²²· approaches asymp-

totically that of ~²²· as d gets larger. In the ® nite sample,

however, the distribution is somewhat dependent on the

degree of accuracy of estimating the true break. In this
sense, though not critical it is recommended in the ® nite

sample to use adjusted bootstrapping critical values to

avoid size distortion, when the estimated break coe� cient

is relatively small.

Experiment B investigates the size of the tests in the

presence of autocorrelated errors. We consider AR(1)
errors of the form et ˆ »et¡1 ‡ vt, where vt is i.i.d. Table

2 presents the results for » ˆ 0, §0:2; ‡0:5, and §0:8, using

various lag selections. Results with l0 and l4 lags exhibit

non-negligible size distortions for » > 0:5, but the results

using l12 and the data driven optimal bandwidth lags are
fairly good. Results are comparable to the KPSS test in the

absence of a break (KPSS, Table 3). As in KPSS, even the

tests using optimal lags exhibit noticeable distortions when

errors are strongly and negatively correlated, especially for

» ˆ ¡0:8.
Experiment C considers the power of the tests. We report

simulation results in Table 3 for diŒerent values of ¼2
u (with

¼2
" ˆ 1) under the assumption of iid errors, so that the

power comparison would not be aŒected by potential size

distortions. As explained in KPSS, the power of the test

increases as T increases.3 The power of the tests using the
optimal bandwidth lags is somewhat lower than the power

of the tests using l0 and l4 lags. In some cases, it is lower

than that of the tests using l12 lags. It is expected that using

l0 or l4 lags produces better power, since the optimal choice

of the truncation lag under iid errors is zero …l0†, and esti-
mating with too many lags typically results in a loss of

power.

V. SUMMARY

In this paper a minimum stationarity test in the presence of

a structural break has been proposed. An unknown break

is endogenously determined at the point minimizing the

stationarity test statistic. It is shown that the minimum

stationarity test performs reasonably well in identifying
the unknown break point especially when the magnitude

of the structural break is large. Under the alternative

hypothesis of a unit root, the minimum stationarity test

cannot detect the break point precisely, but this di� culty

does not negate the validity of the test. The test is shown
to have su� cient power to reject the null hypothesis of

stationarity, whether or not the break point is precisely

estimated.
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Fig. 1. Empirical distribution of estimated break points
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