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It is well known that more powerful variants of Dickey-Fuller unit root tests are available. We apply
two of these modifications, on the hasis of simple maximum statistics and weighted symmetric estima-
tion, to Perron tests allowing for structural change in trend of the additive outlier type. Local alternative
asymptotic distributions of the modified test statistics are derived, and it is shown that their imple-
mentation can lead to appreciable finite sample and asymptotic gains in power over the standard tests.
Also, these gains are largely comparable with those from GLS-based modifications to Perron tests,
though some interesting differences do arise. This is the case for both exogenously and endogenously
chosen break dates. For the latter choice, the new tests are applied to the Nelson-Plosser data.

Keywords. Structural change; Perron tests; MAX test; Weighted symmetric estimation; GLS
estimation; Power comparison

1. Introduction

Widely used tests for a unit autoregressive root in the generating process of a time series, valid
in the presence of a single structural break in trend at a known point in time, were developed
by Perron [1-3] and Perron and Vogelsang [4]. These procedures are adaptations of the usual
Dickey-Fuller tests through the incorporation of appropriate deterministic dummy variables.
These may allow for a break in level (where the slope may or may not be known), a break in
slope, or both.

It is now well known that more powerful elaborations of standard Dickey-Fuller tests are
available. Several of these have been compared, both in terms of local asymptotic power
and power in finite samples, by Leyboume et al. [5]. These authors consider two particular
approaches, both of which are motivated by the time-reversibility of a strictly stationary linear
process. Leyboume [6] proposed fitting the usual Dickey-Fuller regression both to the original
series and to the time-reversed series, suggesting that a test be based simply on the maximum of
the two Dickey-Fuller ^-ratios (MAX). Pantula et al. [7] proposed weighted symmetric least
squares estimation (WS) applied to the detrended series, as a computationally convenient
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approximation to maximization of the Gaussian likelihood. Leyboume et al. [5] found little
in terms of power to choose between these approaches, and that for the cases they analysed
little or no more power and, on occasion, less power was obtained from GLS-based detrending
approaches such as Elliott et al. [8].

Given wide interest in unit root tests in the possible presence of a trend break, it is worth
investigating to what extent the MAX and WS modification generate extra power relative to
standard Perron Unit root tests, and to see how these compare with the power gains offered by
altemative GLS modifications of Perron tests, recently introduced by Perron and Rodriguez [9].

Here, we consider three models - a break in mean in a non-trending series, a break in level
only in an underlying linear trend and a break in both level and slope. In each case, there
are two Perron tests - an additive outlier (AO) variant and an innovational outlier variant. Our
interest is in the former, as models for the latter imply an evolving rather than an abrupt break
in trend, so that considerations of time-reversibility are not directly applicable.

Section 2 of the paper analyses the case of a break in both level and slope. In particular, local
altemative asymptotic distributions for both the MAX and WS modifications of the Perron
test statistic are derived. Application to the special cases is then noted. Section 3 provides
critical values for the test statistics of section 2, and reports the results of a simulation study
that clearly demonstrates their small sample and asymptotic power advantages over the usual
Perron tests. We also highlight some contrasts in behaviour between MAX/WS and GLS
modifications that arise when different sample sizes are considered.

Tests analysed to this stage follow Perron [1] in employing a pre-specified break point.
There are certain applications, for example, when institutional considerations suggest the
possibility of a specific break location, where an analyst will feel comfortable in specifying
that location exogenously - that is, without reference to the data - and these tests are frequently
employed. However, as argued by Christiano [10], they are not strictly valid when reference,
formal or informal, to the data plays a role in break date selection. Beginning with Zivot and
Andrews [11] and Banerjee et al. [12], Perron tests have been extended to the case where break
date selection is endogenized. Vogelsang and Perron [13] provide a thorough analysis of the
available tests for various methods of break date choice. In Section 4 of this paper, we discuss
the extension of the MAX/WS tests to the endogenous break date case. Section 5 provides
simulation evidence of the retention of the power gains of MAX/WS relative to the standard
tests and finds some further contrasts between MAX/WS and GLS modifications.

The totality of the power simulation evidence in sections 3 and 5 persuades that, while often
there is little to choose among the MAX, WS and GLS modifications, a preferred strategy may
be to consider the MAX tests, the most appropriate when small or moderately sized samples
are under scrutiny, and the GLS-based tests when larger samples are available.

Finally, in section 6 of the paper, the new tests are applied, with endogenously chosen break
dates, to the Nelson-Plosser data. Our conclusion remains that, in the aggregate, the evidence
of stationarity, even allowing for breaking trends in these data, is far from substantial.

2. Unit root tests with a break in trend: exogenously selected break date

We begin with the case where the date of any break is chosen exogenously (and correctly)
without reference to the data. This is the formulation originally analysed by Perron [ 1 ]. Suppose
that the time series for T observations y, is generated by

(1)
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where

d2,{r) = {t - TT)l[t > rT],

allowing for a break at time t = xT, and

U, = P M , _ | -I- V,, ( 2 )

CO

where p^\-\-{c/T) with c € (-00, 0), and e, is IID(O, a'^) with £'(|e,|''+'') = /<- < 00 for
some/i > 0. To ensure the stationarity of v,, we also assume that ^ J ^ , /1 yd < 00. The variance
of V, is denoted as o^ = var(u,), which is given by a^ = a^y{l)^. With regard to the initial
value of u,, we follow Elliott [14] and assume that UQ is drawn from a Gaussian distribution
with mean zero and variance a^(l - /0^)~' and is independent of e,. Drawing uo from an
unconditional distribution in this way, we feel, is more realistic than assuming uo is fixed, and
is also more in keeping with the notion of time-reversibility.

The goal is to test the unit root null hypothesis, p = 1 in equation (2), in the presence of a
possible break in trend. Equation (1) allows for simultaneous breaks in both level and slope.
Later, we shall note the important special cases of this model.

Estimating equation (1) by OLS gives

-\-e,. (3)

Perron's test is then based on estimating the second stage model

p

e, = pe,_i + <pdi,{T) -h Y^[(t)jd3^,-j(T) -|- 7TjAe,^j] -|- w,, (4)
j=i

where di,{r) = l[t = rT + 1], a one-time dummy variable. Without including the p lagged
terms in equation (4), the asymptotic distribution of the Perron's statistic will depend on some
nuisance parameters such as a and a^. In order to ensure that the asymptotic distribution with
general serial correlation stmcture on v, is the same as the case with iid v,, the number of
lagged terms (p) should increase with the sample size, as demonstrated in Said and Dickey [15].
Specifically, it is assumed that p -^ 00 and p^/T -> 0 as T -> 00. Applying OLS, we have

e, = pe,_i -f 4>d3,{r) -h ^[<^;t?3,,_y(T) -h ;T; Ae,_;] -I- w, (5)

and the Perron unit root test is then the f-statistic for testing p = 1 based on equation (5):

DF/(r) = ^ ~ | . , , (6)
var(p)'/2

where the subscript / denotes the standard test on the basis of forward residuals. It is entirely
straightforward to show, by slightly modifying the results in Theorem 2 in Perron [1,3], that

(7)

where Hcf{x), gcfi^) and Kcf{x) are defined in Theorem 2 in Perron [1,3] with a^ = o'^,
but in the definitions, the standard Brownian motion process W{r), which is the limit of
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^_ i y,_i/2 ^ r r ^ ĝ ^ j ^ i^p^ replaced by

Here, Wdr) is an Omstein-Uhlenbeck process defined as

Weir) ^c f e'^('-^'W(A)dX + W{r)
Jo

and Zc is a Gaussian random variable with mean zero and variance (—2c)~'. Further details on
the process Jdr) in equation (8) can be found in refs. [4,5]. We now consider the possibility
of extending to unit root testing in the possible presence of a trend break of the AO type two
procedures that are known to add power to the standard Dickey-Fuller test.

2.1 A test based on forward and reverse regressions

Following Leyboume [6], we now consider the reverse series of y,, which is y, = yT+]-i.
Then, it can be shown that the DGP for the reversed series y, is given by:

J, = ao + Pot + Yoduii -'':)+ 5o^2r(l - i:) + u,, (9)

where ao = a-\-PiT-\-I) + y + S{(1 - r)T + 1}, fi^ = -{fi + &), yo = - ( y + 5), ô = 5
and M, = UT-t+\. The deterministic component of y, is the mirror image of the deterministic
component of y, and both have exactly the same break structure except that the break in the
reverse series now occurs at time (1 — T)r instead oixT.

As for the forward series case in equations (3)-(5), the first step regression is

- r) + Sd2,{l - r) + z, (10)

and the second step regression is given by

Z, = pZt-\ + 0C?4r(T) + Y^{^jd4^,-j{x) + TtjAz,-j} + fj,, (11)

where d^tit) = l[t = (1 — r)T + 1]. Note that, in the case p = 0, the one-time dummy is
defined to exclude the data point where e^r 'depends on' e^r+i, as follows since it is easily seen
that z, = er+i-r, in this sense corresponding to the role of C?3,(T) in the forward regression.
We also note that once the first step regression for the forward series y, is obtained as in
equation (3), the first step regression in equation (10) does not need to be carried out again
because of the fact that as just noted the residuals z, in equation (10) can be obtained simply
by reversing the residuals e, in equation (3). Then a unit root test using the z, is the f-statistic
for testing p = 1 based on equation (11):

where the r subscript denotes the test is based on reverse residuals. The following
theorem, proved in Appendix A, establishes the local alternative asymptotic distribution of
DF,(T).
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THEOREM 1 If y, is generated by equations (1) and (2) and a test is based on the fitted
model (11), then

DF (r) tf(T)
i

where

s - d + r){Hi - H,) - (M, - Mr)

= ^^Jd^) + -Jdr)-H\

with

H,= f Jdr)dr, M, = f rJdr)dr,
Jo Jo

and Jdr) is the process defined in equation (8).

In fact, as may be obvious, the limiting marginal distributions of D F / ( T ) and DFr(T) are
the same, a conclusion that follows from Perron's result that DF/(r) and DF/(1 — r) have
the same limiting distribution (note also that the denominators of the two limiting functionals
are identical). However, our interest is in the joint behaviour of these statistics as the Leyboume
test statistic is based on the maximum of DF/(r) and DFr(T). Its local altemative asymptotic
distribution is given by the following theorem.

THEOREM 2 Ify, is generated by equations (1) and (2), then

MAX(r) = max{DF/(T), Dl

The proof of Theorem 2 is a straightforward application of the continuous mapping theorem
and hence is not presented. The null asymptotic distribution of MAX(r) {i.e., when c = 0) is
obtained simply by redefining Jdr) = W{r) in all relevant expressions.

2.2 A test based on the weighted symmetric estimator

Next we explore an extension of the Perron test using the weighted symmetric estimator
suggested by Park and Fuller [16] and Pantula et al. [7]. The test statistic is constructed by
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a two-step procedure. The first step regression is given by equation (3). For the second-step
regression, in the non-augmented, p = 0, case, we define the following variables:

1[/ e 52],w,

A
dstir)

= w,e,

= w,e,

^l[t:

1 l[f e

+il[? e S

nt e Si]

= xT],

S i ] -

-\-

h(2-(f)

j ; , e , _ r + i \ [ t e

e,-T+2^lt £ 5

where 5i = [1, 2 , . . . , T - 1] and ^2 = {T, T - | - 1 , . . . , 2{T - 1)}. The second step regres-
sion is given by:

f fj,. (12)

More generally, when augmentation is required to 'soak up' additional serial correlation,
equation (12) is supplemented by lagged and leading changes in e,, as set out in table 7 of
Pantula et al. [7], and also lags and leads of the one-time dummies, corresponding to those
introduced in the previous section. In the non-augmented case, the WS-Perron test statistic is
defined as

WS(r)
_ r T-3r
^ [2T -5}

where p is obtained from equation (12). The following theorem, proved in Appendix A,
provides the local altemative distribution of WS(r). It can be shown that the same result holds
in the more general augmented case.

THEOREM 3 //yi is generated by equations (1) and (2) with y(L) — 1, and a test is based on
equation (12), then

where

I I + ^B^ -f G\l - xf + ^-D\\ - zf - H^B - 2(1 -

-(1 - xfHxD -I- (1 - x)BG -\- -(1 - xfBD -I- (1 - xfGD

F2(r) = (1 - x)gcf(x)[GH2x - 1) - 2G(7,(r) - W,) + BG{2x - 1) - GD{\ -

with

B = 6x-\2M, - H,x),

G s 2 T - 2 ( 1 - 2T -f x^y^H^ix -h 2) - 3Mix^

- HrX{4x -l) + 3Mr(2x - 1)},

D = 6x-\x^ - 3x^ + 3x- 1 ) - ' ( / / I T ^ ( T - f l ) - / / , T ( 4 T ^ - 3T + 1)

- 2Mix^ -f- 2Mr(3x^ -3x + 1)}.

Here, the definitions of Hk and M^ are given in Theorem 1.



More powerful modifications of unit root test 875

Again, the limiting null distribution of WS(r) arise by redefining Jc{r) = W{r) everywhere.
We now describe how the MAX and WS test procedures apply to two special cases of the
model (1), The proofs of the limiting local distributions of the test statistics in the models
below proceed along lines very similar to those of Theorems 1-3 and are omitted,

2.3 Break in level without linear trend

Suppose y, is generated by

y, =a-\-ydu{r)-\-v,.

Then we fit by OLS the regression

y, -a-\-Yd\,{x)-\-e,

and construct the MAX(r) test on the basis of secondary regressions (5) and (11), noting that
here and throughout the z, are simply the reverse of the e, series, that is, z, = ej+x-,. The
WS(r) test is based on the secondary regression (12), or its augmented variant when it is
required to account for further serial correlation,

2.4 Break in level with fixed slope

Suppose y, is generated by

Then we fit by OLS the regression

y, =a-\-pt-\-Ydu{x)-\-e,

and construct the M A X ( T ) test on the basis of the secondary regressions (5) and (11), The
W S ( T ) test is based on the secondary regression (12), or its augmented variant when it is
required to account for further serial correlation,

3. Critical values of the test statistics, and power simulations: exogenous break case

To distinguish the different MAX(r) and WS(r) tests, in the sequel we will adopt the conven-
tion that a subscript 1 refers to a test with a break in level but no trend (section 2,3); subscript 2
to tests with a break in level and fixed slope (section 2,4); and subscript 3 to tests with a break in
both level and slope (those initially introduced in section 2), Finite sample null critical values
for the tests MAX(r), = max{DF/(T),, DFr(r),) and W S ( T ) , , i = 1 , , , , , 3 were based on
simulating the DGP(l) with c — 0. We seta = /3 = y = 5 = O (allowable due to invariance
of the tests) and UQ = 0, U, = e, in equation (2),^ Here, e, was generated as Gaussian white
noise with unit variance. Asymptotic critical values, denoted T — oo, were obtained by direct
simulation of the appropriate limiting functional with c = 0 using Gaussian discrete approx-
imations with sample size 1000,* The results, based on performing 10,000 replications, are
given in tables 1 and 2,

We now compare the 0,05-level powers of the tests MAX(r)/ and WS(T) , in the exogenous
break case with those of the corresponding standard Perron test [this latter test is simply given

tUnder the null c = 0, the statistics are invariant to HO, hence we can fix «o = 0 without loss of generality.
*Note that /^(r) = W(r) when c = 0.
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Table 1. Critical values of MAX(r)( and WS(T),- tests: exogenous break date.

0.20/0.80 0.30/0.70 0.40/0.60 0.50

T 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

7 = 50
MAXi -3.46 -2.83 -2.48 -3.54 -2.86 -2.52 -3.53 -2.89 -2.56 -3.54 -2.89 -2.57
MAX2 -4.25 -3.56 -3.22 -4.23 -3.54 -3.20 -4.22 -3.50 -3.15 -4.17 -3.49 -3.14
MAX3 -4.55 -3.87 -3.50 -4.68 -4.03 -3.69 -4.77 -4.12 -3.77 -4.80 -4.14 -3.79

WSi -3.65 -3.01 -2.66 -3.72 -3.07 -2.74 -3.69 -3.09 -2.77 -3.73 -3.11 -2.78
WS2 -4.44 -3.75 -3.41 -4.40 -3.74 -3.40 -4.36 -3.68 -3.35 -4.31 -3.67 -3.33
WS3 -4.68 -3.99 -3.63 -4.84 -4.17 -3.84 -4.97 -4.27 -3.94 -4.95 -4.30 -3.96

r = ioo
MAX] -3.40 -2.74 -2.42 -3.48 -2.80 -2.48 -3.42 -2.83 -2.51 -3.41 -2.83 -2.50
MAX2 -4.07 -3.45 -3.12 -4.04 -3.44 -3.11 -4.02 -3.39 -3.05 -4.03 -3.37 -3.04
MAX3 -4.35 -3.75 -3.40 -4.48 -3.88 -3.56 -4.54 -3.96 -3.64 -4.58 -3.99 -3.66

WSi -3.57 -2.92 -2.59 -3.63 -2.98 -2.67 -3.60 -3.01 -2.71 -3.58 -3.01 -2.70
WS2 -4.23 -3.63 -3.30 -4.19 -3.62 -3.31 -4.18 -3.56 -3.24 -4.15 -3.53 -3.21
WS3 -4.50 -3.86 -3.52 -4.62 -4.01 -3.70 -4.64 -4.09 -3.78 -4.71 -4.13 -3.80

7 = 200
MAXi -3.35 -2.76 -2.42 -3.38 -2.79 -2.49 -3.38 -2.83 -2.51 -3.44 -2.83 -2.52
MAX2 -4.05 -3.37 -3.07 -3.96 -3.34 -3.04 -3.93 -3.33 -3.02 -3.93 -3.32 -3.00
MAX3 -4.33 -3.67 -3.35 -4.44 -3.80 -3.49 -4.50 -3.86 -3.56 -4.49 -3.89 -3.61

WSi -3.51 -2.92 -2.60 -3.55 -2.97 -2.68 -3.54 -3.00 -2.70 -3.57 -3.00 -2.71
WS2 -4.18 -3.55 -3.25 -4.12 -3.52 -3.23 -4.08 -3.48 -3.19 -4.06 -3.47 -3.16
WS3 -4.46 -3.79 -3.47 -4.54 -3.93 -3.63 -4.61 -3.99 -3.71 -4.62 -4.02 -3.75

r = 00
MAXi -3.29 -2.71 -2.40 -3.41 -2.75 -2.45 -3.40 -2.76 -2.48 -3.41 -2.80 -2.49
MAX2 -3.94 -3.34 -3.03 -3.90 -3.31 -3.00 -3.87 -3.27 -2.98 -3.87 -3.25 -2.96
MAX3 -4.23 -3.63 -3.32 -4.29 -3.75 -3.44 -4.34 -3.80 -3.50 -4.34 -3.81 -3.52

WSi -3.46 -2.88 -2.57 -3.54 -2.94 -2.64 -3.58 -2.95 -2.66 -3.53 -2.96 -2.67
WS2 -4.11 -3.51 -3.21 -4.04 -3.48 -3.18 -4.01 -3.43 -3.14 -3.99 -3.40 -3.11
WS3 -4.36 -3.75 -3.44 -4.41 -3.87 -3.58 -4.45 -3.92 -3.64 -4.47 -3.94 -3.66

by DFy(r),]. We also compare power with tests extending to our problem the GLS approach
of Elliott et al. [8], proposed in Perron and Rodriguez [9]. These test statistics, which we
denote GLS(r),, differ in construction in two respects from the standard Perron DF/(r);
statistics. First, the initial stage regressions such as equation (3) are estimated by GLS as if the
stochastic error u, of equation (1) was pure AR(1) with parameter p = 1 + (c/T). Following
the recommendation of Perron and Rodriguez, we set c — —22.5. Then the parameters of the
first stage regression are estimated by an OLS fit of (j?], ^2 — py\,y^ — py2. • • •. ^r — pyr-1)
on the correspondingly transformed independent variables. The second-stage regression is then
based on the residuals e, defined as in equation (3) except that now the parameter estimates are

Table 2. Critical values of MAX(f), and WS(f),- tests: endogenous break date.

r = 50 r = 100 r = 200 r = oo

0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

MAXi -4.15 -3.49 -3.16 -4.06 -3.45 -3.14 -3.98 -3.40 -3.09 -3.91 -3.33 -3.05
MAX2 -4.82 -4.17 -3.85 -4.72 -4.13 -3.78 -4.62 -3.98 -3.69 -4.49 -3.89 -3.62
MAX3 -5.14 -4.46 -4.13 -4.97 -4.35 -4.02 -4.87 -4.28 -3.95 -4.78 -4.18 -3.88

WSi -4.25 -3.63 -3.30 -4.19 -3.57 -3.27 -4.10 -3.50 -3.18 -4.00 -3.44 -3.15
WS2 -4.96 -4.32 -3.98 -4.80 -4.24 -3.90 -4.68 -4.11 -3.82 -4.53 -4.01 -3.76
WS3 -5.24 -4.57 -4.24 -5.08 -4.43 -4.11 -4.96 -4.34 -4.02 -4.87 -4.28 -3.99
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Table 3, Powerof DF/i(r) , MAXi(T),WSi(r), G L S I ( T ) at
nominal 0,05-leveI: exogenous break date.

DFjr,
MAX)
WSi
GLSi

DF/i
MAXi
WSi
GLSi

DF/i
MAXi
WSi
GLSi

DF/i
MAXi
WS|
GLSi

DF/l
MAX]
WSi
GLSi
ENV

DF/i
MAX]
WSi
GLSi
ENV

T

0,3
0,3
0.3
0.3

0.5
0.5
0.5
0.5

0.3
0.3
0.3
0.3

0.5
0.5
0.5
0.5

0,3
0,3
0,3
0,3
0,3

0,5
0,5
0,5
0,5
0,5

- 5

0.11
0.17
0.15
0.11

0.10
0.15
0.15
0,11

0.11
0,16
0,15
0,15

0,10
0,14
0.15
0,13

0.12
0.18
0.16
0,19
0.20

0.12
0,17
0.16
0.19
0.20

- 1 0

0.25
0.41
0,38
0,28

0,22
0.38
0.38
0.27

T = 100
0.25
0.40
0,38
0,36

0.22
0.37
0,37
0.33

T = <x)
0.26
0.43
0.40
0.47
0.52

0.26
0.41
0.38
0.46
0.52

c

-15

0,48
0,73
0.70
0.56

0.45
0.69
0.67
0,54

0.49
0,70
0,67
0,65

0,43
0,67
0.66
0,62

0.49
0.73
0.69
0.69
0.83

0.47
0,69
0.65
0.68
0.83

- 2 0

0.75
0.92
0,91
0,82

0,73
0.90
0.90
0,80

0.74
0.91
0,89
0,88

0.68
0.88
0.88
0.85

0.72
0.92
0.90
0.82
0.97

0.70
0.90
0.87
0.82
0.97

- 2 5

0.92
0.99
0.98
0.95

0.90
0,98
0,98
0.95

0.91
0.98
0,98
0.98

0,87
0.98
0.98
0.97

0.89
0.99
0.98
0.90
0.99

0.88
0.98
0.97
0.90
0.99

GLS rather than OLS. Further, one-time dummies are not required in second-stage regression
such as equation (5), which as hefore are fitted hy OLS. At this point, in constructing all tests
we impose p = 0.

The DGP for the power simulations is as described earlier, except that now we set c < 0
for the altemative and draw uo from a Gaussian distribution with mean zero and variance
(1 - /0^)~' (independent of e,). Hence, y, is a truly stationary AR(1) process with standard
Gaussian white noise innovation.^ Tables 3 and 4 gives the results for samples ofT = 50, 100
at the nominal 0.05-level. Finite sample critical values are used, and a virtue of setting p = 0
in the fitted models implies that these are exact. For presentational brevity, we report only
results for the cases of a break in level without linear trend (/ = 1) and a break in both level
and slope (i = 3). For these two cases, test powers are symmetric in (r, 1 - r), so that we
only report results for break fractions x < 0.5. Also given in Tables 3, and 4 under T = oo,
are the local asymptotic test powers, again obtained by the appropriate simulation of Umiting
funetionals but with c < 0. We additionally provide, under ENV, the asymptotic Gaussian
power envelope. This is obtained from constructing the point optimal test of the altemative
c = c; in this case, the Gaussian likelihood ratio statistic to test the null c — 0 against the
altemative c = c. The statistic is calculated as the difference between the sums of squared

'We retain a = fi = Y=S = Oas the tests remain invariant to these parameters under the altemative c < 0.
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Table 4. Powerof D F / 3 ( T ) , M A X 3 ( T ) , W S 3 ( J : ) , G L S 3 ( T ) at
nominal 0.05-level: Exogenous break date.

DF/3
MAX3
WS3
GLS3

DF/3
MAX3
WS3
GLS3

DF/3
MAX3
WS3
GLS3

DF/3
MAX3
WS3
GLS3

DF/3
MAX3
WS3
GLS3
ENV

DF/3
MAX3
WS3
GLS3
ENV

T

0.3
0.3
0.3
0.3

0.5
0.5
0.5
0.5

0.3
0.3
0.3
0.3

0.5
0.5
0.5
0.5

0.3
0.3
0.3
0.3
0.3

0.5
0.5
0.5
0.5
0.5

-10

0.12
0.15
0.16
0.16

0.12
0.15
0.15
0.15

0.13
0.17
0.17
0.18

0.11
0.14
0.14
0.15

0.13
0.16
0.16
0.17
0.17

0.11
0.14
0.14
0.14
0.15

-15

0.24
0.31
0.32
0.32

0.24
0.28
0.28
0.29

r = 100
0.24
0.32
0.32
0.35

0.21
0.28
0.28
0.31

T = 00
0.24
0.31
0.31
0.33
0.34

0.21
0.27
0.27
0.28
0.31

c

- 2 0

0,43
0.54
0.55
0.55

0.41
0.50
0.50
0.51

0.42
0.55
0.55
0.59

0.36
0.48
0.47
0.53

0.40
0.51
0.51
0,54
0,55

0,35
0.46
0.46
0.46
0.52

- 2 5

0.66
0.78
0,79
0.79

0.64
0.74
0.74
0,74

0.63
0.76
0.77
0.81

0.56
0.70
0.69
0.74

0.59
0.72
0.71
0.75
0.76

0.52
0.67
0.66
0.66
0.74

- 3 0

0.85
0.93
0.93
0.93

0.84
0.90
0.90
0.90

0.81
0.92
0.91
0.93

0.75
0.88
0,87
0.90

0.77
0.87
0.87
0.89
0.91

0.71
0.84
0.83
0.82
0.88

GLS residuals under the altemative and null. We derived the local altemative distribution of
this point optimal test. The expression is a complicated (and not particularly informative)
function of Jdr) and since the test is infeasible in practice (as c is unknown) here we simply
report the powers obtained from simulating limiting functionals,

Tuming now to analyse the finite sample results of table 3, the case of a trendless series with
a possible change in level, we find that the MAX and WS tests are the two most powerful, with
MAX slightly the more so. The GLS test is somewhat less powerful for T = 50, but makes
up much of the deficit for T = 100, The DFj test is always the least powerful, often by a
considerable margin. Regarding the asymptotic results, MAX is slightly more powerful than
WS, GLS performs better than MAX for small values of c, but this position is reversed for
the larger values of c. All three tests substantially dominate DF/, None of the tests, however,
reach particularly close to the power envelope for mid-range values of c,̂  In table 4, which
permits a possible break in both level and slope, we see that there is little to choose among
MAX, WS and GLS when T = 50, though GLS performs slightly the better for T = 100, In
terms of asymptotic power, MAX, WS and GLS perform very similarly in general, and also

^That this is also true for the GLS test is not surprising since it is constructed to be near optimal under the assumption
that assuming HQ is fixed at the value 0, which is a condition that we do not impose here.
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achieve power levels that are now fairly near to the envelope. All three tests comprehensively
outperform DF/ in both the finite sample and asymptotic contexts.

4. Endogenously selected break date

In practice, it is more often plausible to assume that the true break fraction r is unknown and that
an analyst would be unwilhng to specify such a date through purely exogenous considerations.
There are various proposals in the literature to endogenize the choice of break date, given for
example by Zivot and Andrews [11], Banerjee et al. [12] and Vogelsang and Perron [13] among
others. One of the popular choices is to obtain a break estimate by maximizing some statistics
that test the significance of estimates of break parameters such as y or 5 in equation (1). For
any value i eV — [r\, f2], where 0 < fi < f2 < 1, we obtain for the case corresponding to
equation (3) of possible breaks in both level and slope the following regression

y,^a+fit-\-ydu{i)-\-S2t(i) + e,. (13)

Then, the f-statistics fj(f) for testing 5 = 0, on which break date selection is based, is a
function of f. The break estimate used in our subsequent theoretical analysis is obtained by
maximizing the absolute value of the f-statistic over all possible values of f in F:

f =

Once we obtain this break estimate, then the two regressions in equations (3) and (5) are
carried out using f in place of T. When there is no break (S — 0) in the DGP, Vogelsang and
Parron [13] proved that

DF/(f) =^ /?2(r*)

wherer* — argmaxfgp 122 AO^^)I-^^' '^22 AO(^)I i^^'i"^'^f""'^'io"^<'f^^™w"i^'^n^o'i°"
and its expression is given on p. 1083 in ref. [13]. Here, it is again noted that the standard
Brownian motion process W{-) is replaced by Jd-). We now examine MAX and WS variants
of the statistic DF/(f). The following theorem shows the local altemative distribution of our
statistic when the break estimator f is used in place of r.

THEOREM 4 Ify, is generated by equations (1) and (2) with S =0, and a test is based on the
fitted model (U), then

MAX(f) = max{DF/(f), DFr(f)} =

The key step of the proof is to show that T~^^^t^{T) => 62 AO(^) ^^^ recognize that max-
imizing |r~'''^f^(f)| and maximizing |/^(f)| will give the same solution f. For a detailed
derivation of the result, see Vogelsang and Perron [13]. This result together with Theorems 1
and 2 is sufficient to prove Theorem 4.

Regarding the WS variant of the test statistic, we again estimate the break fraction r from
the first stage regression (13), and in particular from the absolute values of f-ratios associated
with 8 for all possible break fraction, noting again from the definition of F that some trimming
is required. Having found the estimate f, the procedure is precisely as specified in section 2,
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with f, in place of T . The limiting null distribution of the WS test statistic is exactly that given
in Theorem 3, but with r* in place of T. In the case of a break only in level, with or without
a fixed slope, the break estimator will be based on f-ratios associated with y, so that in an
obvious notation

f = argmax|?p(f)|.

The remainder of the analysis in this case parallels the above-mentioned.

5. Critical values of the test statistics, and power simulations: endogenous break case

Table 2 gives finite sample and asymptotic critical values for all three variants of the test where
the break date is chosen endogenously. In all cases, selection is based on the absolute value
of the /-ratio associated with the estimated coefficient S on the slope break parameter, unless
the slope is assumed to remain unchanged, when the significance of y of equation (13) with
no estimated slope break is substituted. The DGP is the same as that for Table 1, with search
for the break fraction, both here and in all subsequent experiments, restricted to the range
0.15 < f <0.85.

In tables 5 and 6, we examine the relative power performance of all the unit root tests. The
simulation DGP is the same as that underlying in tables 3 and 4, and the power envelope is
constructed in a manner analogous to that in tables 3 and 4, with the required modification that
the sums of squared GLS residuals under the altemative and null are minimized across f. From
table 5, the case of a trendless series with a possible change in level, we see that the MAX and
WS tests easily dominate the GLS test for T = 50, and all three tests behave very similarly
for r = 100. As might be expected, the DFf test is least powerful, but only marginally less
than GLS when T = 50. Asymptotically, the GLS test is by some way the most powerful,
and close to the power envelope for larger values of c. In table 6, where we allow a possible
break in both level and slope, we see that there is generally little to choose among MAX,
WS and GLS in either the finite sample or asymptotic contexts, with all tests fairly close to

Table 5. Powerof DF/i(f), MAXi (f),WSi(f), GLSi (f) at
nominal 0.05-level: endogenous break date.

DF/i
MAXi
WSi
GLSi

DF/1
MAXi
WSi
GLSi

DF/1
MAXi
WSi
GLS,
ENV

- 5

0.11
0.14
0.13
0.10

0.12
0.14
0.14
0.14

0.12
0.16
0.16
0.19
0.20

- 1 0

0.22
0.30
0.28
0.23

T = 100
0.24
0.30
0.29
0.30

0.27
0.33
0.33
0.48
0.50

c

-15

0.42
0.55
0.53
0.44

0.43
0.53
0.52
0.53

0.46
0.56
0.55
0.73
0.79

- 2 0

0.67
0.80
0.78
0.70

0.66
0.76
0.73
0.73

0.67
0.78
0.77
0.87
0.95

-25

0.86
0.93
0.92
0.88

0.84
0.92
0.90
0.90

0.84
0.91
0.90
0.93
0.99



More powerful modifications of unit root test 881

Table 6, , Powerof DF/3(f), MAX3(f), WS3(f), GLS3(f) at
nominal 0,05-level: endogenous break date.

DF/3
MAX3
WS3
GLS3

DF/3
MAX3
WS3
GLS3

DF/3
MAX3
WS3
GLS3
ENV

- 5

0.12
0.13
0.13
0.12

0.12
0.13
0.13
0.13

0.13
0.14
0.14
0.13
0.14

- 1 0

r =
0.22
0.25
0.24
0.23

T =
0.22
0.24
0.25
0.24

0.23
0,25
0.24
0.25
0.28

c

-15

50
0.39
0.45
0.45
0,42

100
0,37
0.44
0.45
0.43

0.39
0.41
0.40
0.42
0.45

- 2 0

0.61
0.68
0.67
0.64

0.56
0.65
0.66
0.65

0.56
0.61
0.60
0.65
0.66

- 2 5

0.82
0.87
0.87
0.84

0.76
0.83
0.84
0.82

0.72
0.80
0.78
0.82
0.84

the envelope. All three tests outperform DF/, through the margin is not always particularly
significant. Throughout tables 5 and 6, MAX and WS behave very similarly.

6. Finite sample size and power simulations with ARMA errors:
endogenous break case

To gauge the relative performance of the tests in situations of perhaps more practical relevance,
tables 7 and 8 report, respectively, for the break in level with no linear trend and the change in
both level and slope cases, simulated finite sample sizes and powers from models with more
general noise processes, assumed not to be known but approximable by an autoregression.
The DGP is

y,=u,; M, = p M , _ i + 1 ; , ; j ; , - ( ^ i ; , _ i = e , - ^ £ , _ , , (14)

where again the e, are independent standard normal and p = \ -\- {c/T). Specifically, we con-
sider noise process i;, that are either pure AR(1),0 = 0, orpureMA(l),(/> = 0 in equation (14),
In practice, this DGP will be unknown and we consider fitting to the first stage residual mod-
els with up to four lagged changes, i.e. p takes a maximum value of 4 in regressions such
as (5), The order actually selected is determined by general-to-specific testing at the 0,10-
level. This same approach is applied separately for all four tests, except that in computing the
MAX statistic, we select the number of lags from the forward model, exactly as for DF/, and
impose that selected order on the model fitted to the reverse series, (In fact, with tedious but
straight-forward algebra it can be shown that applying the same lag order selection process to
the reversed series yields the same selected lag order,) We report size unadjusted powers {i.e.,
rejection frequencies) here since size adjusted powers have little practical relevance as they
are based on infeasible tests.

Examining table 7, the break in level model, first note that all four tests have approximately
correct sizes, even for samples as short as T = 50 except in the case of a first-order moving
average process, with 0 = 0 and 9 positive in equation (14), It is, of course, well known
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Table 7. Size/powerofDF/i(f), MAXi (f),WSi(f), GLSi (f) at nominal
0.05-leveI: endogenous break date, AR(l) or MA{1) noise.

c

DF/1
MAXi
WSi
GLSi

DF/1
MAX]
WSi
GLSi

DF/1
MAXi
WSi
GLSi

DF/1
MAXi
WSi
GLSi

0

0,05
0.05
0.05
0.04

0.07
0.07
0,07
0.07

0.21
0.24
0.20
0,22

0.07
0.08
0.07
0,07

T

- 1 5

0,24
0,29
0.26
0.25

0.37
0.44
0,41
0.31

0.70
0.77
0.64
0.62

0.38
0.46
0.34
0,41

= 50

-20

0,30
0.38
0.34
0.33

0,53
0,62
0,55
0,41

0,83
0,87
0.73
0.70

0.49
0.57
0.43
0,52

- 2 5

0 = 0.5,
0,37
0.44
0.39
0.40

0 = -0.5
0.69
0.77
0.67
0.49

0 = 0,0
0.90
0.92
0.80
0.72

0 = 0,0 =
0.58
0.66
0.50
0,61

0

0 = 0
0.05
0.05
0.05
0.04

, 0 = 0
0.06
0,06
0.06
0,06

= 0,5
0,22
0,25
0,17
0.21

= -0.5
0.06
0.07
0,05
0.07

r =
- 1 5

0.31
0,37
0,34
0,37

0.40
0,48
0,44
0,33

0.73
0.78
0.63
0.56

0.38
0.44
0,35
0,46

100

-20

0,42
0.50
0.45
0.52

0.58
0.67
0.61
0.43

0.83
0.86
0.75
0.58

0.50
0.57
0.47
0.58

-25

0.53
0.61
0.56
0.63

0,74
0.82
0,74
0.50

0,89
0,91
0,83
0,59

0,61
0,67
0.56
0,66

Table 8. Size/powerofDF/3(f),MAX3(f),WS3(f),GLS3(f) at nominal
0.05-level: Endogenous break date, A/?(l) or A/A(l) noise.

c

DF/3
MAX3
WS3
GLS3

DF/3
MAX3
WS3
GLS3

DF/3
MAX3
WS3
GLS3

DF/3
MAX3
WS3
GLS3

0

0,06
0.07
0,07
0,07

0,06
0,07
0.07
0,07

0,20
0,24
0.20
0.22

0.10
0.12
0.09
0.12

T

- 2 0

0.15
0.21
0,17
0,22

0,31
0.39
0.33
0.29

0,63
0,72
0,57
0.58

0,31
0,37
0,27
0.38

= 50

- 2 5

0,19
0.25
0.22
0.26

0.44
0.53
0.44
0.37

0,75
0,82
0,66
0.67

0,38
0,45
0,33
0.46

- 3 0

0 = 0.5,
0.23
0.30
0.25
0.30

0 = -0.5
0.58
0.68
0,55
0,45

0 = 0,0
0,82
0.88
0.72
0.72

0 = 0,0 =
0,44
0,53
0.39
0.54

0

0 = 0
0.06
0,06
0.06
0.06

, 0 = 0
0.07
0.07
0.07
0.06

= 0.5
0.30
0.32
0.24
0.22

= -0.5
0.09
0.10
0.08
0.10

T =

- 2 0

0.23
0,26
0,25
0.29

0.37
0.44
0.40
0.32

0.77
0.82
0.68
0,64

0.34
0.39
0.30
0,40

100

-25

0.30
0.36
0.33
0.39

0.52
0.60
0.55
0.43

0.86
0.89
0.76
0.71

0.45
0.50
0.39
0.51

- 3 0

0.39
0.45
0.41
0,48

0,67
0.75
0.68
0,54

0.91
0.93
0.83
0.75

0.53
0.59
0.47
0.59
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that conventional Dickey-Fuller type tests suffer from this over-size problem for such DGPs,
Otherwise, there are two pertinent features of the results of table 7. The MAX test exhibits
superior power, being generally somewhat more powerful than WS and providing consistent
worthwhile gains compared with the usual DFf. Further, in certain circumstances, notably
where the v, of equation (14) exhibit negative first-order autocorrelation, GLS can have very
low power, lower even than the standard DF/ test, and well below that of the MAX test. This
is most clearly seen for v, generated by a first-order autoregression with 0 = —0.5 and 9=0.
Given the stmcture of the GLS test, this finding is perhaps not surprising. The main feature
of this test is that, in the first stage regression, the deterministic component of the DGP is
not estimated by OLS, but by quasi-GLS, as if the deviation from trend followed a first order
autoregression with large positive parameter. When this is in fact the case, as for example for
the DGPs analysed in tables 3-6, one would expect the GLS tests to be based on relatively
precise estimates of the deterministic component and therefore to exhibit good power. As we
now see, when that deviation from trend follows a very different process from that implicit in
the GLS estimation, tests of very low power can result. The results of table 8, the change in
both level and slope model, follow a qualitatively very similar pattem to those of table 7, with
the differences in performance between the tests remaining just as emphatic.

Given the finite sample and asymptotic simulation evidence reported in this section and
previous ones, our recommendation would be that for small moderate sample use, the MAX
test should be implemented, mainly on the basis of the power results of tables 7 and 8. When
larger samples are available, our local altemative asymptotic power results in tables 5 and 6
generally point in favour of the GLS test. Size reliability would not seem to be an issue that
would point in favour of any particular test.

7. Application to the Nelson-Plosser data

Nelson and Plosser [17] carried out standard Dickey-Fuller tests on annual observations of
the logarithms of 14 historical US macroeconomic time series, incorporating a linear trend
in the test equations. The unit root null hypothesis was rejected at conventional significance
levels for only one series, the unemployment rate. Subsequently, the remaining 13 series were
frequently re-analysed from a number of perspectives. Their analysis formed a focus for the
work of Perron [1], who found considerably more evidence of (broken) trend-stationarity with
and exogenously selected trend break in 1929. Zivot and Andrews [11], among others, have
repeated this analysis with break date selection endogenized. In this section, we seek evidence
of broken trend-stationarity in these 13 series, again with endogenously chosen break date,
through the more powerful AO type break model tests discussed in the previous two sections.
We follow Perron [1] and others in the specification of break type-a break in both level and
slope for real wages and the S&P500, and a break in level with fixed slope for the remaining
11 series. Otherwise, we follow the method of analysis on which the results of tables 7 and 8
are base, described in the previous Section. Break date selection is based on f-ratios associated
with estimates of parameters on dummy variables in the first step regressions, and the number
of lagged changes incorporated in the second stage regression, on which unit root tests are
based, is determined by general-to-specific testing. Finite sample critical values, such as those
to tables 1 and 2, were employed, and where decisions at the usual significance levels were
not completely clear for particular sample sizes T, we obtained by simulation critical values
specific to those sample sizes.

The results of our analysis are shown in table 9, which gives test statistic values for the
four procedures and indicated rejections of the unit root null. The overall picture is that for 9
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Table 9. Application to Nelson-Plosser data: endogenous break date.

DF/2
MAX2
WS2
GLS2

DF/2
MAX2
WS2
GLS2

DF/2
MAX2
WS2
GLS2

DF/2
MAX2
WS2
GLS2

DF/3
MAX3
WS3
GLS3

Break in level with fixed slope (i = 2)

Real GNP (T = 62)

-3.91
-3.59
-3.74
-2.93

Ind. Prodn. (T = 111)

-4.52**
-4.45**
-4.66**
-4.46**

Consumer prices {T = 111)

-2.23
-2.23
-2.69
-2.04

Velocity (7 = 102)

-3.10
-2.85
-2.94
-1.27

Break in both level

Real wages ( r = 71)
-3.86
-3.86
-4.35*
-3.78

Nominal GNP (T = 62)

-4.02
-3.85*
-4.02*
-2.43

Employment (7" = 81)

-3.15
-3.15
-3.32
-3.09

Wages (7 = 71)

-3.25
-3.22
-3.19
-2.62

Bond yield ( r = 71)

-0.01
-0.01
-0.68
-0.69

and slope (1 = 3)

S&P 500 ( r = 100)
-4.91**
-4.91**
-4.93**
-3.73

Real GNP per cap (T = 62)

-3,56
-3,56
-3,55
-3.27

GNP deflator (T = 82)

-3.40
-2.20
-2.31
-2.69

Money stock (T = 82)

-3.11
-3.11
-3.24
-3.01

Note. Unit root null hypothesis rejected at: *10% level, **5% level, ***l%level.

of these 13 series, there are no rejections even at the 0,10 level. The GLS test finds only one
rejection at that level or lower, the usual DF/ test finds one further such rejection, the MAX
test finds a third, and the WS test a fourth. For samples of the current size, T < 111, this pattem
of results does not contradict those from tables 7 and 8; it is entirely possible that GLS may
have the lowest power of all the procedures. Certainly, its large sample power advantages are
unlikely to play a prominent role here. Also, that neither MAX nor WS drastically overturns
the evidence provided by the usual DFj procedure is also perhaps unsurprising. Given that
while our analysis suggests that these tests are, to a worthwhile extent, more powerful than
DFf tests, the magnitude of those power differences does not suggest dramatic reversals are
liable to arise in any one practical situation.
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APPENDIX A

A. 1 Proof of Theorem 1

The theorem can be proved directly from first principles. However, a more straightforward
proof follows from exploitation of the result for the forward statistic given in equation (7).
Obviously, adjustment must be made for the fact that in reverse time the break fraction (1 — r).
We also note that the statistic is invariant with respect to a, /6, y and 5 in equation (1) so that
we set these parameters to zero without loss of generality.

First, we make the following observations: (i) the limiting distribution of the forward statistic
D F / ( T ) in equation (6) is a function of Jdr) only and (ii) Jc(r) is obtained as the limit of tbe
following forward series:

a-'T-"^(yrT-yi)=^ Jc{r).

Hence, if Jdr) is defined as the limit of the corresponding reverse series (its existence will be
shown below) as follows

a-'T-"\yrT - yi)-^ Jcir),

then it is immediately obvious that the limiting functional for tbe reverse statistic DFr(r)
can be obtained by replacing J^r) in the limiting functional for the forward statistic DF/(r)
with Jc{r), but using the break fraction (1 - r) in place of r. This observation is sufficient
to immediately give the limiting null distribution of DFr(r) in terms of Jc{-)- Below, we
demonstrate the existence of Jdr). It can be shown that

r={l-i)r+2

= Cij + C2,T. (Al)
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Focusing on the first term, we have

I
T (\-s)T

I
= ^ -[t-''Wd\) - Wed - s)}, (A2)

where the result in the last line is obtained directly from Phillips [18]. Next, for the second
term, we have

\) + ̂ 'Zc), (A3)

where the last line is again obtained from Phillips [18], Collecting the limits in equations (A2)
and (A3) and using the definition of Jdr) = Wc(r) -\- (e'''̂  — \)Zc, we obtain

(T-'r-'/2(35,r - h) = ^ -{•/c(i) - 7c(i - s)}.

Hence, the new process Ids) exists and is given by Jds) — - {^ (1 ) — Jd^ — s)]- The limit-
ing functional in the theorem for the reverse statistic expressed in terms of Jd-) is then simply
obtained by substituting —{Jd^) — Jd^ ~ s)] for Jd^)-^^ illustrate the procedure discussed
so far in the following.

The limiting functional for the forward Perron statistic is given by

DF (T) = ^

where

^ ( l r ) ^

= gcfix)Dio + DiiiDu - Du) - Du j Dn - D,, -\-

and

with (T̂  — a^. All the functionals D,- are defined in Perron [1,3], but with W{-) replaced by
Jd')- For example, the term Du is given by

D,4= -T7e(T)- / 7,(r)dr.
^ Jo

First, we replace Jd') with Jd'), but using the break fraction 1 — r in place of r, which results
in the corresponding term for the reverse time statistic which we denote as

2 ^ ' ^ Jo
•)dr.
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By the transformation of replacing Ids), with —{Jdl) — Jdl — s)}, we have

= ^(1 - T){y,(l) -f - J Jc{r)dr,

which is given in the theorem. The same procedure is carried out for all the functions in
gc/{x), Hcf{x) and Kcf{x). It turns out that the denominator in the limiting functionals for
the reverse time statistic with Hcrix) defined as in the theorem is equal to the denominator in
the limiting functional for the forward Perron statistic given in equation (7), Collecting all the
terms delivers the result in the theorem.

A.2 Proof of Theorem 3

As done in the proof for forward and reverse Perron statistics, we can, without loss of generality,
set the coefficients a, fi,y and 8 in equation (1) to zero. We may then write.

e,=yt- ^t -

where the overstrike denotes a deviation from the mean. We also make use of the following
results regarding the OLS estimators from the first stage estimation in equation (3):

B, G, (A4)

where B, G and D are as defined in the statement of the theorem.
The OLS estimator p from the regression in equation (12) is given by:

El eU + +
Hence, we have the following result:

var

+

-1/2

e\ - xe], - d -

+(1 - ,r -^?r) \

e,_, Ae, - e.
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where CT^ = 7""' ^ 2 '??• Now it is straightforward using the results in equation (A4) to show
that

and

Hence, we have the required result:

vaf






