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Psychological, psychophysical and physiological research indicates that people switch between two 
covert attention states, local and global attention, while visually exploring complex scenes. The focus in 
the local attention state is on specific aspects and details of the scene, and on examining its content with 
greater visual detail. The focus in the global attention state is on exploring the informative and perceptually 
salient areas of the scene, and possibly on integrating the information contained therein. The existence of 
these two visual attention states, their relative prevalence and sequence in time has remained empirically 
untested to date. To fill this gap, we develop a psychometric model of visual covert attention that extends 
recent work on hidden Maxkov models, and we test it using eye-movement data. The model aims to 
describe the observed time series of saccades typically collected in eye-movement research by assuming 
a latent Maxkov process, indicative of the brain switching between global and local covert attention. We 
allow subjects to be in either state while exploring a stimulus visually, and to switch between them an 
arbitrary number of times. We relax the no-memory-property of the Maxkov chain. The model that we 
develop is estimated with MCMC methodology and calibrated on eye-movement data collected in a study 
of consumers' attention to print advertisements in magazines. 

Key words: change point models, reversible jump Markov Chain Monte Carlo, variable dimension time- 
series models, visual attention, covert attention, overt attention, eye-movements, saccades. 

1. Visua l  A t t en t i on  

O v e r t  v i sua l  a t t en t ion  a n d  cover t  v i sua l  a t t en t ion  to s t imul i  are  c lose ly  related.  Ove r t  v i sua l  

a t tent ion,  e y e - m o v e m e n t s  as they are o b s e r v e d  in sub jec t s  w h o  are exposed  to spat ia l  s t imuli ,  a n d  

cover t  v i sua l  a t tent ion,  the  m e n t a l  " spo t l igh t" ,  are u n d e r  par t ia l ly  ove r l app ing  n e u r o n a l  control ,  

as r evea led  b y  a large  n u m b e r  o f  p s y c h o p h y s i c a l  and  phys io log ica l  s tudies ,  r ev i ewed  by  Itti  a n d  

K o c h  (2001).  Shif ts  of  v i sua l  a t t en t ion  are c h a n g e s  in the  spat ia l  loca t ion  to w h i c h  peop le  a t tend.  

In na tu ra l ly  occur r ing  s i tuat ions ,  eye m o v e m e n t s  p re sen t  the  m o s t  sa l ien t  f o rm  of  shi f t ing at ten-  

t ion,  t he reby  coup l ing  pa t te rns  o f  over t  and  cover t  a t t en t ion  (F ind lay  & Gi lchr is t ,  1998; P a l m e r  

1999; W r i g h t  & W a r d  1998).  Thus ,  e y e - m o v e m e n t s  p rov ide  re l iab le  i n f o r m a t i o n  abou t  cover t  vi-  

sual  a t t en t ion  in such  s i tuat ions,  a n d  they h a v e  b e e n  ex tens ive ly  used  as ind ica tors  o f  a t t en t ion  in 

areas  as d iverse  as read ing ,  scene  percep t ion ,  ta rge t  search,  car  d r iv ing  and  adver t i s ing  process -  

ing (e.g., H e n d e r s o n  & Hol l ingwor th ,  1999; Jus t  & C a r p e n t e r  1987; Rayner ,  1998, U n d e r w o o d  

& Radach ,  1998; W e d e l  & Pie ters  2000) .  

A p a r t  f r om several  smal le r  cor rec t ive  m o v e m e n t s ,  eye m o v e m e n t s  to s ta t ionary  s t imul i  are 

c o m p o s e d  o f  saccades  and  f ixat ions.  Saccades  are rapid,  ba l l i s t i c  changes  in eye  pos i t ion ,  du r ing  

w h i c h  v i s ion  is essen t ia l ly  suppressed .  F ixa t ions  are the  pauses  b e t w e e n  saccades  dur ing  w h i c h  
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the eye position is relatively immobile, and during which information extraction takes place. The 
center for the execution of eye-movements is located in the superior colliculus (SC) in the human 
brain. 

Regular sequences of fixations, called scanpaths, occur during exposure to a visual stimulus. 
There is evidence that such visual scanning takes place through the interplay of two neural pro- 
cesses, characterized as "winner-takes-all", and "inhibition of return" (e.g., Itti, Koch & Niebur 
1998; Klein 1988; Laberge 1998). Both of these operate on stimulus saliency, which seems to 
be encoded in multiple regions of the visual system, in particular in the SC, and in the posterior 
parietal cortex (PPC; Itti & Koch, 2001). Winner-takes-all neural activity ensures that in case of 
competition for attention, the location of highest salience receives all attention. After process- 
ing, that attended location is then transiently inhibited, thus preventing subjects from continually 
rechecking it. The attention spotlight then focuses on the next salient location, through winner- 
takes-all again. This process, applied repeatedly, generates a scanpath of fixations and saccades 
across the stimulus. 

1.1. Local and Global Visual Attention 

Whereas previously scanpaths had been considered in a deterministic manner, Ellis and 
Smith (1985) proposed that scanpaths are best described by a stochastic process, where the po- 
sition of a fixation depends on the position of the previous fixation, according to a first-order 
Markov process (see also Viviani 1990). Pieters, Rosbergen, and Wedel (1999) recently empiri- 
cally confirmed scanpaths to follow a first-order Markov process. This Markov process presup- 
poses a uniform scanpath during exposure to a stimulus, that is, a single-state of covert visual 
attention. 

Yet, there is reason to believe that people switch between two different covert states of vi- 
sual attention, while exploring visually complex stimuli, which should lead to distinct scanpaths 
of eye-movements (e.g., Antes 1974; Groner 1988; L6vy-Schoen 1981; Pomplun, 1998; Zange- 
meister, Sherman & Stark 1995). We postulate that these two covert states concern respectively 
local and global visual attention. In local visual attention, stimuli are explored in detail by extract- 
ing information from specific and adjacent locations, and it is characterized by shorter saccades. 
In global visual attention, stimuli are explored to identify locations to extract information, and 
possibly to integrate the information from various locations in the stimulus. It is characterized 
by longer saccades. It has been suggested that the global attention state is prevalent initially to 
grasp the general meaning of a stimulus, while the local attention state may prevail later on to fill 
in details and focus on less informative parts (Antes 1974). 

Consistent with this view of two covert attention states, LaBerge (1998) distinguishes orient 
and resolving mechanisms of attention in target search from multi-element displays. In orient- 
ing, people scan a stimulus in search for spatially distributed information, while in resolving they 
extract information from a specific location, and keep it separate from nearby or overlapping in- 
formation coming from distractors. Related to this, Posner (e.g., Posner, 1980; Posner & Cohen 
1984) distinguishes stages of attention engagement/disengagement and of attention shift. These 
covert stages could be reflected in a single fixation and saccade, but could also express them- 
selves in the larger patterns of fixations and saccades that comprise scanpaths. In a similar vein, 
Henderson and Hollingworth (1998) propose framework of scene viewing comprising a state in 
which attention shifts across the scene to particular regions of interest, and a state in which in- 
formation is extracted from a specific region in the scene. Information acquisition in the latter 
state is optimised by re-fixations in the region of interest, which is typically reflected in smaller 
saccades. 

In further support of our reasoning, two brain areas appear to be strongly involved in the 
control of visual attention (see the review of Itti & Koch, 2001). The posterior parietal cortex 
(PPC) globally directs visual attention towards regions of interest in the scene; the inferotemporal 
cortex (ITC) is involved in local exploration, recognition and identification of objects in the 
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FIGURE 1. 
Neural control of overt and covert visual attention (adapted from Itti & Koch, 2001). 

scene (see Figure 1). In the ITC-controlled local attention state, the focus is on specific aspects 
and details of the stimulus, and on examining its content with greater visual detail. In the PPC- 
controlled global attention state, the focus is on exploring the informative and perceptually salient 
areas of the stimulus, and possibly on integrating the information contained therein. That is, 
bottom-up control of visual attention by the PPC would be characterized by global scanpaths, 
consisting of longer saccades, since the eyes are directed at salient features of or objects in the 
scene for further exploration. Bottom-up control of visual attention by the ITC, on the other hand, 
would be characterized by local scanpaths, consisting of shorter saccades, serving to process 
objects in detail. 

Since understanding of heterogeneous stimuli involves both local and global attention, the 
PPC and ITC need to interact intensively. Such interaction has been shown to be under the control 
of the prefrontal cortex (PFC), which controls the switching of attention back and forth between 
local and global attention states through feedback mechanisms (see Figure 1). The PFC, in ad- 
dition, is also responsible for planning of the execution of eye-movements, the center for which 
is located in the SC. Thus, the PFC switches control between the PPC and the ITC continuously, 
and at the same time plans the eye-movements, executed by the SC. Thus, activity in the PPC 
and ITC is likely to be directly reflected in the eye-movements and scanpaths, and the difference 
in these attention control systems is likely to be reflected in differences among the scanpaths. 

In sum, there is reason to believe that there are (at leas0 two states of covert visual atten- 
tion, local and global, with qualitatively different information processing functions, which are 
expressed in distinct patterns of eye-movements. Dominant presence of both attention states is 
less likely to occur for relatively homogenous stimuli, as typically used in reading tasks, where 
the local attention state may prevail (McConkie, 1983; Rayner, 1998). In contrast, visually het- 
erogeneous stimuli such as complex scenes (Yarbus 1967), or stimuli containing multimode 
information such as instructions with text and pictures (Stolk, Boon & Smulders 1993), and 
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print advertisements (Pieters, Rosbergen & Wedel, 1999; Rayner, Rotello, Stewart, Keir & Duffy 
2001) may give rise to more extensive switching between global and local visual attention states. 

Although there is ample theoretical support for the postulated states of local and global vi- 
sual attention, their existence and relative prevalence over the time course of stimulus exposure 
has remained empirically untested. Identification of these two attention states may have been 
hampered by both the absence of sufficiently detailed eye-movement data across larger numbers 
of subjects and sufficiently heterogeneous stimuli, and the mathematical complexity of repre- 
senting such a process of switching among different unobserved states of visual attention. 

Here, we develop and test a psychometric model that aims at dealing with these issues. It is 
assumed that the observed eye-movement pattern is an indicator of, that is, imperfectly reflects, 
the two unobserved attention states. In attention research one is primarily interested in inference 
on the covert attention process, for example on the time subjects spend in the local and global 
attention states and the transition probabilities between them. Statistics on these unobserved 
states cannot be directly derived from the data or simple models that ignore the existence of such 
latent attention states. Our model serves to identify the covert visual attention process and enables 
its statistical description. It describes the observed time series of saccades typically collected in 
eye-movement research and uses a Markov representation of the overt visual attention process 
(Pieters, Rosbergen & Wedel, 1999). However, rather than using a single Markov process, we 
assume two such processes, indicative of the specific covert attention state that a subject is in 
at a particular point in time. We relax the no-memory property of the Markov chain and allow 
the time of a particular scanpath to depend on the time spent in the covert attention state, which 
is important substantively (Egeth & Yantis, 1997; Viviani 1990), since it reflects the attention 
feedback control mechanism exerted by the PFC. We model subjects' switching between the 
global and local states controlled by the PPC and ITC respectively, where we take the observed 
pattern of saccades as indicative of the subject's latent attention states. We allow for an arbitrary 
number and order of switches among the covert attention states for each subject. The model 
that we develop is estimated with MCMC methodology and calibrated on eye-movement data 
collected in a study of consumers' attention to print advertisements in magazines. In the next 
section we derive our model of covert visual attention states, and describe how it is estimated. 
Next, we offer a test of the model using synthetic data, and proceed with a description of the data 
collection and findings of the main empirical illustration. 

2. A Model of Local and Global Visual Attention 

2.1. Likelihood and Priors 

In order to enable the identification of patterns of visual attention to stimuli, we extend 
the recent literature on hidden Markov models (Hodgson & Green 1999; Liechty & Roberts 
2001; Robert, Ryden & Titterington 2000) and develop a model of covert global and local spatial 
visual attention, based on the theory outlined in the previous section. Prior research has employed 
Markov and semi-Markov models for modeling eye-movements across a stimulus (cf. Engbert 
& Kliegl 2001; Hacisalihzade, Stark, & Allen 1992; Rimey & Brown 1991), while Salvucci and 
Anderson (2001) use hidden Markov models for the coding of eye-movement protocols. 

Rather than equating characteristics of eye movements (fixations, saccades) directly with 
visual attention, we consider them as indicators of the patterns of covert visual attention that we 
intend to uncover. In order to do that, we consider the overt attention process, X, consisting of the 
sequence of eye fixations across a stimulus, observed for a sample of subjects to be a continuous- 
time Markov chain, which allows us to obtain insights into the nature of the spatial dependence 
of eye fixations on a stimulus. 

We assume that overt attention is driven by a covert attention process, denoted as D, which 
attains two states representing the states of visual attention, global or local, that a subject may 
be in at any point in time. The covert process cannot be directly identified from the data, since 
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global eye jumps may occur by chance in the local covert attention state and visa versa. The 
covert process D is a continuous-time Markov or semi-Markov chain. 

We begin our description of file model by assuming for simplicity that we have observed a 
sequence of eye movements observed lbr a single subject, as s/he views a single stimulus. We 
assume that the data is summarized in terms of a sequence of fixations on a grid overlaid on top 
of the stimulus, where the S is a countable collection of locations j on the grid: 

S ~ {j; ( x j , y j )  : j = 1 . . . . .  J } .  

The pair ( x  j ,  y j )  defines j in terms of the x- and y-coordinates on the lattice. Such a grid facili- 
tates the analysis of the data through aggregation of the fixations, and enables us to define local 
and global saccades. To that end we define two sets of indices on the lattice, those that define 
neighboring (local) locations on the grid, respectively those that we call global: 

L =--. { j , l  : l x j  - x l t  < l A l y j  - yzt < 1 } ,  

G = { j ,  1 : Ix j  - xlI  > 1 v lYj  - Yl[ > 1}, 

where S = L A G, so that fixations are classified as either local or global, but not both. Dealing 
with a grid rather than with the exact eye-fixation locations introduces measurement error-- 
the chosen grid size affects the definition of local versus global observable saccades--that is 
accommodated by the stochastic nature of the model specified below. We are primarily interested 
in inferences on the unobserved attention process and its latent states, for which the observed 
fixations on the grid elements are used as (imperfect) indicators. In choosing the grid size in the 
empirical application below, we intend to balance the detail of the information obtained on the 
indicators of the latent states against data sparseness (e.g., Ellis & Smith 1985). 

We consider the observed fixations 

X~ = {Xt(j) : j ~ S;O < t < T} 

to be realizations of a continuous-time Markov chain indexed by t (we omit the dependence of X 
on the lattice S in the notation in the sequel). The observed chain has waiting times that are expo- 
nentially distributed. In line with previous suggestions that saccades depend on the time spent in 
the attention state (e.g., Wedel & Pieters 2000; Wolfe, 1998), we have the transition matrix of the 
observed chain X depend on the hidden continuous-time Markov chain, Dr. That hidden chain 
is characterized in tenns of states (k0, kl, . . .  kr) and associated waiting times (to, rl . . . . .  rv) 
indexed by t = 1 . . . . .  T. We consider a two-state (k = 1, 2) hidden Markov chain, representing 
the local versus global covert attention states. Conditional upon a jump occurring, the probability 
that D changes states is defined by PD. 

Each state, k, of the hidden Markov chain, D, has an associated transition matrix, Pk = 
{Pk je} ,  that characterizes the observed Markov chain describing the saccades. The indices j 
and g refer to the elements of the lattice S. q lae diagonal elements of the transition matrices 
represent re-fixations in the same cell of the grid, and identify the informative or perceptually 
salient areas of the stimuli for each attention state (Henderson & Hollingworth, 1998, 1999). The 
oft-diagonal elements represent saccades between the grid cells and indicate how, given a latent 
attention state, the eye shifts between those informative o1 perceptually salient areas. Since the 
fixations may be spatially dependent beyond what is accommodated by the transition matrices 
Pk, spatial dependencies in the fixations are accommodated through the specification of the prior 
distribution, as will be detailed below. 

Explicitly modeling the termination of the observed eye movements across the stimulus is 
important from a substantive point of view, since it provides insights not only into when subjects 
terminate attention to a particular stimulus, but also into the covert attention state they are in 
when terminating. This tells us whether subjects are more likely to end scanning the stimulus 
after attending to stimulus details deemed sufficiently informative (local), or after exploring the 
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stimulus for informative areas (global). For the data that we consider, the state space of the ob- 
served process, X, is given by the elements of the grid plus an 'exit' state that occurs when a 
subject stops exposure to the stimulus. This exit state is an absorbing state that naturally accom- 
modates finite length or censored Markov chain data. We represent the probability of jumping to 
the exit state as qkj and formulate the probability of jumping conditional on not exiting. Thus, 
Pk = Pkje, is the probability that the eye jumps from j to ~ given that D is in state k and X 
jumps, but not to the absorbing state. We assume that once X enters the absorbing state D no 
longer changes its state. 

In the eye-movement data in the empirical application below we have a collection of ob- 
served processes, {Xna}, which for our purposes are indexed by n for a particular subject and by 
a for a particular stimulus. The dynamics of each observed process Xna depends on it own hid- 
den Markov chain Dna. We assume a priori that the starting probabilities of the Markov chain, 
VD, and the transition probabilities PD given the hidden chain D are the same for all subjects 
and for all stimuli. As motivated extensively earlier, we assume a hidden process with two covert 
attention states, a global state and a local state, but for purposes of model comparison we will 
also later estimate a model with a single latent state. Although the times that subjects spend in 
these states may differ, the switches between the local and global states themselves are assumed 
timeless, which is in accordance with quantal theories of spatial attention (Sperling & Weichsel- 
gartner 1995). The prior for Dna is: 

\k~e I 

exp - ~ XDkI{Dnas = k} ds , (1) 

where NakDje (unobserved) is the number of times that D jumps from state j to e, where VD is 
the density of the starting values of X, where MDnaj is the number of times X jumps to state j ,  
where T is the time at which X jumps to the absorbing state, where I{.} is the indicator function 
and where XDk is the intensity of the k-th exponential waiting time distribution. We assume that 
VD follows a prior Dirichlet density and that XDk follows a prior Gamma density. 

Each stimulus has its own starting probabilities, denoted as Va. We assume a priori that Va 
follows a Dirichlet density. The dynamics of the observed process are described by the intensities 
Xakj, the probabilities of exiting qakj and the transition probabilities, Pk. We assume that Xakj 
follows a prior Gamma density, and that qakj follows a prior Beta density: 

)~akj ~ Gamma (gk, hk ), 

qakj ~ Beta (&, bk). (2) 

We assume that the parameters in (2) each follow a prior exponential density. 
We also assume a priori that each row of the jump chain transition matrices follow a con- 

strained Dirichlet density, so that the density for the j-th row of Pk is given by 

f ( P k j )  -- I--I ' (3) 
F(akje) £ 

where the restriction ~ e  Pkje = 1 holds. We specify the parameters of this prior to depend on 
whether the cells j and g are adjacent to each other. Thus we use the spatial adjacency pattern of 
the cells as prior information. We now parameterize C~akj as: 

flkL, if j, ~ is a local move (4) 
°{akj£ = [ f l k G ,  if j, ~ is a global move. 
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In order to identify the states of the latent chain D, we place restrictions on the transition 
matrix. Because we are interested in distinguishing between periods in which local moves (moves 
to neighboring cells in the grid) are preferred m global moves (nonlocal moves) and periods in 
which global moves are preferred to local moves, we consider a two-state (k = 1, 2) hidden 
Markov chain where the two states are identified by assuming that in State 1 the probability of  a 
local move is larger than that of  a global move, while in State 2: the reverse holds. That restriction 
to identify the parameters of the latent chains is imposed as 

filL > Y/GfllG and fl2L <~ nGfl2G, (5) 
YIL nL 

where n> is the number of  adjacent (local) cells and nG is the number of  nonadjacent (global) 
cells for a cell that is not on the edge of  the grid. This restriction is implemented, because prior 
eye movement research has shown that fixations on a cell at the eAges of  the stimulus as a whole 
are more rare (Pieters, Rosbergen & Wedel, 1999). To complete the model specification we as- 
sume that each ¢3 in (5) follows a prior exponential density. 

In our model the waiting times of  X are not necessarily independent of  D. If  they are, 
we have a continuous time Markov model that arises as a special case. In describing the eye- 
movement data, the time spent in one of the cells of  the lattice, before jumping may depend on 
the realization of  the hidden Markov chain. Hence, it is reasonable to have the waiting times 
of  X conditional on D, denoted as w, come from a piecewise-continuous exponential density, 
with constant intensities within time intervals where D is constant. If  the waiting times of  X 
come from such a density, then the observed process is no longer memoly-less (i.e., the hazard 
function is no longer constant) and X can be regarded as a semi-Markov process; see Ross 
(1983). The intuition behind this specification of  the semi-Markov process is that to predict an 
observed saccade given a covert attention state, the entire time spent in that particular covert state 
is relevant, and determined by attention feedback from the PPC and ITC to the PFC. 

The likelihood of  the model can now be formulated as 

f ( X I - ) - -  I-I I-I(Vak(X0)) I{D,'~°=k} (1-I(Pakje(1--qal~j)) Nnakje) 
na k \ k j e  

kj 

where f ( w e  ID, )~) is the density of  the g.-th waiting time of  X (now suppressing subscripts a and 
n for convenience), which is given by 

~o 

f ( tcg lD'  "~') = (g Z ~gm exp{--~XteD,~e (we -- re+m)}I{'ce+m < We <_ Tg+m+l}. 
m=0 

(7) 

Here "~XtgD,j~g is tile intensity associated with the state of  X when the ~-th jump time of  X began 
and with the state of  D at time we, and re+m is the m-th time after re-- the g-th jump time of  
X- - tha t  D changed states, with re+o = O. In addition, ~beo = 1 and qSem is defined recursively by 

qSe,~+l = ~be,~ exp { - )~xu)~, ~ (rm+l - rm)}. (8) 

The normalizing constant of this density complete the model description, and it is given by, 

C 1 = ~_~ - exp{--)~X~eD~ m (re+m+1 -- rm)}) • (9) 
55- 
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To summarize, the important features of the model are that it describes overt visual attention, 
that is, eye fixation patterns on a grid overlaid on a stimulus and their termination, as an indicator 
of the covert attention process of primary interest, comprising of a global and a local state, where 
the time spent in one of the cells of the grid may depend on the overt realization of the attention 
process. The proposed model provides key measures of covert visual attention: the probability of 
starting and of terminating exposure to the stimulus in a particular attention state, the probability 
of jumping to a certain state given the current attention state that people are in, the mean duration 
in each attention state, and the mean fixation duration per attention state. 

2.2. Markov Chain Monte Carlo Algorithm 

We use a standard Markov Chain Monte Carlo (MCMC) algorithm, with Hasting Metropolis 
(HM) subalgorithms, to draw from the posterior distributions generated by our model specifica- 
tion; see Gilks, Richardson and Spiegelhalter (1996) for a general discussion of MCMC methods 
and the HM algorithm. The full conditional posterior densities for the Markov chain and semi- 
Markov version of these models are identical except for the full conditional density of the hidden 
Markov chain D and the density of the intensities of the waiting times of X. The full conditional 
posterior densities for rows of the transition matrices, Pak, and for VD, the initial distributions of 
the hidden and observed Markov Chains are Dirichlet densities, those of fikL and fik~ are pro- 
portional to products of Dirichlet densities. The full conditional density of qakj is a Beta density. 
The full conditional densities of the intensities of D, )VDk, and of X, )Vakj are Gamma densities. 
The full conditional distribution of gk is a Gamma density, but that of hk is nonstandard. Those 
of dk and bk are also nonstandard. The full conditional densities of the intensities of X, when 
X is a semi-Markov process, and of D, regardless of whether X is semi-Markov or Markov, are 
nonstandard. The details of these full conditional posterior distributions are not provided here to 
save space. 

We use the reversible jump HM algorithms proposed by Liechty and Roberts (2001) to 
generate samples of the hidden Markov chain D. Only a brief summary of these algorithms is 
given here as they are fully described in Liechty and Roberts (2001). The difference between 
their algorithm and ours is based on the different likelihood functions. Samples for the parame- 
ters that have conjugate full conditional densities were generated using the Gibbs sampler, and 
samples for the remaining parameters were generated using a random walk HM algorithm. The 
algorithms used to update D are reversible jump algorithms, where each hidden Markov chain 
is parameterized using a variable number of parameters. The number of parameters depends on 
the number of times that the Markov chain changes state. One advantage of the HM algorithm, 
as pointed out in Green (1995), is that it can jump between models with different dimensions; 
for example, between models where the hidden Markov chains have a different number of jump 
times. 

In order for the HM algorithm to generate a Markov chain that converges to the target den- 
sity, it must propose a reversible change to the parameter that is being updated--that is, the 
probability of proposing the current parameter value given the proposed parameter value must be 
greater than 0--hence the name reversible jump. While this is a general requirement with respect 
to constructing HM algorithms, the name reversible jump has become associated with HM al- 
gorithms that are designed for jumping between model spaces that have different dimensions. A 
second issue that needs to be considered when constructing an appropriate reversible jump HM 
algorithm has to do with what Green (1995) referred to as dimension matching. While dimen- 
sion matching is needed to ensure that the resulting acceptance probability calculated in the HM 
algorithm is actually a probability, dimension matching can be taken care of in a natural way if 
the full conditional densities of the "variable dimension" parameters are defined with respect to 
a common dominating measure. The likelihood of the models that we propose is defined with 
respect to a common dominating reference measure. Therefore, the resulting full conditional 
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densities for the hidden Markov chains are densities with respect to this common dominating 
measure. This construction takes care of the dimension matching issues. 

We used three different algorithms for updating D. The first algorithm is an independence 
algorithm, which ignores the current realization of D and proposes realizations of D by drawing 
from the prior density of D. This results in proposed realizations that are considerably different, 
in terms of the posterior density, and as a consequence this algorithm tends to result in large but 
infrequent moves. The other two algorithms create proposed realizations of D by making small 
modifications to the current realization of D. The second algorithm is a refinement algorithm 
where the proposed realization of D is created by modifying one of the jump times of the current 
realization of D. The third algorithm is a birth-death algorithm in which the proposed realization 
of D is created by either inserting a new interval into the current realization of D - - a  birth--or 
removing an interval from the current realization of D - - a  death. The independence algorithm 
has obvious advantages when the posterior distribution is multi-modal or when a poor initial 
value of D has been chosen, where the refinement algorithm and the birth-death algorithm have 
the advantage of more efficiently exploring the modes of the posterior distribution. In order 
to take advantage of the properties of these three algorithms, one of these three algorithms is 
randomly chosen at every sweep of the MCMC algorithm, to update each hidden Markov chain. 
We apply the algorithms proposed by Liechty and Roberts (2001; see their detailed descriptions) 
to estimate our model of visual attention states based on eye-movement data. 

3. Analysis of Simulated Data 

To illustrate the performance of our model and MCMC estimation algorithm and compare 
this with alternative models and algorithms, we generated synthetic data according to our model, 
but with a single semi-Markov process, with 16 observed states (i.e., a 4 by 4 grid) and two 
latent states. We analyze this data using a collection of models in order to investigate the effect 
of incorporating various model components. The different models that were considered are as 
follows: 

1. A semi-Markov model with waiting times that depend on the latent states. This is our pro- 
posed full model. For this model we used reversible jump HM algorithms that identifies the 
number of jumps between the latent states. 

2. A Markov model with constant waiting time hazard. This is the restricted Markov version 
of our proposed full model. Again we used the same reversible jump HM algorithm that 
identifies the number of jumps between the latent states. 

3. A semi-Markov model with waiting times that depend on the latent states, but that has a fixed 
number of jumps between the latent states. For these models we used a stripped version of the 
reversible jump MH algorithm that assumes the number of jumps between the latent states to 
be fixed. We apply this model with an assumed value of 1 to 10 jumps. 

We present the results of the analysis in graphs in Figure 2. Figure 2 shows the realization 
of the true hidden Markov Chain in the top panel. The second panel shows the results of the 
semi-Markov and Markov model estimates (Models 1 and 2), and the third panel shows several 
of the fixed switch point models (Model 3). In each panel the vertical axis shows the probability 
of being in latent State 1, the horizontal axis shows the simulated time scale. The top panel of 
the Figure displays the realized states of the hidden chain. It should be noted that the particular 
realization generated has a number of short waiting times, near the beginning of the time axis 
and near the end of the time scale. It seems obvious that such short visits to latent states are 
difficult to identify from the data (plotted in the graph as jittered points), which is desirable for 
the investigation of the performance of the various models. 

The nonconstant waiting time model does a better job of estimating the hidden Markov 
chain than the constant model, as can be seen in the second panel in the Figure. The "long" 
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FIGURE 2. 
Dots  are jittered observed  event t imes.  Lines  are the probabil i ty  o f  being in the first la~ent state for the true data (top 
panel) ,  the Markov  and s e m i - M a r k o v  mode l s  wi th  variable numbers  o f  jumps  (middle  panel)  and the semi-Markov 
models  with the numbers  o f  jumps  fixed (bottom panel).  

period that the system spends in State 1 from about t = 200 to t = 800, is identified with high 
probability (around 0.9), and the same holds for the time spend in State 2, from about time 800 
to 1600. Even the very short transitions between States 1 and 2 and visa versa at both ends of the 
time scale are visible in the graph. The model that assumes a constant waiting time does worse in 
that respect. The long State 1 visit in the beginning is identified with a relatively low probability 
of 0.6, but for a substantial portion of the relevant time scale the probability is 0.5 or lower. The 
short jumps between the latent states at both ends of the time scale are not as clearly identified 
when compared to file semi-Markov model. We conjecture that the difference in performance 
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between these two models arises because the semi-Markov model capitalizes on the information 
about the difference in the waiting times for each state to distinguish between the different states. 

The analyses where the number of jumps between states is fixed reveal that the results are 
very dependent upon that assumption. When one change point is assumed, long visits to State 1 
and State 2 are identified with high probability, but the short visits are not identified at all. That 
situation improves when the number of change-points set in the model is increased. Models with 
2 to 4 change-points (shown in the figure) come close in performance to the semi-Markov model, 
but the profile of transition probabilities is less sharply defined. The semi-Markov model resulted 
in an a posteriori mean number of jumps of 3.74 (the Markov model resulted in a lower posterior 
mean number of jumps: 2.81). For models with more than four change points, performance starts 
to decline. The graphs of the estimated jump chain probabilities become flatter and the individual 
states are less well identified, as exemplified by the graph for the model in which 10 change points 
are assumed: the probability of State 1 hardly ever rises above 0.5. 

This analysis of simulated data demonstrates that even for a single process (i.e., one subject 
and one stimulus) with limited information, and a structure that is difficult to identify due to 
short stays in the latent states, our model and MCMC estimation algorithm do a good job in 
identifying the transitions between those latent states from the limited information in the data, 
and a better job than several competing models and algorithms, as is apparent from Figure 2. 
With that support, we set out to analyze real eye-movement data. 

4. Application to Visual Attention to Advertisements in Magazines 

4.1. Subjects and Stimulus Material 

A random sample of sixty-nine female consumers, between 19 and 52 years, were invited 
to the market research agency (Verify International in Rotterdam, The Netherlands) that col- 
lected the data. The stimulus material was comprised of seventeen full-page advertisements with 
their surrounding editorial material from consumer magazines. The advertisements appeared in a 
larger stimulus set exposed to subjects on 21-inch (3:4) high-resolution NEC monitors. The tar- 
get advertisements promote different services (airline, investment, computer shop), food products 
(tortilla chips, cookies, sausage), detergents, tobacco, alcoholic beverages and durable products. 
The target advertisements all contained text and pictorial (scene) information. There has been 
little research into visual attention for such mixed information mode stimuli (see, e.g., Rayner, 
1998; Rayner et al., 2001). We expect local and global covert attention to be both more preva- 
lent for such complex stimuli than for example in reading or scene perception tasks as used 
frequently in previous eye-tracking studies. This makes this data set very well suited for our 
purposes. 

4.2. Eye-Movement Recording 

Subjects were seated in a comfortable chair in front of the monitor, with their head against 
a forehead rest to ensure reliable eye tracking. Instructions appeared on the monitor. First, a 
calibration task was performed. Next, subjects engaged in a typical visual exploration task as 
they would at home or in a waiting room (Wedel & Pieters, 2000). They proceeded through the 
stimulus set at their own pace by pushing a switch in front of them. Stimuli were randomized 
across subjects to control for order effects. 

While paging at their own pace, subjects' eye-movements were recorded with infrared 
corneal reflection eye-tracking methodology (e.g., Ober 1994). The specific eye-tracking equip- 
ment we used has been developed by Verify International. It measures the position of the fovea 
at 50 Hz and records the exact locations of eye fixations continuously. We retain the data at 
the recording level of 20ms before processing. The systems' precision is 0.5 ° (for details of 
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the eye-movement recording, see, for instance, Wedel & Pieters, 2000). The viewing distance 
(eye-screen) was 30 inches. 

4.3. Grid Overlay 

In basic reading research, fixations are typically analyzed at their exact position. However, 
there are advantages to assigning fixations to larger areas in visual exploration research. First 
at each eye fixation the perceptual span covers more than just the exact fixation point due to 
parafoveal and peripheral vision (Anstis 1974; Findlay & Gilchrist, 1998; McConkie, 1983), 
particularly in scene perception. Since a larger part of the stimulus is covered in each fixation 
than is suggested by exact fixation positions, predefined areas are more appropriate as the unit 
of analysis than exact fixation points. Second, given the number of fixations and saccades that 
occur during a single exposure to an ad, the dimensionality of the data become prohibitively large 
when based on exact fixation positions instead of on a limited number of areas. Aggregation of 
raw eye-tracking data is thus desirable m visual exploration research, but the level of aggregation 
needs to be determined. 

Previous research has used coarse grids of up to 16 elements superimposed on the stimuli 
(e.g., Pieters, Rosbergen & Wedel, 1999; Viviani 1990). ~lb exeanine visual attention to magazine 
advertisements in detail, we superimposed a grid of six by eight (48 elements) on the stimuli. In 
choosing the grid size, one balances level of detail against data sparseness, where in this study we 
need to accommodate different stimuli (ads) and different modes (text/pictorial) within the stim- 
uli. The advertisements were resized to fit the high-resolution NEC monitor, with a diagonal of 
21 inch (12.6 by 16.8 inch), the 48 grid elements being 2.1 by 2.1 inch. This grid sizes optimally 
balances the amount of information retained versus sparseness of the data. All saccades between 
and fixation frequencies within elements of the grid for all sthnuli and subjects are retained, and 
individual fixations and their duration are preserved as well. Below, we provide a check on the 
validity of our choice of the grid size by investigating the distribution of the observed saccades 
versus that predicted from our model. 

4.4. Data Description 

Figure 3 provides a description of the data. The upper left-hand panel shows the distribu- 
tion of the numbers of fixations per stimulus. The distribution is quite skewed, with a max- 
imum number of 105. The upper right-hand panel provides the distribution of the saccadic 
lengths across the grid elements, in numbers of grid points. One may observe that a majority of 
saccades occurs within one or two elements, but long saccades of up to seven do occur. The 
lower left-hand panel shows that across all stimuli and subjects initial fixations tend to be located 
near the center of the stimulus. However, the lower right hand panel shows that three locations 
of high density of fixations tend to exist, possibly caused by the typical spatial layout of the 
stimuli. 

5. Results of Model Estimations 

5.1. Convergence and Prior Sensitivity 

We assess convergence of the MCMC algorithm R)r the various models estimated by moni- 
toring the behavior of the scalar parameters, which are at the "top" of the model hierarchy using 
the Gelman and Rubin (GR; 1992) statistic. In addition we monitor the convergence of six, ran- 
domly selected, individual hidden Markov chains, by calculating the L 1 statistics discussed in 
Liechty and Roberts (2001). Both the GR statistic and the I )  statistic assess convergence by 
monitoring the behavior of parameters from multiple MCMC analysis that are run in parallel. In 
our analysis we run five chains in parallel, the GR statistics and the L 1 statistics show that the 
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FIGURE 3. 
Summary of the eye-movement date: Histogram of fixation frequency (top-left), saccadic length (top-right), distribution 
of initial fixation locations (bottom-left), total fixation locations (right) across subjects and stimuli. 

MCMC chain has converged after 7,000 iterations. We investigate prior sensitivity of our model 
by varying the parameters of the prior distributions. In all cases we found that the posterior dis- 
tributions of the parameters were similar for a range of prior specifications, which shows that the 
prior is dominated by the likelihood due to the large amount of information in the data. 

5.2. Local and Global Covert Attention States 

We first investigate the support that exists for our claim that there are local and global covert 
attention states (e.g., what evidence is there for a two-state model, rather than for a one-state 
model that does not distinguish between global and local attention states), and for a semi-Markov 
model over a Markov model. We assume a priori, that each of the models being considered is 
equally likely and calculate the posterior odds ratio using the fourth sampling based estimator 
proposed by Newton and Raftery (1994), which in this case is the Bayes Factor (O'Hagan, 1994). 

There is very strong support for the two-state model when compared with either version 
(Markov or semi-Markov) of the one-state model: the Bayes Factor is 237.5. Thus, importantly 
there is strong statistical evidence that indeed global and local covert attention states underlie 
subjects' eye-movement patterns in this study. Further, there is strong support for the two state 
semi-Markov model, compared to the two state Markov model: the Bayes Factor is 468.7, which 
implies that global and local attention states have different associated fixations durations. To 
examine the fit of our model and provide face validity to the choice of our grid-size, we pre- 
dict the mean and standard deviation of the length of the saccades. Note that saccade lengths 
themselves are not included as a part of our model. The saccade data have Mean = 0.216, 
SD = 0.134, while those predicted from our model have Mean = 0.199, SD = 0.202, which is 
fairly close. 
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TABLE 1. 
Posteior means and standard deviation (in parentheses) of key parameters 

Parameter 
(-function) Interpretation 

k = l  
Local Covert 

Attention 

k = 2  
Global Covert 

Attention 

Vk 

bk 

d k q-b k 

flkL 

fkG 

flkL 

flkL + flkG 

Xk 

1 

Xk 

gk 

hk 

hk 

gk 

Probability of  starting O. 992 
(0.003) 

Location parameter of exit probability distribution 1.01 
(0.0O4) 

Scale parameter of exit probability distribution 9.88 
(0.525) 

Probability of terminating 0.093 
(0.005) 

Location parameter of local jump distribution 217.34 
(4.697) 

Location parameter of global jump distribution 71.84 
(1.852) 

Probability of a local jump, given current state 0.758 
(0.000) 

Location parameter of waiting time distribution 0.883 
(0.021) 

Mean duration, in seconds I.I30 
(0.027) 

Location parameter of fixation intensity distribution 21.39 
(1.145) 

Scale parameter of fixation intensity distribution 4.32 
(0.243) 

Mean fixation duration, in seconds 0.202 
(0.003) 

0.008 
(0.003) 

1.03 
(0.027) 

3.39 
(0.013) 

0.234 
(o.o13) 

31.39 
(0.489) 
51.91 

(1.166) 

0.385 
(0.003) 

4.58 
(0.123) 

0.219 
(0.006) 

16.47 
(0.243) 

2.42 
(0.257) 

O. I47 
(0.004) 

Based on these model tests, we focus on the aggregate results for the two-state semi-Markov 
model and we illustrate subject and stimulus level inference on the inferred attention patterns. 
Our inferences based on the posterior distributions of the model parameters are confined to the 
covert attention states, since identifying these is the primary goal of this research. We report 
posterior Means and Standard Deviations (SD) for key parameters in Table 1 and in the text 
below. 

The results of the application of the multi-process, semi-Markov model to the observed fix- 
ation sequences across subjects and stimuli in the main study reveal the following. The expected 
number of fixations per stimulus is 15.300 (SD = 11.136), while the expected total viewing 
duration per stimulus is 3.339 sec (SD = 0.552). As expected, the probabilities of starting the 
fixation sequence are substantially larger (Mean = 0.101, SD = 0.037) for the center cells of 
the lattice (x = 3 to 4, y = 3 to 5) than for the exterior cells (Mean = 0.009, SD = 0.007). 

Next, we examine the covert attention states, local or global, in which people generally 
start and terminate exposure to the advertisements. Then, we examine the patterns of switching 
between the covert attention states, during exposure to the stimulus, as well as the time they 
spend in the two states, and the average fixation duration in each state. After that we integrate 
these findings, and present subject and stimulus inferences based on the model estimations. 
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5.3. Start and 7?rmination States of Visual Attention 

Subjects nearly always start in the local attention state (k = 1), with an estimated prior 
probability of  0.992 (Table 1). This is partly caused by the observed duration of  the first fixation, 
which is significantly larger on average (Mean = 0.268 sec, SD = 0.146) than the subsequent 
ones (Mean = 0.213 sec, SD = 0.132). Fixations in the local attention state tend to be sub- 
stantially longer, Mean = 0.202 sec, (SD = 0.003), than those in the global attention state, 
Mean = 0.147 sec, (SD = 0.004), see 'I?tble 1. The probability of  terminating exposure to the 
advertisements is much larger when in the global attention state (Mean = 0.234, SD = 0.013) 
than when in the local attention state (Mean = 0.093, SD = 0.005), see Table 1. 

5.4. Switching Between and I~rne in Attention States 

During exposure to an advertisement, subjects jump between the local and global states 2.6 
times on average (SD = 0.049), and tend m spend longer in a local (Mean = 1.13 sec, SD = 
0.027) than in the global state (Mean = 0.219, SD = 0.006), as can be seen from the parameter 
estimates in Table 1. Also, fixations in the local attention state tend to be substantially longer 
(Mean = 0.202 sec, SD = 0.003), than those in the global attention state (Mean = 0.147 sec, 
SD = 0.004), see Table 1. Note that the expected time spend in a global attention state is only 
around 1.5 times as long as the expected duration of a fixation in that state. Subjects spend 84.7% 
of the time in the local attention state. 

When people are in the local attention state they are a little more than three times as likely 
to make an observable local saccade on the grid: Pr (local jump I local state) = 0.758 (SD = 
0.000), and when in the global attention state they are almost two times as likely to make an 
observable global saccade: th'(global jump I global state) = 0.615 (SD = 0.003), see Table 1. 
This in itself provides a validation of  our choice of  the grid size. Additional validation comes 
from the distribution of  the length of  a saccade in the local state and global state when compared 
with the distribution of the length of  all of the saccades. The difference in these distributions is 
shown in Figure 4, which reveals that indeed the saccade length in the global state tends to be 
longer. 

Taken together, these results show that the local attention state is dominant, with a high 
probability of  starting in that state, where there are occasional short jumps to the global attention 
state with a high probability of  ending attention to the stimulus in that state. 

5.5. Integrating Model Findings 

We believe that the interpretation of  these results is as follows. The local covert atten- 
tion state serves to extract detailed information from specific regions of  the stimulus to build 
or strengthen memory traces, for purposes of  object identification or recognition, which is indi- 
cated by the longer duration of  the fixations in this state (Viviani, 1990). Also, subjects tend to 
spend most of  the exposure time in this local state where information is extracted and the cortical 
representation of  the objects in the scene is strengthened. Subjects appear to start visual attention 
in the local state, with a quite long fixation, much more likely at the center of  the stimulus. This 
however, may not be strictly a "local fixation", in that it serves a different purpose. We conjecture 
that around the initial fixation, pre-attentive computation of perceptual salience occurs, based on 
features such as color, orientation, shape and size, relative to their background (cf., Itti & Koch, 
2001). Here, salient regions in the stimulus are identified. 

The global covert visual attention state, controlled by the posterior parietal cortex, then 
tends to consist of  short bursts of  longer saccades and fixations of  short duration. The global 
state serves to redirect attention to the next salient region of  the stimulus, through winner-takes- 
all and inhibition of  return neural mechanisms (e.g., Klein, 1988; LaBerge, 1998). In that global 
attention state, as suggested by the short duration of  fixations, limited or no detailed information 
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FIGURE 4. 
Distribution of saccade lengths for local and global states: A histogram summary of the posterior distribution of saccade 
lengths for both the local and global states, compared to the distribution of all of the saccade lengths. 

is extracted from the stimulus for further higher-order processing or memory storage (cf., Mc- 
Conkie, Reddix, & Zola, 1992). After such a short sequence of longer ballistic eye movements in 
the global state, the probability of local information processing increases again and the prefrontal 
cortex control mechanism switches to the local attention state to enable information extraction. 
The time spent in the global state increases the probability of switching to the local state, and 
visa versa. 

Thus, by switching back and forth between local and global attention, the problem of inter- 
preting the complex visual scene is broken down into a sequence of simpler localized interpreta- 
tions of the most salient regions (Itti & Koch, 2001). The fixation sequence is terminated in the 
global attention state when no regions are identified that are sufficiently salient to warrant further 
detailed local examination. 

5. 6. Subject and Stimulus Inferences 

In order to illustrate the subject- and stimulus-specific posterior inferences that can be ob- 
tained from our model, we present results for selected stimuli and subjects in Figure 5. The figure 
displays the inferred attention pattern of selected subjects and stimuli, defined in terms of dura- 
tions of the two covert attention states and switching patterns among them. The figure reveals 
substantial variety in the probability of local (displayed as a black line) versus global covert at- 
tention, as derived from the observed fixations (displayed as dots at the bottom of the graphs) 
across subjects and ads. 
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FIGURE 5. 
Probability of being in local attention state: Lines indicate the probability of being in the local attention state across 
duration of the exposure. Dots indicate individual fixations. Plots are presented for selected subjects and stimuli only. 

Our review of the graphs suggests that there is a large variation in the estimated probabilities 
likely to be caused by effects specific to the stimuli. Take for example Stimuli 2 and 4 in the top 
two rows of Figure 5. These stimuli attract a relatively large number of fixations from several 
individuals---e.g., Subjects 16 and 30 for Stimulus 2, and Subjects 3 and 27 for Stimulus 4, 
as shown. Given the large number of fixations, and the large proportion of time spend in the 
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local covert attention state, it seems that these stimuli contain much relevant information for the 
subjects in question, who therefore peruse them in detail, without much need to jump between 
distant salient regions. Both stimuli are effective in eliciting local attention for all four subjects, 
but the pattern of probabilities of jumping between the two attention states is quite different 
for Stimulus 2 compared to 4. When Subjects 16 and 30 explore Stimulus 2, across the whole 
exposure duration they are in the local attention state with high probability, where bursts of global 
attention occur infrequently and with fairly low probability. 1 On the other hand, Subjects 3 and 
27 exhibit a pattern of long spells of local attention, interchanged with short bursts (of high 
probability) of global attention, when exploring Stimulus 4. For both subjects the global attention 
spells tend to increase in intensity and frequency over the time of exposure, as if the interruption 
of global jumps by sufficiently salient regions eliciting local attention diminishes over time. 
Stimulus 4 likely contains relevant information, that is however, more localized than Stimulus 2. 
In all cases, subjects terminate exposure to the stimuli in the global state. We found similar 
patterns for other subjects viewing each of these stimuli. 

For scanpaths of moderate length, some subjects exhibit rather consistent attention patterns 
for several of the stimuli viewed. For example, Subject 15 exhibits similar patterns for Stimuli 
3 and 11 as shown in the bottom row of Figure 5. Notably, these scanpaths consist of far fewer 
fixations as compared to those discussed above. Exposure starts with a high probability of the 
local attention state that decreases, and then increases somewhat and finally decreases towards 
zero, since attention is terminated in the global state again. The graphs seem to reflect the subject 
scanning the stimulus for relevant information, exploring a salient area in more detail and termi- 
nating exposure after some more global search. It thus seems that these two stimuli contain little 
relevant information for this subject. 

The first four graphs in Figure 5 suggest a dominant stimulus effect on the attention state, 
but the final two graphs reveal a similar pattern for Subject 15 when attending to Stimuli 3 and 11 
that may be caused by these two stimuli sharing low relevant information content for the subject 
in question. 

The strong communalities in attentional patterns between subjects for particular stimuli are 
suggestive of bottom-up control of attention by salient locations in these scenes. Saliency might 
be computed pre-attentively, possibly largely around the first fixation, that is of a particularly long 
duration and located at the center of the stimulus. In that long, centrally located fixation saliency 
across the entire scene may derived using "center-surround mechanisms", involving neurons 
that respond to image contrast differences between the center region fixated at, and broader 
concentric surround regions (e.g., Palmer 1999). If the scene is composed of sufficiently salient 
regions that are conspicuous or pop-out in their context due to features such as light intensity, 
color or orientation contrast, those regions involuntarily attract attention, and scene perception 
is broken down into a sequence of localized perception tasks, with controlled switching between 
local and global covert attention states, where the global state may become more dominant over 
time as the most salient regions have been explored locally. In those cases, the stimulus will 
elicit a comparable pattern (in a stochastic sense) of covert attention from different subjects, as 
evidenced by their eye-movements. 

The different pattern of covert visual attention observed, however, for some stimuli (e.g., 
Stimulus 4 above), suggests that here already in the pre-attentive phase low overall saliency is 
identified, which substantially reduces the probability of local attention throughout, reducing 
the number of fixations and exposure time. This may point to some higher level processing of 
extracted information in the first stages of stimulus exposure, perhaps even pre-attentively. 

The results illustrated in Figure 5 illustrate that top-down volitional control of attention may 
also play a role, as evidenced by the significant differences in attentional patterns between sub- 
jects for the same stimulus. This deliberate form of attention is probably controlled from higher 

lWe define "changing state" as the point where the transition probability of switching the latent states crosses the 
50% probability line. 
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brain area's, such as the frontal lobes and is slower than bottom-up, salience driven attention (Itti 
& Koch, 2001). Such top-down attention may be driven by prior expectations on the layout of 
the scene, since subjects in general have certain expectations about the relative position of in- 
formative regions in print advertisements, such as the headline, pictorial, body text and packshot 
(Rosbergen, Pieters, & Wedel, 1997). Subject specific factors such as involvement and famil- 
iarity with the stimulus may also play a role (Pieters, Warlop, & Wedel, 2002). It is likely that 
top-down and bottom-up control operate in parallel and interact. 

6. Conclusion 

Whereas the local and global covert visual attention states of subjects are unobservable, the 
Hidden Markov Model proves to be a powerful tool to identify such states from eye-movement 
data. The model that we have developed was derived from prior theory on visual attention and has 
several features that make it attractive as a tool for the analysis of empirical data in that field. The 
empirical illustration on visual attention to magazine advertisements showed the performance of 
the model, and the new insights it can provide into issues that have been debated extensively 
in the literature. Print advertisements are heterogeneous stimuli with complex configurations 
of text and pictures (scenes), which are more likely to activate both covert attention states and 
switching between them, than do the typical stimuli used in, for instance, reading tasks. This 
makes magazine advertisements well suited to test the presence of those qualitatively different 
visual attention states and how they evolve over the time course of stimulus exposure. 

Typically, experimentally observed fixation durations in reading show a mean of around 
200 ms, but have a substantial proportion of durations of 150 ms or less. In a recent study of 
attention to print advertisements, Rayner et al. (2001) found average fixation durations of around 
220 ms. Our mean fixation lengths are in accordance, but somewhat shorter on average: 202 ms 
in the local attention state, which dominated, and 147 ms in global attention. Our shorter fixation 
durations may be due to the fact that we used multiple stimuli (17 advertisements) in a natural 
context as compared to the few stimuli and increased awareness conditions regularly present 
in controlled eye-movement experiments. In accordance with this, free viewing of scenes in 
their natural context has been reported to produce much more sparse cortical neural activity 
then exposure to small numbers of experimental stimuli in laboratory settings. This is caused by 
inhibitory neural activity that arises when stimuli extend beyond the classic receptive field of the 
neurons in question, which seems required for perceptual grouping (Itti & Koch, 2001). Since 
the subjects in our study controlled exposure duration to the ads themselves, the total looking 
time was typically short and fixations often few in number. Subjects in the present study spend 
on average only about 3.4 seconds on each stimulus, fixating about 15 times. Here, inference 
based on MCMC pays off, since it enables the identification of the hidden states from limited 
data, using Bayesian shrinkage that pools subsets of the parameters across subjects to allow for 
more powerful inference. 

6.1. Implications for Theories of Visual Attention 

Our empirical findings are interesting from a substantive point of view, and extend current 
knowledge about attention processes and their relationships to eye-movements. Instead of fol- 
lowing an orderly sequence of global-local attention states during stimulus exposure, as has been 
suggested previously (e.g., Antes, 1974), our subjects used visual attention states more dynam- 
ically, switching back and forth between them. A particular advantage of the application of the 
reversible jump MCMC algorithm is that it enables us to estimate a hidden Markov model that 
allows subjects to switch between latent states an arbitrary number of times. Subjects generally 
started in local attention state with a first long fixation, argued to be directed at determining 
salient regions, sometimes switched between states, where the intensity of the global state often 
increased over time, and ended in a global attention state. Thus the overall scanpath serves to 
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break down the complex problem of advertisement perception into a smaller number of simpler 
subproblems of perception of local regions in the ad, where the global attention state serves to 
redirect attention between them. The results suggest that higher-order (lexical, conceptual) infor- 
mation is more likely to be extracted while subjects are in a local attention state, while the global 
covert attention state serves to redirect attention to perceptually salient or potentially informative 
regions of the stimulus. The shorter fixations durations m the global state reflect this process of 
exploration rather than of intense, higher level intormation pick-up, which is in line with reading 
and scene perception research. For instance, McConkie et al. (1992) found that, in reading tasks, 
little lexical information is extracted through fixation durations of about 140 ms or less. 

We speculate that a "Start Local End Global" attention pattern as we observed is more 
typical for exploration tasks with heterogeneous stimuli like magazine advertisements. In such 
tasks, subjects apparently start constructing a rough mental map of the ad based on saliency of 
regions, and then explore the stimulus for other inlbrmative o1 perceptually salient areas, globally 
redirecting attention. They switch between local and global states, increase the intensity of the 
global state as less remaining salient information seems available, exploring in a last "sweep" 
whether there are areas left that appear perceptually or semantically sufficiently attractive, and 
terminate attending the stimulus in the global attention state. 

The visual attention process observed here, characterized by fairly extensive switching be- 
tween local and global covert attention states, might be specific for the task and stimulus. In other 
tasks like target search from multi-element displays (Findlay & Gilchrist, 1998; Monk, 1984) dif- 
ferent patterns may be observed. In target search tasks, subjects may quickly scan the stimulus 
to determine a priority sequence of areas with a decreasing likelihood of containing the target or 
to maximize the likelihood of a perceptual pop-out (Pomplun, 1998; Wolfe, 1998), which would 
reflect dominance of the global attention state. In tasks for much more homogeneous stimuli, for 
example reading, presence of both attention states and extensive switching between them is less 
likely to occur. Here the local attention state may dominate (McConkie, 1983; Rayner, 1998). 
In other words, we speculate that the prevalence and the order in which the two covert attention 
states occur may depend on bottom-up factors such as the type of stimuli used (e.g., text, scenes, 
or a mix of the two) and on top-down factors such as the specific tasks that subjects engage in 
(e.g., exploration, target search, reading). Future work that tests these speculations may offer 
improved understanding of the role that stimulus and task characteristics play in visual attention, 
which has been identified as a key white spot (Itenderson & Hollingworth, 1998, 1999). 

For future research it would be of interest to design more detailed experiments that allow 
for a deeper substantive interpretation of the findings derived from our model. For example, it 
would be of interest to investigate to what extent the differences in the local and global states are 
caused by specific stimulus features, in particular differences in textual and pictorial information. 
It may be that the local state occurs more often in text reading and the global state more often 
in scanning the pictorial. But perhaps, the global state occurs when people switch back and forth 
between text and pictorial. Further and more detailed experiments, where our model is applied 
to more precisely controlled stimuli that consist of text only, o1" pictorial on b .  could shed further 
light on this issue. For example, in text reading, it would be of interest to see whether our model 
picks up the skipping of familiar words, and the back-sweep from the end of one line to the 
beginning of the subsequent line as a jump in the global rather than the local attention state 
(Reichle, Pollatsek, Fisher, & Rayner, 1998). 

Further, experiments where the grid is based upon a substantive partitioning rather than a 
spatial partitioning of the stimulus, as was done in Rosbergen, Pieters and Wedel (1997), may 
enable deeper psychological interpretation of the model results. For example, it may resolve 
questions whether repeated local fixations represent attention to and within specific objects in 
the stimulus and global jumps represent shifts in attention between those objects. This may shed 
new light on the issue whether and when covert attention selects objects or locations (e.g., Vecera 
& Farah, 1994). We do believe that our model is a powerful tool to explore these issues in future 
research. 
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The model may also inspire more work on the role of top-down (subject) and bottom-up 
(stimulus) factors in visual attention, which has long been debated (e.g., Egeth & Yantis, 1997). 
Previous research in a marketing context has observed significant individual differences in the 
extent to which perceptual features of advertisements, such as size, contrast and color, influence 
the overall duration of visual exploration (Rosbergen, Pieters & Wedel, 1997). The stimulus 
level attention process estimated in the current research corroborates this finding. Follow-up 
research with the proposed model may provide new insights into the contribution of top-down 
and bottom-up factors by examining their impact on local and global visual attention states. 
Such research may identify specific characteristics of subjects and stimuli that affect the latent 
transition probabilities, event durations and exit probabilities. The model's capability to compare 
stimuli across subjects and subjects across stimuli in intuitive ways facilitates this. 

Obviousllv, this study is not without caveats. For the data analysis, the exact eye fixation 
locations were aggregated into cells on a lattice overlaid on top of the ads. The fine grid that we 
employed balanced the level of detail in fixation locations with size of the modeling and estima- 
tion task. The size of the elements of the lattice may al~fect our model estimates. But, we would 
like to note that we are primarily interested in identifying the latent attention process, using the 
observed saccades on the elements of the lattice as indicators. The empirical finding that in the 
local latent state "local" saccades are more than three times as likely, while in the global state 
"global" saccades are over two times as likely, as well as the comparison of the observed and 
predicted distribution of saccades, supports our choice of the lattice in the application. Still, the 
use of a lattice to classify the saccades introduces measurement error in the data to be analyzed. 
Such error is accommodated in our model to a certain extent, since it is formulated as a stochastic 
process describing the transitions on the lattice. The aggregation offers the advantages of allow- 
ing for an appealing definition of global and local jumps, as jumps on (non) neighboring cells 
and of reducing data sparseness. The grid size was chosen to balance information and sparse- 
ness of the data, and it is larger than general. However, the issue of the sensitivity of our results 
to aggregation remains, and it would be of interest in future research to derive optimal lattice 
sizes. 

Another caveat pertains to the first fixation. Whereas due to its long duration our model 
classified it as arising from the local covert attention state, this may not be appropriate. There 
is some evidence that the first fixation may serve different functions than follow-up fixations. 
In scene perception and target search, the perceptual saliency of the stimulus might be deter- 
mined pre-attentively around this first fixation, which is a quite different process than that of 
information extraction and recognition in the local attention state. In reading research, the first 
fixation duration is sometimes distinguished from follow-up fixations, because it is expected to 
be more responsive to lexical, orthographic and other properties of the text (Inhoff & Radach, 
1998). Thus, our model may be extended to deal with the specific nature of the first fixation and 
pre-attentive identification of stimulus salience. Here, it may be that some higher-level cognitive 
effort, rather than only that based on basic stimulus features are involved. 

Much of the detail in the fo~3nulation and estimation of our mathematical model was enabled 
through substantially improved methodology for recording eye-movements. The current systems 
allow for automated precise recordings of eye-movements in more natural settings than has been 
the case heretofore. This in turn facilitates the collection of data on relatively large numbers of 
subjects and stimuli, enabling us to use finer grids and to specify and calibrate models with much 
behavioral detail. We conjecture that the visual attention model presented in the current study 
may serve as a useful starting point for such further work. 
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