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Real-Time Segmenting Time Series Data
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Abstract. There has been increased interest in time series data mining recently.
In some cases, approaches of real-time segmenting time series are necessary in
time series similarity search and data mining, and this is the focus of this paper.
A real-time iterative algorithm that is based on time series prediction is pro-
posed in this paper. Proposed algorithm consists of three modular steps. (1)
Modeling: the step identifies an autoregressive moving average (ARMA) model
of dynamic processes from a time series data; (2) prediction: this step makes k
steps ahead prediction based on the ARMA model of the process at a crisp time
point. (3) Change-points detection: the step is what fits a piecewise segmented
polynomial regressive model to the time series data to determine whether it
contains a new change-point. Finally, high performance of the proposed algo-
rithm is demonstrated by comparing with Guralnik-Srivastava algorithm.

1   Introduction

There has been increased interest in time series data mining and similarity search
recently [1-4,7-10]. The application background of segmenting time series methods
includes using data-mining techniques to extract interesting patterns from time series
data generated by sensors. Some batch or incremental algorithms have been proposed
for segmenting time series [5,6]. However, in some real-time application situations, it
is necessary for real-time detection of events from time series data. We will consider a

real-valued time series denoted by ,...2,1, =tx t , where t  is a time varying

parameter. When a crisp observed value tx  is obtained at time point t , we need an

algorithm to determine whether the time point t is a new change-point or not before

next time point 1+t . The problem is the focus of this paper.
We propose two iterative real-time segmenting time series algorithms based on time
series prediction. Proposed algorithms consist of three modular steps: Modeling, Pre-
diction, and Change-point detection. (1) Modeling: the step identifies the ARMA
(Autoregressive Moving Average) model of a dynamic process from time series data;
(2) Prediction: this step predictions that future k time points states based on the
ARMA model of the process. The k steps Kalman predictor of ARMA model is em-
ployed in this paper; (3) Change-points detection: the step is that fits a piecewise poly
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nomial regressive model to a time segment, and maximum likelihood principles is
applied to determine whether it contains a new change-point or not.
The remainder of the paper is organized as follows: section 2 describes the segmenting
time series problem briefly. Section 3 presents the real-time segmenting time series
algorithms. Section 4 describes experiments involved in comparing our algorithms
with the batch algorithm proposed by Guralnik and Srivastava [6]. Finally, section 5
concludes the paper.

2   Real-Time Segmenting Time Series

It is supposed that a real valued time series Ntx t ,...,2,1, =  can be modeled

mathematically, where each model is characterized by a set of parameters, the seg-
menting time series problem becomes the change-point detection problem [6], so we
don’t discriminate segmenting time series from change-point detection in this paper.

2.1   Segmenting Time Series

Consider a real-valued time series denoted by

Ntx t ,...,2,1, =  . (1)

Where t  is a time varies. We can find a piecewise segmented model M, given by
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Where kiwtf ii ≤≤1),,(  is a basis class function (with its vector of parameters

iw ) that is fit in segment i ; the vector ( )kααα ,...,, 21=  is the change points set

of time series Ntx t ,...,2,1, = ; and kitei ,...,2,1),( =  is error term in ith

segment.
Likelihood L  is defined as below:
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 Where k  is the number of change-points; il  is the likelihood of ith segment; and

is  is the residual sum of squares for the model of ith segment. Here is  is defined as

below
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Where 1−−= iiim αα  is the number of time points in ith segment.

The maximum likelihood estimate (MLE) of change points set ( )kααα ,...,, 21=
and parameters vector iw  of kiwtf ii ,...,2,1),,( =  can be found by means of

minimizing the likelihood L .

2.2   Real-Time Segmenting Time Series

Consider a time series defined in Eq. (1), we suppose that actual sample value

121 ,...,, −ixxx  and ( )kααα ,...,, 21=  have been known. When a crisp sample

value ix  is obtained at sample time instant i , it is necessary to determine whether

time instant i  is a new change point or only a candidate by means of minimizing the

likelihood L .

3   Proposed Algorithms

The real-time algorithms we have proposed consist of three modular steps: modeling,
prediction, and change-point detection. The step of modeling identifies the ARMA
model of a dynamic process from time series data. The ARMA model of the time
series can be identified either in a priori or in iterative processes of the algorithms.
The step of prediction is to predict future k time point states based on the ARMA
model. Many approaches of modeling and prediction have been proposed [11]. In our
experiments of the paper, the k steps Kalman predictor of ARMA model is employed
(see section 4). The step of change-points detection is that fits a piecewise regressive
model to a time segment, and maximum likelihood principles is applied to determine
whether it contains an new change-point or not.
The basis idea of the real-time algorithms is that the k steps prediction are made which

are denoted by )(),...,2(),1( kxxx iii  at every crisp sample i , then i  is examined to

see whether it is an new change point or a candidate, according to ix  and

)(),...,2(),1( kxxx iii . The algorithms work under the assumption that a dynamic

process can be described by an ARMA(n ,m) model:
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The parameters vector of the ARMA model is

),...,,;,...,,,( 2121 nn θθθϕϕϕ=  . (8)

3.1   The Algorithm A

Many approaches to identify the ARMA model of dynamic processes from time series
data have been proposed [11]. If there are enough time series data, the ARMA model
of the time series could be identified a priori. When the ARMA model of the time
series is known a priori, the framework of the real-time segmenting algorithm is de-
scribed as follows:

1)  Given a time series Eq.(1); regressive model Eq(2), and model set Mset

of kiwtf ii ,...,2,1),,( = ; ARMA model

2)  Initialize mnxxx −−− ,...,, 10 ; ={ 01 =α }, L=0;

     maximum prediction steps K; new change point  ncp= 0.

3)  for t= 2:1:N

    a). k steps prediction: )(),...,2(),1( kxxx ttt

Where k<=K;

b). for i= ncp:1:t            %   change point detection

Compute likelihood:  l1=l(ncp, t+k); and l2=l(ncp, i)+ l(i, t+k);

        if  ((l1- l2)/ l1)> µ
ncp=I; l1= l2; l3= l(ncp, i);

end if

end for

α =α ncp∪ ;  L= L+ l3;

end for

4) Output α , L.

5) End.
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3.2   The Algorithm B

If the ARMA model of a dynamic process is unknown, we have to on-line identify the
ARMA model of the dynamic process. Many iterative algorithms of identifying the
ARMA model have been proposed. An assumption is what the orders of the ARMA
model are known a priori. In this case, the framework of the real-time segmenting
algorithm is described as follows:

1)    Given a time series Eq.(1); regressive model Eq(2), and model set Mset

of kiwtf ii ,...,2,1),,( = ; the orders of ARMA model n and m

2)    Initialize mnxxx −−− ,...,, 10 ; ={ 01 =α }, L=0;

       maximum prediction steps K, new change point:  ncp= 0.
3) for t= n:1:N

a) Identifying ARMA model parameters tΦ
b) k steps prediction: )(),...,2(),1( kxxx ttt

Where k<=K
c)  for i= ncp:1:t          %   change point detection

Compute likelihood:  l1= l(ncp,t+k); and l2= l(ncp,i)+ l(i,t+k);
        if  (l1- l2)/ l1> µ

ncp=I;  l1= l2;  l3= l(ncp,i);
end if

end for
α =α ncp∪ ;   L= L+ l3;

end for
4) Output α , L ;
5) End.

4   Experimental Results

The data used in our experiments is taken from a vibration experiment of a bus. In the
raw data set D, the sample period is 5 milliseconds, and the data length is 512. At each
sample instant, the amplitude of the bus vibration is recorded, and the unit of the am-
plitude is millimetre. The raw data set D is divided into two data subsets D1, and D2.
D1 contains 400 data that come from the front elements of set D, and D2 contains 112
data that come from the rest data of set D. Set D, D1, and D2 are denoted respectively
by D= { d1, d2, , d512  } ; D1=  { d1, d2, , d400  }; D2= { d401, d402, , d512 }. The raw
data is shown in Figure 1.
Data set D1 is used to off-line identify the ARMA model of the time series for real-
time segmenting algorithm A described in section 3.1. However, set D2 is used to
examine the real-time algorithms described in above.
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We are interested in how our real-time segmenting algorithms performed compared to
the batch algorithm proposed by Guralnik and Srivastava [6].

For experimental purposes, the regressive model set Mset of ),( ii wtf , ki ,...,2,1=
in Eq. (2) is a group of polynomials as below:
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In our experiments, pmax=3.
The k steps ahead prediction algorithm used in our experiments is a Kalman prediction
algorithm. Supposed the ARMA(n, m) model is described by Eq. (5), (6), and n=m.
The k steps ahead Kalman prediction algorithm is described as below:

tkt xqGkxq )()()( 11 −− =θ (10)

Where the coefficient vector of )( 1−qGk  is
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Obviously, only would Eq. (13) be changed slightly,  when mn ≠ .
The experimental results are shown in Figure 2, 3, and 4, and Table 1, 2.  Figure 2
shows the results of Guralnik-Srivastava (GS) batch algorithm; Figure 3 and Figure 4
show the results of our algorithms described respectively in section 3.
The orders of ARMA model the process used in our algorithms are n= 6 and m= 5.
Box-Jenkins method is used to off-line identify the ARMA model of the process in the
real-time segmenting algorithm A. However, iterative least square method is used to
on-line identify the ARMA model of the process in the algorithm B.
According to the results in Table 1, the likelihood value L of GS batch algorithm is
nearly 3 times than that of proposed algorithm A and B, the likelihood value L of the
algorithm B is slightly larger than that of the algorithm A, so the segmenting result of
algorithm A is best, and that of the GS batch algorithm is worst. The compute speeds
of our algorithm A and B are great faster than that of GS batch algorithm.  In fact, the
memory demand of the algorithm A and B are less than that of batch algorithm too.
Fig. 5 shows daily closing price data of IBM stock from Jan. 1, 1980 to Oct. 8, 1992
(http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/korsan/dailyibm.dat),
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totally 3333 points. The 1000 points of the front of the raw dataset were used for esti-
mating prediction model, and the remaining 2333 points for evaluating the proposed
algorithms. ARMA(5, 4) models were used in algorithm A and B. The basis class
functions were polynomial functions, and pmax=3. Because computing efficiency of
batch GS algorithm is low in large dataset, incremental GS algorithm [6] is used for
comprising with algorithm A and B. The experimental results are shown in Table 3.
In Table 3, the likelihood value of algorithm A and B are very small, so the evaluating
results of algorithm A and B are better than that of GS algorithm.

5   Conclusions

In this paper, we presented two real-time segmenting time series algorithms that based
on time series prediction. We have analyzed how ARMA model of a process could be
used in segmenting time series. The experiments show that proposed algorithms are
superior to Guralnik-Srivastava batch algorithm.

Table 1. Comparison of likelihood estimation and run time of the three algorithms

Algorithm µ L CPU Time (sec)
GS Algorithm 0.02 4747.4 41.08
Algorithm A 0.9 1052.9 2.03
Algorithm B 0.9 1190.4 3.51

Table 2. The results of segmenting the bus vibration data by the three algorithms respectively

Algorithm Chang Point Set
GS Algorithm 0, 13, 21, 29, 37, 44, 57, 66, 74, 84, 97,

105, 112
Algorithm A 0, 7, 14, 21, 28, 35, 43, 50, 57, 73, 80, 87,

94, 101, 108
Algorithm B 0, 7, 15, 25, 32, 44, 51, 58, 65, 72, 79, 86,

93, 100, 108

Table 3. The results of segmenting daily closing price of IBM stock with GS algorithm and
proposed algorithms respectively

Algorithm µ L CPU Time (sec) Number of
change points

GS Algorithm 0.02 155080 14572 10
Algorithm A 0.2 1497.9 14.44 328
Algorithm B 0.9 1437.6 38.05 334
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Fig. 1.  Bus vibration time series data

Fig. 2. Result of segmenting bus vibration time series using GS batch algorithm

Fig. 3. Result of segmenting bus vibration time series using the algorithm A

Fig. 4. Result of segmenting bus vibration time series using the algorithm B
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Fig. 5. Daily closing price time series data of  IBM stock
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