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Abstract

The well-known product partition model (PPM) is considered for the identi8cation of multiple
change points in the means and variances of normal data sequences. In a natural fashion, the PPM
may provide product estimates of these parameters at each instant of time, as well as the posterior
distributions of the partitions and the number of change points. Prior distributions are assumed
for the means, variances, and for the probability p that each individual time is a change point.
The PPM is extended to generate the posterior distribution of p and the posterior probability
that each instant of time is a change point. A Gibbs sampling scheme is used to compute all
estimates of interest. The methodology is applied to an important time series from the Brazilian
stock market. A sensitivity analysis is performed assuming di<erent prior speci8cations of p.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Developed by Hartigan (1990), the product partition model (PPM) is a dynamic
model useful to the analysis of change point problems. The PPM introduced more
>exibility into the analysis of these problems since it considers the number of change
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points as a random variable, in opposition to several well-known methods to identify
structural changes that assume the number of change points as known, e.g. thresh-
old models and the method considered by Hawkins (2001). As shown by Barry and
Hartigan (1992), by applying the PPM one can easily obtain product estimates for
the parameters of interest at each individual time, the posterior distribution of the
random partition, and also the posterior distribution of the number of change
points.

Barry and Hartigan (1993) and Crowley (1997) applied the PPM to the identi8cation
of multiple change points in normal means and used a Gibbs sampling approach to
obtain the product estimates. However, it would be no trouble to extend the PPM to
identify multiple changes in both means and variances of normal data and also to apply
a Gibbs sampling scheme to compute the posterior distributions of the random partition
and the posterior distributions of the number of change points. Details can be seen in
the papers by Loschi and Cruz (2002) and by Loschi et al. (2003).

Concerning its timeliness, recently Quintana and Iglesias (2003) provided a theoret-
ical decision approach to change point problems and linked the PPM to the Dirichlet
process. In one of the most popular versions of the PPM, only contiguous blocks are
allowed and in such cases the prior cohesions, usually Yao’s (1984) cohesions, are a
truncated geometric distribution with parameter p. Then, Loschi et al. (2003) were the
8rst to assume a prior distribution for p, in a successful application of the PPM to
change-point analysis. However, in spite of all >exibility that a prior distribution for p
may provide, the product estimates may be considerably in>uenced by its speci8cations
(see Loschi and Cruz, 2002).

In this paper, the aim is to extend the PPM as to obtain the posterior distribution
of p and the posterior probabilities that each individual time is a change point. A
Gibbs sampling scheme will be used to estimate the posterior distribution of p and
to estimate the posterior probability that each instant is a change point. As it will
be seen, these extensions not only enrich a data analysis provided by the PPM but
also may be a useful tool to decision-makers since in general the posterior distri-
bution of the random partition as originally de8ned by Barry and Hartigan (1992)
put small mass in each partition. Finally, we will see a successful application of the
PPM to the analysis of an important series of returns of the Brazilian stock mar-
ket, the BOVESPA index ( 6Indice da Bolsa de Valores do Estado de São Paulo).
Also a sensitivity analysis will be shown considering di<erent prior speci8cations
of p.

The paper is organized as follows. In Section 2, the PPM and related results are
presented. The PPM is applied to identify multiple change points in normal means and
variances. A new procedure to obtain the posterior distribution of p and the posterior
probability that each instant is a change point is proposed. In Section 3, we describe
the computational method usually applied to obtain the product estimates of means and
variances, as well as a Gibbs sampling scheme to compute all posterior distributions and
probabilities aforementioned. In Section 4, the methodology is applied to the BOVESPA
index and a sensitivity analysis is provided. Finally, Section 5 closes the paper with
concluding remarks.
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2. Statistical models

2.1. The product partition model

Let X1; : : : ; Xn be a data sequence and consider the index set I ={1; : : : ; n}. Consider
a random partition � = {i0; i1; : : : ; ib} of set I , 0 = i0 ¡i1 ¡ · · ·¡ib = n, and a random
variable B which denotes the number of blocks in �. Consider that each partition
divides the data sequence into b contiguous subsequences, which will be denoted here
by X[i(r−1)ir ]=(Xi(r−1)+1; : : : ; Xir )

t, for r=1; : : : ; b. Let c[ij] be the prior cohesion associated
with block [ij] = {i + 1; : : : ; j}, for i; j ∈ I ∪ {0}, and j ¿ i, that represents the degree
of similarity among the observations in X[ij] and that can be interpreted as transition
probabilities in the Markov chain de8ned by the change points.

In this paper Yao’s (1984) cohesions are considered. Let p be the probability that a
change occurs at any instant in the sequence. Therefore, the prior cohesion for block
[ij] is given by

c[ij] =

{
p(1 − p)j−i−1 if j ¡n;

(1 − p)j−i−1 if j = n;
(1)

for all i; j ∈ I , i¡ j, which corresponds to the probability that a new change takes
place after j − i instants, given that a change has taken place at the instant i. These
prior cohesions imply that the sequence of change points establishes a discrete renewal
process with occurrence times identically distributed with geometric distribution. Such
cohesions are appropriate when it is reasonable to assume that the past change points
are noninformative about the future change points, which is of use for many practical
applications.

Let �1; : : : ; �n be a sequence of unknown parameters conditional on which the random
variables X1; : : : ; Xn have marginal densities f1(X1|�1); : : : ; fn(Xn|�n), respectively. The
prior distributions of �1; : : : ; �n are built as follows. Given a partition �, one has that
�i =�[i(r−1)ir ], for every i(r−1) ¡i6 ir , and that �[i0i1]; : : : ; �[i(b−1)ib] are independent, with
�[ij] having prior density �[ij](�), �∈�[ij], in which �[ij] is the parameter space.

Hence, we say that the random quantity (X1; : : : ; Xn; �) follows a product partition
model (PPM), denoted by (X1; : : : ; Xn; �) ∼ PPM, if (Barry and Hartigan, 1992):

(i) the prior distribution of � is the following product distribution:

P(� = {i0; i1; : : : ; ib}) =
Mb

j=1c[i( j−1)ij]∑
C Mb

j=1c[i( j−1)ij]
(2)

in which C is the set of all possible partitions of set I into b contiguous blocks
with endpoints i1; : : : ; ib, satisfying the condition 0 = i0 ¡i1 ¡ · · ·¡ib = n; for all
b∈ I ;

(ii) conditional on � = {i0; i1; : : : ; ib}, the sequence X1; : : : ; Xn has the joint density
given by

f(X1; : : : ; Xn|� = {i0; i1; : : : ; ib}) =
b∏

j=1

f[i( j−1)ij](X[i( j−1)ij]); (3)
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in which f[ij](X[ij]) =
∫
�[ij]

f[ij](X[ij]|�)�[ij](�) d� is the density of the random
vector, called data factor.

Consequently, if (X1; : : : ; Xn; �) ∼ PPM and a square error loss function is assumed,
the posterior expectation (or the product estimate) of parameter �k is given by (Barry
and Hartigan, 1993)

E(�k |X1; : : : ; Xn) =
k−1∑
i=0

n∑
j=k

r∗
[ij]E(�k |X[ij]); (4)

for k = 1; : : : ; n, in which r∗
[ij] =P([ij] ∈ �|X1; : : : ; Xn) denotes the posterior relevance of

block [ij].
If Yao’s (1984) cohesions are assumed, the conditional prior distributions for � and

B are given, respectively, by

P(� = {i0; i1; : : : ; ib}|p) = pb−1(1 − p)n−b; b∈ I; (5)

for every partition {i0; i1; : : : ; ib}, satisfying 0 = i0 ¡i1 ¡ · · ·¡ib = n, and,

P(B = b|p) = Cn−1
b−1p

b−1(1 − p)n−b; b∈ I; (6)

in which Cn−1
b−1 denotes the number of distinct partitions of I into b contiguous blocks.

Additionally, if a prior distribution �(p) is assumed for p, it follows that the poste-
rior distribution of � and the posterior distribution of the number of blocks B assume,
respectively, the forms (Loschi et al., 2003)

P(� = {i0; i1; : : : ; ib}|X1; : : : ; Xn)

=
b∏

j=1

f(X[i( j−1)ij])
∫ 1

0
pb−1(1 − p)n−b�(p) dp; (7)

P(B = b|X1; : : : ; Xn) =

Cn−1
b−1

b∏
j=1

f(X[i( j−1)ij])
∫ 1

0
pb−1(1 − p)n−b�(p) dp: (8)

For further details on how the PPM can be tailored for normal means and variances,
the reader is referred to the paper by Loschi et al. (2003).

Remark. Notice that if p has beta prior distribution with parameters � and �, p ∼
B(�; �), the number of change points B − 1 has beta-binomial prior distribution with
parameters n − 1, � and �. In this case, the prior mean and variance of B are given,
respectively, by

E(B) = (n − 1)
�

� + �
+ 1;

Var(B) = (n − 1)
��(� + � + n − 1)

(� + �)2(� + � + 1)
:

Assuming in the prior evaluation that we believe that the number of change points in
the sequence is small, we should choose the hiperparameters � and � such that the
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prior distribution of p is concentrated in small values. For example, we can take small
values for � and large values for � as it will be considered in Section 4.

2.2. PPM extensions

In general, the posterior distribution of � will not provide a good idea about when
changes occurred since each value of � usually will receive low mass. More informative
for a decision-maker is to obtain the posterior probability of each instant to be a change
point. This posterior probability can be derived as follows.

Let Ck be the subset of C that contains all partitions that include the kth instant
as a change point, that is, each partition in Ck assume the form {i0; : : : ; i(l−1); il =
k; i(l+1); : : : ; ib} for any l∈ I . The event Ak denotes that the kth instant is a change
point, for k = 2; : : : ; n. Thus

P(Ak |X1; : : : ; Xn)

=
∑
Ck

P(� = {i0; : : : ; i(l−1); il = k − 1; i(l+1); : : : ; ib}|X1; : : : ; Xn)

˙
∑
Ck

(l−1)∏
j=1

c∗
[i( j−1)ij]c

∗
[i(l−1)(k−1)]c

∗
[(k−1)i(l+1)]

b∏
j=l+1

c∗
[i( j−1)ij]: (9)

Similarly, the posterior probability for two speci8c instants i; j, i 	= j, to be change
points can be obtained by computing the probability of Ai ∩ Aj, and so on.

Let assume that p has prior distribution �(p). It follows that the posterior probability
for Ak is given by

P(Ak |X1; : : : ; Xn) =
∑
Ck

b∏
j=1

f(X[i( j−1)ij])
∫ 1

0
pb−1(1 − p)n−b�(p) dp; (10)

for all k = 2; : : : ; n. In this case, the posterior distribution of p is given by

�(p|X1; :::;Xn) ˙
∑
ck

b∏
j=1

f(X[i( j−1)ij])
∫ 1

0
pb−1(1 − p)n−b�(p)dp:

3. Computational methods

3.1. Introduction

Suppose that p has prior distribution �(p) and that, given �, �k ∈ �[ij], for k=1; : : : ; n,
and i; j ∈ I , i¡ j. Let X[0n] = (X1; : : : ; Xn) and � = (�1; : : : ; �n) and denote by �−k the
vector (�1; : : : ; �k−1; �k+1; : : : ; �n). The full conditional distributions of p, �, and �k
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are given, respectively, by

�(p|�; �;X[0n]) ˙ pb−1(1 − p)n−b�(p);

�(�|p; �;X[0n]) ˙


 b∏

j=1

f[i( j−1)ij](X[i( j−1)ij])


pb−1(1 − p)n−b;

�(�k |�; p; �−k ;X[0n]) ˙ f[ij](�k |X[ij]);

for k = 1; : : : ; n. Notice that it is not easy to sample directly from the full conditional
distribution of �. In the next section, a method to sample from the previous distributions
is described.

3.2. Gibbs sampling scheme to the PPM

Let Ui be the auxiliary random quantity that re>ects whether or not a change point
occurs at the time i (Barry and Hartigan, 1993)

Ui =

{
1 if �i = �i+1;

0 if �i 	= �i+1;

for i = 1; : : : ; n − 1.
Each partition (Us

1 ; : : : ; U
s
n−1), s¿ 1, is generated by using Gibbs sampling. Starting

from an initial value (U 0
1 ; : : : ; U

0
n−1), the rth element at step s, Us

r , is generated from
the conditional distribution:

Ur|Us
1 ; : : : ; U

s
r−1; U

s−1
r+1 ; : : : ; U s−1

n−1 ; p
(s−1); � (s−1);X[0n];

for r = 1; : : : ; n − 1.
In order to generate the samples of U above, it is enough to consider the following

ratio:

Rr =
P(Ur = 1|V s

r ; p
(s−1); � (s−1);X[0n])

P(Ur = 0|V s
r ; p(s−1); � (s−1);X[0n])

;

for r=1; : : : ; n−1; in which V s
r ={Us

1 =u1; : : : ; U s
r−1=ur−1; U s−1

r+1 =ur+1; : : : ; U s−1
n−1 =un−1}.

For the present case, in which p has a beta prior distribution p ∼ B(�; �) with
parameters �¿ 1 and �¿ 1, the value Rr becomes

Rr =
f[xy](X[xy])%(n + � − b + 1)%(b + � − 2)

f[xr](X[xr])f[ry](X[ry])%(b + � − 1)%(n + � − b)
; (11)

for b = 1; : : : ; n, in which

x =




max{i; s:t: : 0¡i¡r;Us
i = 0} if Us

i = 0; for some

i ∈ {1; : : : ; r − 1};
0 otherwise

(12)
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and

y =




min{i; s:t: : r ¡ i¡n;Us−1
i = 0} if Us−1

i = 0; for some

i ∈ {r + 1; : : : ; n − 1};
n otherwise:

(13)

Consequently, the criterion of choosing the values Us
i , i = 1; : : : ; n − 1, becomes

Us
r =

{
1 if Rr¿ (1 − u)=u;

0 otherwise;

for r = 1; : : : ; n− 1, in which u ∼ U(0; 1). Further details on how one could derive the
product estimates and the posterior distribution of the number of blocks can be found
in the paper by Loschi et al. (2003).

3.3. Gibbs sampling scheme to the PPM extensions

Each sample of the posterior distribution of p is generated from the following beta
distribution:

ps|�; �;X[0n] ∼ B(� + bs − 1; n + � − bs); (14)

for s¿ 1, in which bs is the number of blocks in the sth vector U which is obtained
by noticing that the number of blocks in � is given by

B = 1 +
n−1∑
i=1

(1 + Ui): (15)

Similarly, the estimates of the posterior probability of the kth instant to be a change
point is

P(Ak) =
N
T

; (16)

for k = 2; : : : ; n, in which N is the number of vectors for which it is observed that
Uk−1 = 0 and T is the total number of vectors generated.

4. Application

All the algorithms described in the previous sections were coded in C++ and are
available from the authors upon request. In the experiments here presented, the algo-
rithms were run by a PC, Pentium processor 166 MHz, 32 MB RAM. The CPU times
were around 25 s. For the Gibbs sampling scheme, 4600 samples were generated. From
a graph (not shown) it was seen that after only 100 samples the simulation reached the
steady state. Thus, the initial 100 samples were discharged for burn-in. Additionally,
since no correlation was found at the sequence of simulated values, a lag of one was
chosen. One can easily 8nd in the literature a discussion about the number of itera-
tions to be discharged and the lag to be taken. For example, we suggest the book by
Gamerman (1997).
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Fig. 2. Probability function IG(a=2; d=2).

The application focuses on an important index from the Brazilian stock market,
the BOVESPA index, expressed in terms of monthly returns, from January 1991, to
August 1999, as seen in Fig. 1. As usual in 8nance, the return series is de8ned by the
transformation Rt = (Pt −Pt−1)=Pt−1, in which Pt is the closing price at the tth month.

It seems reasonable to assume that the observations are conditionally independent
and distributed according to the normal distribution N(*[ij]; +2

[ij]). We shall assume the
normal-inverted-gamma distribution, a natural conjugate prior distribution, successfully
used to model stock market data (Hsu, 1982). For the present case we are adopting
the following:

*[ij]|+2
[ij] ∼ N(0:0; +2

[ij]) and +2
[ij] ∼ IG(0:01=2; 4=2):

As we can see in Fig. 2, the inverted-gamma distribution considered concentrates its
mass in low values but presents some variability. These speci8cations were chosen
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Fig. 4. Posterior estimates for +.

because the Brazilian market is emerging and therefore more susceptible to the world
political scenario than developed markets (Mendes, 2000). Di<erent settings for a=2
and d=2 that could be adopted for di<erent markets are seen in Fig. 2.

In regard to the parameter p that indexes Yao’s (1984) cohesions, a beta prior dis-
tribution was adopted. Several di<erent prior speci8cations were considered, plotted in
Fig. 7. Firstly, it is possible to be completely non-informative about p, by assuming
for instance a beta prior distribution such as B(1:1; 1:1). If we assumed prior distri-
butions that concentrate most of its mass in small values, such as B(1; 50), we would
mean that it is reasonable to expect a small number of changes. On the other hand, a
prior distribution with a high average value, such as B(50; 50), would mean that small
blocks of returns and a high number of change points may be expected a priori.
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Fig. 5. Posterior probability of change.

Fig. 3 shows the product estimates of the expected returns and Fig. 4, for the variance
(or volatility), for all di<erent prior speci8cations for p. It is no surprise that the
product estimates were di<erent for di<erent prior distributions for p as earlier noticed
(Loschi and Cruz, 2002). However, it is remarkable that for all of them change points
were identi8ed in the expected returns around September 1994, April 1995 and July
1997. Additionally, change points were identi8ed in the volatility around October 1992,
September 1994, April 1995, July 1997 and January 1999.

Fig. 5 presents the posterior probability of each point to be a change point. It
is remarkable that the estimates corresponding to the prior distributions B(1:1; 1:1),
B(1; 50), and B(5; 50) are almost identical. Based on these estimates it is easily iden-
ti8ed three months with “high” probability to be a change point, namely September
1994, with probability 64.7%, April 1995, with probability 60.4% and August 1997,
with probability 48.4%. The scenario described by priors B(50; 50) and B(50; 5), would
be that of a high assurance of a highly unstable market with high probability of struc-
tural changes expected a priori. As a result, much more months would be identi8ed as
change points, specially after 1995. Since we do not think this was the case, we shall
not go further on analyzing these priors.

Fig. 6 depicts the estimates for the posterior probability that each instant is a change
point, by Eq. (16), and the most probable partition, by Eq. (7), considering the prior we
believe is the most appropriate for the Brazilian market, i.e., B(5; 50). The most prob-
able posterior partition is �={0;September=94, April/95, March/96, August=97} which
occurs with probability 0.004. Notice that this partition indicates that October 1994,
May 1995, April 1996 and September 1997, are change points. However, from Fig. 5, a
di<erent partition may be formed, by considering those months whose probabilities to be
change points are the highest, that is �= {0;August=94, March/95, July=97}. Although
the estimated probability of the latter partition is smaller than 0.004 (≈ 0:00134), such
a partition is more intuitive than the former. Thus, the probabilities of change seems
to be a more meaningful tool to identify probable partitions than by Eq. (7).
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Fig. 6. Probabilities of change and the most probable partition.
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Fig. 7. Prior and posterior distributions of p.

Fig. 7 shows the prior and posterior distributions for p for some of the prior distribu-
tions considered. It is noticeable that the posterior distribution of p has a low valued
mode (see also Table 1). Assuming that p ∼ B(5; 50) and considering the square
loss function, the Bayes estimate of p is 0.0909 which decreases for 0.0781 in the
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Table 1
Descriptive statistics for the prior and posterior distributions of p

Prior Prior distribution Posterior distribution

Mean Stdev Mean Stdev Q1 Median Q3

p ∼ B(1:1; 1:1) 0.5000 0.2795 0.0823 0.0540 0.0464 0.0718 0.1047
p ∼ B(1; 50) 0.0196 0.0192 0.0302 0.0198 0.0149 0.0270 0.0414

p ∼ B(5; 50) 0:0909 0.0384 0:0781 0.0279 0.0583 0.0745 0.0945

p ∼ B(50; 50) 0.5000 0.0498 0.4442 0.0461 0.4138 0.4444 0.4749

p ∼ B(50; 5) 0.9091 0:0384 0.7273 0:0495 0.6956 0.7299 0.7620
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Fig. 8. Posterior distributions of B.

posterior evaluation. Similar conclusions can be drawn for the other prior distributions.
Observe also that the posterior estimates were generally more precise (lower standard
deviation) than the prior estimates, exception made for prior B(50; 5) for which the
standard deviation increased (0.0384 vs. 0.0495, as seen in Table 1).

Fig. 8 shows the posterior distribution of the number of block B, Eq. (15), and
Table 2 presents some descriptive statistics for the prior and posterior distributions of
B. As earlier observed concerning p, the posterior distribution of B has an unique
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Table 2
Descriptive statistics for the prior and posterior distributions of B

Prior Prior distribution Posterior distribution

Mean Stdev Mean Stdev Mode Q1 Median Q3

p ∼ B(1:1; 1:1) 52.5 29.1 8.74 5.67 7 6 8 10
p ∼ B(1; 50) 3.02 2.42 4.68 2.37 2 3 5 6
p ∼ B(5; 50) 10.4 4.90 8.40 2.95 7 6 8 10
p ∼ B(50; 50) 52.5 7.19 41.5 6.16 43 37 41 45

p ∼ B(50; 5) 94.6 4:90 66.0 5:59 68 63 66 70

low mode, for all prior speci8cation. Notice also that the posterior distributions present
lower standard deviation in comparison with the prior distribution, exception made
for prior B(50; 5) (4.90 vs. 5.59, as seen in Table 2). In conclusion, in the posterior
evaluation, the expected number of change points were lower and the posterior estimates
were in general more accurate (lower standard deviation). In any case the summaries
of � and B are sensitive to the prior. Thus, proper prior elicitation becomes crucial.

5. Summary and conclusions

The classical product partition model (PPM) was considered to the identi8cation
of multiple change points in the means and variances of normal data sequences. This
paper extends previous work by providing a full Bayesian analysis for the change point
problem by means of both the PPM and Yao’s (1984) cohesions, and by proposing a
method to compute the probability that each instant of time is a change point.

Conjugate prior distributions were assumed for the means and variances and a beta
prior distribution was considered to describe the prior behavior of the parameter p that
indexes Yao’s (1984) cohesions and represents the probability to have a change at a
given instant of time. The PPM was tailored to provide new information, namely the
posterior distribution of the probability to have a change in any instant of time and
the posterior probability that each instant is a change point.

The methodology was applied to an important Brazilian stock market data. Several
di<erent prior speci8cations for p were considered. The results indicated that the new
method is quite e<ective and may provide useful new information. Mainly, it can be
concluded that the posterior probability that each instant to be a change point provides
a better tool for decision-makers than the posterior distribution on the random partition
formed by the instants when change points occurred.
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