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ABSTRACT

This note updates the temperature trend study of the contiguous 48 United States by Lund et al. for data
observed during the 4-yr period 1997–2000. A parsimonious changepoint parameterization is now used, and
the methods for handling missing data are improved. The number of stations with useable data has now
increased from 359 to 969, thereby improving the accuracy of the reported spatial patterns in the trends. The
average record length of the 969 stations is now 103 yr, with the longest record starting in 1812 and the
shortest in 1926. The methodological improvements and additional 4 yr of data produce slightly smaller
trend estimate standard errors. Warming is found in the Northeast, West, and northern Midwest, with slight
cooling in the Southeast; overall, the trends here suggest more warming than those of the Lund et al. study.

1. Introduction

This note updates the U.S. temperature trend study
in Lund et al. (2001) for recent data and for improve-
ments in the methods of analysis. U.S. temperature
changes have been previously studied in Diaz and
Quayle (1980) and Karl et al. (1995) (among many oth-
ers). Global temperature change studies (cf. Ellsaesser
et al. 1986; Hansen et al. 1999, 2001; and the references
therein) also provide insight into U.S. temperature
trends.

The Lund et al. (2001) study was a statistically de-
tailed examination of temperature changes in the
United States. It made three fundamental analysis con-
tributions. First, the reported standard errors of the
trend estimates accounted for temporal correlations in
the data. Second, seasonal aspects were considered in
that monthly (rather than yearly) series were examined.

Third, the analysis allowed for the crucial effect of
changepoints at times where changepoints were known
to occur. Many (unfortunately, not all) changepoint
times are explicitly noted in the station history logs;
such records permit for adjustment of this factor (cf.
Karl and Williams 1987; Karl et al. 1990).

However, there were some drawbacks in the Lund et
al. (2001) study. One is that the spatial coverage there
was worse—only 359 of 1221 stations in the network
were deemed usable, because of data quality (missing
data in particular). For instance, only 2 stations in Okla-
homa, 4 stations in Mississippi, and 10 stations in Texas
were included in this study. This update contains data
from 34 Oklahoma stations, 29 Mississippi stations, and
39 Texas stations. The primary reason driving the im-
proved spatial coverage lies with the revised methods
for handling missing data. As the number of stations
with useable data has now increased from 359 to 969,
the spatial coverage of climate change in the United
States is now significantly more complete and reliable.

The other statistical improvement in this update in-
volves parsimony techniques for handling change-
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points. The Lund et al. (2001) study expended a large
number of changepoint parameters in its mathematical
regression model: one for each different changepoint
and season (month). For example, in a monthly series
(period 12) with six changepoints per century, which is
the average number of documented changepoints ex-
perienced by the stations in this study, the regression
model employed there expended 96 � 24 � (12 � 6)
parameters. In contrast, the periodic simple linear re-
gression model used here assumes the same change-
point mean shift response over all seasons, thereby re-
ducing the number of parameters to a more parsimo-
nious number of 30 � 24 � 6. An overparameterized
statistical model typically has less power in estimating
significant parameters (the trends in this case).

The rest of the note is organized as follows. We first
describe the sources of data and quality restrictions im-
posed upon series entering this study. The methods
used to obtain the trends and their uncertainty margins
are then narrated. A case study of 1 of the 969 stations
is then presented for illustration. Spatial contour maps
of the smoothed trend estimates are then presented and
discussed.

2. The data

The dataset used in this study is taken from the U.S.
Historical Climatology Network (USHCN). The
USHCN consists of 1221 stations in the 48 contiguous
United States; these data are raw but adjusted for bi-

ases due to the time of observation. Karl et al. (1990)
describes the USHCN in more detail.

Data quality is an issue because of site changes
(changepoints) and missing observations. We take a
changepoint as a change of station location, station in-
strument, or station shelter. The dates of the change-
points that are known were noted and rounded to the
nearest month. Stations having two changepoints
within 4 months were discarded; in comparison, Lund
et al. (2001) discarded series with two or more change-
points occurring within 3 yr. The driving improvement
here is that the regression model introduced in sections
3a and 3b below is more parsimonious and can accom-
modate a smaller number of observations sampled from
one “regime.” As before, a minimum of 75 yr of record
is required to enter the study and stations missing 5%
or more of their observations during their period of
record were discarded, or the starting date of the series
was advanced if possible so as to make the series meet
the above constraints.

After these data quality restrictions were imposed,
969 stations remained for study. Figure 1 graphically
depicts the location of these stations; the spatial cover-
age is excellent. The duration of record at each station
is variable, with the average series containing 103 yr of
data. The starting month of every series is rounded to
the “nearest viable January”; the last observation is
taken during December of 2000. The earliest starting
year is 1812 (New Bedford, Massachusetts); the latest
starting year is 1926 (eight stations).

Any missing observations that remain were infilled

FIG. 1. Station locations.
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with a model-based expectation maximization (EM) al-
gorithm (cf. Dempster et al. 1977). In the first step,
missing values are replaced with regression-based inter-
polations; then an autoregressive moving-average
(ARMA) model was chosen for the residuals of the
regression fit via Akaike’s corrected information crite-
rion (AICC) statistic (cf. Brockwell and Davis 1991).
Predictions for the missing values were computed as
one-step-ahead predictions based on the chosen
ARMA model. The process was iterated until the
ARMA parameters and predictions converged. Such an
EM procedure can be used to infill series with many
consecutive missing observations; in comparison, sta-
tions with six or more consecutive points missing were
discarded in Lund et al. (2001). Infilling is needed for
automation of computation; specifically, it would be a
daunting task to individually infill the series for all miss-
ing data configurations arising in the 969 stations.

3. Statistical methods

a. Periodic regression model

Consider a fixed temperature station. As the data are
monthly in structure, our methods center on the peri-
odic simple linear regression model under multiple
changepoints with period T � 12:

XmT�� � �� � ���mT � �� � �mT�� � �mT��, �3.1�

where the series {�mT��} is zero mean random error
with periodic temporal autocovariances as elaborated
upon below. The notation here uses XmT�� as the ob-
served monthly mean temperature during the �th
month of year m, where � is a monthly index satisfying
1 � � � T and m is a yearly index satisfying 0 � m �

d � 1. Time is scaled at each station so as to make m �
0 the first year in the data record. The data record
length is n � dT, where d is the total number of years
of data; to avoid trite work, we take d as an integer.

For parameter interpretations, 	� is the average tem-
perature during month � in the absence of trend (
� �
0) and changepoints (�mT�� � 0); 
� is the month �
linear trend, which will be our focus later, or the aver-
age temperature change rate during month � in the
absence of changepoints; and {�mT��} is a changepoint
mean shift factor. In particular, the changepoints are
parameterized as the step effects

�mT�� � �
�1, 1 � mT � � � 	1

�2, 	1 � mT � � � 	2

·
·
·

·
·
·

�k, 	k�1 � mT � � � n

, �3.2�

where 
1 � 
2 � . . . � 
k�1 are the months of the known
changepoint times and k � 1 is the total number of
changepoints in the record (hence there are k different
regimes). One can regard the k � 1 changepoints as
inducing a k-phase simple linear regression, extending
the two-phase setup in Lund and Reeves (2002). Until
the first changepoint time, the mean effect in the re-
gression is �1; between the first and second changepoint
times, the mean effect becomes �2, and so forth. For
parameter identifiability, we take �1 � 0 (or else the �is
and the 	�s become confounded).

The model in (3.1) is a parsimonious version of that
used by Lund et al. (2001); here, changepoint mean
shifts in (3.1) are constrained as equal over varying
seasons for statistical parsimony. Such parsimony ren-
ders more accurate estimation of the remaining param-
eters in the regression (specifically, the trends 
�). Trial
fits with some of the series with regression-model-
fitting criteria [e.g., AICC and Bayesian information
criterion (BIC)] show seasonally constant changepoint
effects to be generally preferable. Of course, exceptions
exist where the season of the changepoint time is im-
portant (e.g., changes related to solar radiation in sum-
mer or cold-air drainage in winter), but stations with
such structure are comparatively scarce.

The changepoint effects for a fixed station are also
now easy to interpret: �k is the mean shift, as measured
against the first regime, of series values from the kth
regime. Second, the regression parameter numbers are
reduced from 2 � T � (k � 1) � T in the Lund et al.
(2001) study to 2T � k � 1 here. This is a very large
reduction in settings with a large k.

The seasonal parameterization in (3.1) has advan-
tages over annual formulations. For instance, it allows
one to address uniformity of temperature change over
different seasons. Indeed, some authors suspect that
temperature warming is most rapid during winter due
to decreased nightly radiational cooling, the later at-
tributed to increasing carbon dioxide [see Callendar
(1961), Madden and Ramanathan (1980), and Jones et
al. (1982) for early references].

For brevity’s sake (12 maps is excessive), we partition
the monthly trends into the four seasons: winter, spring,
summer, and fall. Winter is taken as December–
January–February (DJF), spring as March–April–May
(MAM), summer as June–July–August (JJA), and fall
as September–October–November (SON). A trend
for spring, for example, is obtained by adding the trends
during MAM: 
̂MAM � 
̂3 � 
̂4 � 
̂5. Trends for
the other three seasons, denoted by 
̂DJF, 
̂JJA, and

̂SON for winter, summer, and fall, respectively, are ob-
tained analogously. An annual or yearly trend estimate,
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denoted by 
̂YR, is obtained by adding all monthly
trends:

�̂YR � �
��1

T

�̂� � �̂DJF � �̂MAM � �̂JJA � �̂SON.

For ease of interpretation and a standard basis of com-
parison, all trend estimates are converted into degrees
Celsius per century. This entails multiplying seasonal
trends by 400 and annual trends by 100.

b. Inference for the trend parameters

To estimate 
� for each month �, we use the method
of ordinary least squares (OLS). The OLS estimates of
the 
�s cannot be explicitly derived in closed form akin
to (5) in Lund et al. (2001). The regression in (3.1),
however, does have the general linear model’s repre-
sentation

X � D� � �,

where X � (X1, . . . , Xn)� is the observed series (� in-
dicates matrix transpose), D is the n � (2T � k � 1)
dimensional design matrix

D � �D1|D2|D3�, �3.3�

� � (	1, . . . , 	12, 
1, . . . , 
12, �2, . . . , �k)� is the 2T �
k � 1 dimensional parameter vector, and � � (�1, . . . ,
�n)� contains all regression errors. The component ma-
trices D1 and D2 in (3.3) are n � T dimensional with
(i, j)th entry of zero except that (D1)mT��,� � 1 and
(D2)mT��,� � mT � � for 0 � m � d � 1 and 1 � � �

T. The components in D3 are zero except for (D3)�,j �
1 when � ∈ [
i, 
i�1) and j � i as 1 � i � k�1 (take 
k

� n � 1 here).
An estimator of � is computed from the classical

OLS formula,

�̂ � �D
D��1D
X. �3.4�

The estimator 
̂� is merely the (T � �)th component
of �̂.

The trend estimators �̂ � (
̂1, . . . , 
̂T)� are unbiased
for all zero mean errors {�t}. OLS estimators are asymp-
totically most efficient in time-homogeneous settings
(cf. Grenander 1954); one does not expect drastic sub-
optimality in changepoint and/or periodic settings. The
variance/covariance matrix of the trend estimators is
obtained from (3.4):

var��̂� � �D
D��1�D
�D��D
D��1,

where � � var(�) � E[���] is the covariance matrix of
{�t}. Observe that var(�̂) is a (2T � k � 1) � (2T � k
� 1) matrix. The standard error of 
̂� is the square root
of the (T � �)th diagonal component of var(�̂) (more
precisely an estimate of this quantity).

Ignoring autocorrelations in {�t} by taking � to be a
multiple of the identity matrix typically underestimates
true variabilities in 
̂� (cf. Bloomfield and Nychka 1992;
Lund et al. 1995 for discussion). To estimate �, a peri-
odic autoregressive moving-average (PARMA) model
was fitted to the residuals of the regression fit. PARMA
models are flexible short-memory periodic time series
models. Their development in climatological settings is
described in detail in Lund et al. (1995, 2001) and the
references therein.

c. Spatial smoothing

For each station in the study, the above methods
provide a trend estimate and standard error for each of
the four seasons and the entire year. To summarize
these trends, we spatially smooth them by latitude and
longitude with the weighted head-banging algorithm
described in Hansen (1991) and Mungiole et al. (1999).
Statistically, the weighted head-banging algorithm is a
nonparametric local averaging smoother that is espe-
cially adept with rough (highly variable) spatial fields.
The term head-banging was coined by the engineering
community to describe the situation where nails pro-
truding from a board at varying lengths are banged by
an unlucky head, smoothing the nail lengths while leav-
ing an impression of the face. Head-banging methods
effectively preserve general features such as edges and
ridges while simultaneously downweighting outliers.
The algorithm variant we use weights the trends in-
versely to their standard errors before averaging;
hence, more variable (questionable) trend estimates
have less overall influence on the end result. This is but
one reason to pursue accurate standard errors for the
individual trends. The head-banging smoothing param-
eters used here were 15 triples with 30 nearest neigh-
bors in each contour map. Selection of appropriate val-
ues of head-banging parameters is important, but not
overly crucial in interpreting general spatial structure of
the trends. (One will get a feel for smoothing aspects by
comparing Figs. 3 and 4 below.)

Application of the head-banging algorithm yields a
spatially smoothed trend estimate at each station lati-
tude and longitude in the study; such smoothing ac-
counts for spatial autocorrelations in the trend esti-
mates in a nonparametric way. As an end step, the
ESRI ARC geographic information system (GIS) soft-

TABLE 1. Chula Vista annual trend estimates in °C century�1.

Model Annual trend Standard error

Neglecting changepoints 2.896 0.7184
Lund et al. (2001) 1.126 0.6581
Model (3.1) 0.932 0.6117
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ware was applied to the head-banging smoothed trends.
Here, the inverse-distance-weighted interpolation
method with 12 neighbors was applied to display the
head-banging smoothed trends in the contour maps.
The end product is reasonably attractive, while preserv-
ing general structure.

4. A comparison

To gain some feel for the methods, especially in re-
gard to the different statistical models, we consider the
station located at Chula Vista, California, in a case
study. The data record at this station through 1996 is
plotted in Fig. 1 of Lund et al. (2001). This series has

seen three documented changepoint times since 1919;
the effects of each changepoint are elaborated upon in
Lund and Reeves (2002). Annual trend estimates and
their standard errors are listed in Table 1.

The annual trend estimate of 0.932°C century�1

based on (3.1) is 17% smaller than the 1.126°C cen-
tury�1 reported in Lund et al. (2001). The standard
error has decreased from 0.658° to 0.612°C century�1,
suggesting slightly improved accuracy. Comparisons at
other stations also suggest some efficiency gains; spe-
cifically, an average standard error of 0.827°C cen-
tury�1 was obtained by Lund et al. (2001) whereas that
here is 0.765°C century�1. It should be stressed that the
numbers quoted for the case where changepoints are
neglected are invalid, but it is interesting to see how far
off they indeed are.

5. Overall results

This section moves to the study of the estimated
trends at all 969 stations. Figure 2 presents boxplots of
the raw trend estimates during each season. Observe
that the median line is positive in each plot, suggesting
overall warming during every season. The variability of
the estimated trends is greatest during winter and mini-
mal during fall and summer. There are a few outlying
trends in each season, of course in part attributed to the
large number of stations (969). The average trend esti-
mate over all stations is 1.167°C century�1 for winter,

FIG. 2. Boxplot of trends by season.

FIG. 3. Raw annual trends (red: warming; blue: cooling).
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0.971°C century�1 for spring, 0.658°C century�1 for
summer, and 0.515°C century�1 for fall. The season
with the largest temperature variability (winter) also
shows the most warming. The average annual trend
estimate at all 969 stations is 0.823°C century�1. To-

ward decadal effects and the common period of record,
we comment that the average trend for the 527 stations
in the study that reported data during the subperiod
1898–2000 was 0.820°C century�1; the trend for all 969
stations over the common period of record 1926–2000

FIG. 4. Smoothed annual trends (red: warming; blue: cooling).

FIG. 5. Smoothed winter trends (red: warming; blue: cooling).
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was 0.300°C century�1. Overall, the results here suggest
more warming than that reported in Lund et al. (2001),
where the average annual trend was 0.725°C century�1.
The contribution of the last 4 yr to an overall trend of
0.823°C century�1 is about 15% of the total, which rep-
resents warming at a rate of 3.327°C century�1. The late

1990s was a very warm period for the continental
United States.

Figure 3 is a GIS contour plot of the raw annual
estimated trends without application of the head-
banging smoother. The plot is included for smoothing
feel and is color coded, with red representing warming

FIG. 6. Smoothed spring trends (red: warming; blue: cooling).

FIG. 7. Smoothed summer trends (red: warming; blue cooling).
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and blue cooling. One sees a speckled structure to the
plot, indicating a rough spatial field, with cooling sta-
tions relatively more prevalent in the southeastern
United States and warming stations relatively more fre-
quent in the southern Rockies, northern Midwest, New
England, and Oregon.

Figure 4 is a head-banging smoothed version of the
annual trends in Fig. 3. Figure 4 conveys the general
structure of Fig. 3 with much of the noise variability
smoothed away. Overall, much of the West appears to
be warming while a quasi-stationary climate, with per-
haps slight cooling, is evident in the Southeast and Ohio
River basin. This is less cooling than that reported in
Lund et al. (2001). As before, rapid warming is appar-
ent in Maine, southern Arizona, and northern Minne-
sota. Notice the scale in the plot is not symmetric: cool-
ing rates are not less than �1.5°C century�1 whereas
some warming rates exceed 2.5°C century�1.

Figures 5–8 present spatially smoothed contours of
trend estimates for winter, spring, summer, and fall,
respectively. A consistent feature in these plots is the
slight cooling in the Southeast and Ohio River basin
and the warming in the Four Corners region and north-
ern Midwest. The Dakotas show rapid winter warming
as does southern Arizona and southern California. One
can discern additional structure by examining the plots
in detail. We do not encourage extrapolation and/or
local inference in the plots beyond very general pat-
terns; the usual disclaimer on interpreting local varia-
tions in a rough spatial field applies.
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