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Nonlincar regime-switching behavior and structural change are often perceived as competing alternatives
lo hneanty. In this article we study the so-called time-varying smooth transition autoregressive (T'V-
STAR) model, which can be used both for describing simultaneous nonlinearity and structural change
und for distinguishing between these features. Two modeling strategies for empirical specification of 'T'V-
STAR models are developed. Monte Carlo simulations show that neither of the two strategies dominates
the other. A specific-lo-general-to-specitic procedure is best suited for obtaining a first impression
of the importance of nonlinearity and/or structural change for a particular time series. A specific-to-
general procedure is most useful in careful specification of a model with nonlinear and/or time-varying
properties. An empirical application lo a large dataset of U,S, macroeconomic time series illustrates the

relative merits of both modeling strategies.
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1. INTRODUCTION

Over the years, ample empirical evidence has been gathered
for both nonlinearity and structural change in the dynamic
properties of many observed time series. For example, the
dynamic behavior of macroeconomic time series depends
nonlinearly on the phase of the business cycle. This regime-
switching behavior related to expansion and contraction peri-
ods has been the focus of much research, (see, e.g., Teriisvirta
and Anderson 1992; Beaudry and Koop 1993; Sichel 1993;
Thao and Tsay 1994; Potter 1995; Pesaran and Potter 1997).
On the other hand, Stock and Watson (1996) reported an over-
whelming amount of evidence for instability in both univariate
and multivariate models for a large number of U.S. postwar
macroeconomic time series.

Despite these indications that both nonlinearity and struc-
tural change are relevant for many time series, to date
these features have mainly been analyzed in isolation. This
dichotomy may be due to how time series modeling usu-
ally 1s carried out. Typically, one starts with a linear model.
The estimated linear model is routinely subjected to misspec-
ification tests, including tests for nonlinearity and parameter
nonconstancy. If the misspecification tests indicate that the
linear model is inadequate, then the model is modified accord-
ingly. Modeling is usually terminated by estimating this alter-
native model. Thus, when nonlinearity is found and mod-
eled, parameter constancy of the estimated nonlinear model
is rarely tested (see, however, Eitrheim and Terdsvirta 1996;
Terdsvirta 1998 for exceptions). Conversely, when parameter
constancy 1s rejected in a linear model, the estimated time-
varying parameter model is rarely tested for nonlinearity.

Nonlinearity; Structural change, Time series model specification,

[t should be mentioned, however, that some work has been
done to consider nonlinearity and structural change simulta-
neously. Diebold and Rudebusch (1992), Watson (1994) and
Parker and Rothman (1996) applied nonparametric techniques
to examine whether certain characteristics of the business
cycle, such as the duration and amplitude of recessions and
booms, have changed over time, while allowing these proper-
ties to be different in different business cycle phases. Cooper
(1998) found indications for both regime-switching behavior
and structural change in U.S. industrial production in a regres-
sion tree analysis. Some attempts to capture both nonlinearity
and structural instability with parametric time series models
have been made as well. For example, Liitkepohl, Teriisvirta,
and Wolters (1998) and Wolters, Teridsvirta, and Liitkepohl
(1999) used smooth transition models to examine linearity
and stability of German money demand equations. Skalin and
Terdsvirta (2002) applied a model closely related to the one
discussed in this article to describe business cycle asymmetry
and changing seasonal variation in quarterly unemployment
rates of a number of developed countries. Finally, Kim and
Nelson (1999) and Luginbuhl and De Vos (1999) allowed for
structural change in the mean growth rate of U.S. real gross
domestic product (GDP) while modeling dynamic behavior in
recessions and expansions by means of a Markov switching
model.
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In this article, we study a time series model, based on
the principle of smooth transition, which allows for nonlinear
dynamics in conjunction with time-varying parameters. This
time-varying smooth transition autoregressive (TV-STAR)
model can be used both for describing simultaneous nonlin-
earity and structural change and for distinguishing between
these two features. The model may be regarded as a special
case of the multiple-regime STAR (MRSTAR) model of Van
Dijk and Franses (1999). The article is organized as follows.
In Section 2 we define the TV-STAR model and discuss its
main properties. In Section 3 we describe two different strate-
gies for building TV-STAR models. We investigate the per-
formance of these procedures by Monte Carlo simulation in
Section 4. In Section 5 we apply our methodology to test
for nonlinearity and structural change in a large number of
U.S. macroeconomic time series. An example involving the
U.S. help-wanted advertising index illustrates the stages of our
modeling strategy in more detail. Finally, we provide some
concluding remarks in Section 6,

2. THE MODEL

The smooth transition autoregressive (STAR) model of
Terdsvirta (1994) serves as the basic building block for the
TV-STAR model. The STAR model for a univariate time series
y;» which is observed at t =1 - p,—p,..., ! 1 S S
I'—1,T, is given by

Yo =@ X1 =G(s; 7, ¢)) +5%,G(s,; v, c)+e, (1)

where x, = (1,x;)" with X, = (y_;,...,¥.,), @ =
(@i 0r®i1s---+9 ,),i=1,2, and &, is a white noise process.
It is straightforward to extend the model to allow for exoge-
nous variables z,,,. .., Z;; as additional regressors, The resul-
tant smooth transition regression (STR) model was discussed
in detail by Terdsvirta (1998).

In general, the so-called transition function G(s,; v, ¢) in
(1) 1s a continuous function that 1s bounded between 0 to 1.
To simplify the exposition, here we restrict attention to the
logistic function

G(s;:y,¢)=[1+exp{—y(s,—c)}]” with ¥y > 0. (2)
It is straightforward to modify the analysis presented herein to
allow for different transition functions. In (2), s, is the transi-
tion variable, and y and ¢ are slope and location parameters.
The parameter restriction y > 0 is an identifying restriction.
As s, increases, the logistic function changes monotonically
from 0 to 1, with the change being symmetric around ¢, as
Glc—z:v,¢)=1-G(c+2z;v,.c) for all z. As y — oo, the
logistic function G(s,; 7y, ¢) approaches the indicator function
I[s, > c]. Finally, for y =0, G(s,; y.c) = 1/2 for all 5,, such
that the model reduces to a linear dynamic model.

The STAR model (1) with (2) may be thought of as a
regime-switching model that allows for two regimes, asso-
ciated with the extreme values of the transition function,
G(si:vy,.c) =0 and G(s,; y,¢) = 1, where the transition
from one regime to the other is smooth. The regime that
occurs at time ¢ 1S determined by the observable variable s,.
Terasvirta (1994) focused on the case where 5, = y,_, is a
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lagged dependent variable. Lin and Terisvirta (1994) consid-
ered an AR model with smoothly time-varying parameters
(TV-AR), which is obtained hy setting s, = t. In this article
we combine the STAR and TV-AR models, with the idea to
make it possible to model continuous structural change and
smooth transition-type nonlinearity simultancously. The resul-
tant time-varying STAR (TV-STAR) model is given by

Yo =@ %, (1 =G(y,_) +¢5x,G(y,_ )1 — G(1)]

X, (1 =Gy, 4) +@x,G(y, )IG(1)+e, (3)

where G(y,_y) = G(y,_4i Y1, ¢) and G(1) = G(1; 5, ¢;) are
logistic functions defined as in (2). The TV-STAR model can
be interpreted as describing y, by a STAR model at all times,
with a smooth change in the autoregressive parameters, from
¢, and ¢, 10 ¢; and ¢, in the regimes corresponding with
G(y,—q) =0and G(y,_,) = 1. This can be seen from the alter-
native representation of (3),

Y =@ (1)%,(1 = G(y, ) +:(1)x,G(y,_ ) +&,. (4
where
¢, =¢,[1 = G(1)] +¢;G(1) (5)
and
@.(1) =@,[1 = G(1)] +¢,G(1). (6)

Equations (4), (5), and (6) form the alternative hypothesis in
tests of parameter constancy of a STAR model (see Eitrheim
and Terdsvirta 1996; Terdsvirta 1998). Model (3) may also be
viewed as a special case of the multiple-regime STAR model
of Van Dijk and Franses (1999).

Submodels of the general TV-STAR model in (3) can be
obtained by imposing appropriate restrictions on the autore-
gressive parameters in the different regimes. In particular, if
@ # ¢ @ = ¢, and @, = ¢, in (3), then the resultant
model 15 a two-regime STAR model. Similarly, if ¢, = ¢,,
¢, = ¢,, and ¢, # ¢,, then the model reduces to a TV-AR
model. Models that are nested within the general TV-STAR
model are considered in more detail in Section 4.

3. SPECIFICATION OF TV-STAR MODELS

Applying the TV-STAR model to data requires a coherent
modeling strategy. It must be decided whether or not the full
TV-STAR model as given in (3) is required, or whether the
time series under consideration may be adequately character-
1zed by a submodel, such as a STAR or TV-AR model. Either
way, there are other data-based choices to be made, such as
selecting the delay parameter ¢ and the lag length p. Doing
all this in a systematic fashion is highly desirable.

Granger (1993) strongly recommended a *“‘specific-to-
general” strategy for building nonlinear time series models.
This imphes starting with a simple or restricted model and
proceeding to more complicated models only if diagnostic
tests indicate that the maintained model is inadequate. In
the present situation, an additional (statistical) motivation for
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adopting such an approach 1s that the identification problems
discussed herein prevent us from starting with a full TV-STAR
model and reducing its size by, say, a sequence of likelihood
ratio tests.

Choosing the specific-to-general approach still leaves two
possibilities. First, the procedure proposed by Teriisvirta
(1994) for two-regime STAR models can be extended to obtain
a “specific-to-general” modeling cycle for TV-STAR maod-
els. This approach consists of several specification, estima-
tion, and evaluation stages. starting with a linear AR model
and proceeding toward the full TV-STAR model via a STAR
or TV-AR model. Second, given the particular choice of
transition variables in the TV-STAR model, a more direct
“specific-to-general-to-specific” approach also seems feasible.
This procedure begins with testing linearity directly against the
TV-STAR model (specific-to-general). If linearity is rejected,
then subhypotheses are tested to determine whether a STAR
model or a TV-AR model provides an adequate characleriza-
tion of the time series at hand (general-to-specific).

3.1

Both modeling procedures described here make heavy use
of Lagrange multiplier (LM) tests. For the sake of complete-
ness, we illustrate the form of these test statistics by means of
an example.

Consider the problem of testing the null hypothesis of lin-
earity against the alternative of a TV-STAR model as given
in (3). To obtain an appropriate test statistic, it is useful to
rewrite the model as

Lagrange Multiplier Tests

v, =o'x, +B'x,G*(y,_y)+7x,G* (1)
+ 0'x,G*(y,_,)G* (N +¢,. (7)

where a«, B, . and 6 are linear combinations of ¢, ..., ¢,,
and G*(s,) = G(s,) — 1/2. This reparameterization allows us
to specifty the null hypothesis of linearity as H,: y, =y, = 0.
We make the following assumptions about the model in (7):

(A.1) The errors &, ~ NID(0, %), t =1,..., T. (This
assumption is required only for the definition of the likelihood
[unction and can be relaxed.)

(A.2) Under Hy, 1=37_ a,L’ #0 for all |L| <1, and
furthermore, E[y]'] < oc.

As indicated earlier, model (7) is identified only under the
alternative hypothesis. In particular, under the null hypothesis,
B, 71, and 0 are unidentified nuisance parameters, which ren-
ders standard asymptotic inference invalid (see Davies 1977,
1987; Hansen 1996). We circumvent the identification problem
of Luukkonen, Saikkonen, and Terisvirta (1988) by approxi-
mating the two transition functions in (7) by a first-order Tay-
lor expansion around the null hypothesis. The resulting auxil-
l1ary regression 1is

i Y - r
.'1": =« x:+|?' xr:"'r .ri"_‘ﬂ"1|r I,f

+ ﬂ”ifyl—dr.ih'ﬁ'(?l' TE} _|_ Er* {3]
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The term R(y,,7y,) represents the remainder from the two
Taylor expansions. Under H,, we have R(7,,y,) =0, so this
remainder does not affect our asymptotic distribution theory.
In going from (7) to (8), we have implicitly assumed that
d < p; that is, y,_, 1s an element of X,. If this is not the case,
then By,_, must be added as auxiliary regressor to (8).

In (8), " =a and B* ==* =0*' =0 if and only if y, =
¥> = (. Hence the null hypothesis of linearity in the auxiliary
regression (8) is given by H, : B* = w* = 8" =0, which can
be tested by means of an LM test in a straightforward manner.
Under assumptions (A.1) and (A.2), the test statistic, denoted
as LMy grag 10 the following, has an asymptotic chi-squared
distribution with 3p+ 1 degrees of freedom under H,,. The test
can be computed as follows:

l. Regress vy, on x, and compute the sum of squared resid-
uals, SSR,,.

2. Regress y, on X,, X,v,_4. X,f, and X,y,_,t and compute
the sum of squared residuals, SSR,.

3. Compute the chi-squared version of the test statistic as

T{SER _SSR :I g i
W’l'V—ET}".R — H%ﬁ” I , I [.hﬂ F version as WT‘U STAR —

(SSRy - S5R,; )/ (3p+1) il AP :
STV where 7T denoles the sample size.

The F version of the test is recommended in small and
moderate samples. This is because the asymptotically correct
chi-squared test may be severely oversized in small samples
if the dimension of the null hypothesis is large, which may
often be the case here. On the other hand, the size of the
F' test 1s close to the nominal size even in small samples and,
at the same time, the test has reasonable power. Simulations
in the STAR case (Terdsvirta and Anderson 1992) support this
conclusion.

Special cases of the auxiliary regression (8) yield other lin-
earity tests. It follows from the expressions of the parameters
B*.m*, and 0* in terms of the parameters in the original TV-
STAR model that (a) B* =0 if and only if y, =0, (b) w* =0 if
and only if y, =0, and (¢) 8* =0 if y, =0 or ¥, =0, or both.
Hence, assuming =" = 0" =0 in (8), linearity can be tested
against STAR by testing H; : B* = 0. Similarly, linearity can be
tested against the alternative of smoothly time-varying param-
eters by assuming * = 0" = 0 and testing H, : m* = 0. The
linearity tests against STAR and TV-AR of Teriisvirta (1994)
and Lin and Terdsvirta (1994) are thus special cases of the test
presented here.

Finally, the LM-type test derived earlier is based on lin-
earization of the TV-STAR model. Hence some information
about the form of the nonlinear structure under the alter-
native is lost, which may adversely affect the power of
the tests. As an alternative, one might consider the tests of
Andrews (1993) and Andrews and Ploberger (1994), using
the simulation-based technique developed by Hansen (1996)
to obtain critical values. However, as pointed out by Skalin
(1998), Hansen's approach would be computationally very
demanding for tests against STAR (or TV-AR or TV-STAR),
because the model under the alternative hypothesis contains
at least two unidentified nuisance parameters. Furthermore,
the small-sample results of Hansen (1996) indicate that the
LM-type tests can compare quite favorably with the optimal
fests of Andrews (1993) and Andrews and Ploberger (1994)
in terms of size and power.
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3.2 Specific-to-General Approach

The specific-to-general modeling cycle for TV-STAR mod-
els can be summarized as follows (see Van Dijk and Franses
1999 for a description of a similar procedure for specification
of multiple-regime STAR models):

|. Specify an AR model for the time series of interest v,.

2. Test the null hypothesis of linearity separately against
smoothly changing parameters [H, : w* = 0, assuming B* =
0* = 0 in (8)] and against STAR (H, : B* = 0, assuming ©* =
8° = 0). The appropriate value of the delay parameter d in
the alternative STAR model can be determined by carrying
out the latter test for y,_, withd =1,...,d,,, as a transition
variable, and selecting the value of d for which the p value of
the statistic is smallest (cf. Terdsvirta 1994). If the null is not
rejected against either alternative, then retain the AR model.

3. Esumate the model under the alternative for which the
null hypothesis 1s rejected most strongly (measured in terms
of p value) and compute LM-type tests against additional non-
linear or time-varying structure. For example, if linearity is
rejected most convincingly against STAR nonlinearity, then
estimate a two-regime STAR model and test its parameter con-
stancy against the alternative of smoothly changing parame-
lers. Such misspecification tests were developed by Eitrheim
and Terasvirta (1996) to cvaluate estimated STAR models.
These test statistics can be easily modified to diagnose a model
with smoothly changing parameters.

4. Estimate a TV-STAR model if the null of no remain-
ing nonlinearity or parameter constancy is rejected in step 3.
Evaluate the model by computing misspecification tests of no
remaining nonlinearity and parameter constancy, using gener-
alizations of the tests of Eitrheim and Terisvirta (1996) for
cvaluating STAR models. Otherwise, tentatively accept the
null model.

3.3 Specific-to-General-to-Specific Approach

Although the specific-to-general procedure makes intuitive
sense, it has some drawbacks. First, it may involve the esti-
mation of several nonlinear models. Another, more important
concern 18 that the form of the final model is conditional on the
path selected. We may reach a TV-STAR madel both through a
STAR and through a TV-AR model. It is likely that these two
paths lead to different final models. The first path emphasizes
nonlinearity in the series, and the model is completed with
nonconstant parameters. The second path stresses parameter
nonconstancy, and the variation not explained by this assump-
tion is assigned to nonlinearity. If the aim is to test economic
theory, then this ambivalence may appear worrisome. If the
main aim is forecasting, then the model builder may want to
retain both models and, for example, combine forecasts from
them into a final forecast.

Another complication that may arise in the specific-to-
general approach is caused by the fact that the tests of linear-
ity against STAR and TV-AR used in step 2 are not robust to
structural change and to nonlinearity. Hence these tests cannot
discriminate perfectly between these competing alternatives.
In fact, it may happen quite often that linearity is rejected
against both STAR and TV-AR, leaving the researcher with
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the decision in which direction to proceed. In the Monte Carlo
experniments in Section 4, we investigate whether the suggested
rule to proceed in the direction for which the null hypothe-
sis 1s rejected most convincingly (step 3) is helpful in making
this decision,

An alternative modeling approach is to adopt a specific-to-
general-to-specific procedure, which starts with testing linear-
ity directly against the TV-STAR model. If the null hypothe-
sis 18 rejected, then one checks whether a STAR or a TV-AR
model captures the essential features of the time series under
investigation. The resulting modeling cycle consists of the fol-
lowing steps:

|. Specify an AR model for the time series of interest y,.

2. Use the LM,y ¢pap Statistic described in Section 3.1
to test linearity directly against the TV-STAR alternative
[H)V2™AR . B* = v* = 0" =0 in (8)]. The appropriate value of
the delay parameter d can be determined by computing the
LMy orag Statistic fory, , withd=1,...,d_,, as a transition
variable, and selecting the value of d for which the p value
of the statistic 1s smallest.

3. It the null hypothesis of linearity is rejected, then test
subhypotheses that are nested in H}">'*® to assess whether a
TV-STAR model is really necessary to characterize the time
series y, or whether either a STAR model or a TV-AR model

1s sufficient. In particular, test
Hy' ™ B =0"=0

and
HEVAR: o7t = 0* =0

in the auxiliary regression (8), for the value of d selected in
step 2. The corresponding LM statistics, which are denoted
as LMy, p and LMy sy, have asymptotic chi-squared distribu-
tions with 2p and 2p + 1 degrees of freedom. From the rela-
tionships between B*, w*, and 8* and the parameters vy, and
¥,, it follows that under H} ™R, the model reduces to a TV-AR
model, whereas under H;¥*®, a STAR model results. These
considerations lead to the following decision rule:

If both Hj'™® and HIYA® are rejected, then retain the
TV-STAR model.
« I H™® is rejected but H3Y*® is not, then select a STAR
model.
« If HJ¥™® is rejected but H3™® is not, then select a
TV-AR model.

The one combination of outcomes that does not imply a clear-
cut choice is when neither Hy™® nor HJY*® is rejected but
the general null hypothesis HYS™R is rejected. In this case,
one may resort to the LM-type tests, which test linearity
against STAR and against TV-AR separately as in step 2 of
the specific-to-general approach. In this way one can find out
which (if any) of the submodels of the TV-STAR model is
most suitable for the time series at hand.

4. Estimate the selected model and evaluate it by misspec-
ification tests.

This strategy has two drawbacks. First, testing directly
against the full TV-STAR model may imply weak power,
because the dimension of the null hypothesis may be large
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in many cases. Second, as a referee pointed oul, testing sub-
hypotheses within the auxiliary regression (8) may not be
appropriate, because the original null hypothesis Hj"*™® has
already been rejected. In other words, the remainder in (8)
may not equal O under the null hypotheses HJ™R and HIV-AR,
which may affect the size of the corresponding tests. Thus the
additional tests may be seen just as additional model selec-
tion devices that are likely to be helpful if the difference in
p values of the two tests is reasonably large. Note, however,
that a similar strategy works well in choosing between logis-
tic and exponential STAR models (see Terdisvirta 1994 for a
discussion).

3.4 Estimation and Evaluation of TV-STAR Models

The parameters of a TV-STAR model may be estimated
by nonlinear least squares (NLS). When assumption (A.1)
is valid, NLS is equivalent to maximum likelihood (based
on a Gaussian likelihood function). If assumption (A.1) does
not hold, then the NLS estimates can be interpreted as
quasi-maximum likelihood estimates. Under suitable regular-
ity conditions, (e.g., conditions M1-M7 of Wooldridge 1994,
pp. 2653-2655), the NLS estimates are consistent and asymp-
totically normal. Issues that deserve particular attention, (and
that we discuss next) include concentrating the sum of squares
function, choosing starting values, and estimating the smooth-
ness parameters y, and ¥,.

When the parameters in the transition functions
G(¥,_4:%,¢) and G(1; v,,¢;) are known, the TV-STAR
model is linear in the remaining AR parameters. Thus,
conditional on vy = (vy,,v¥,) and ¢ = (¢,, ¢,)’, estimates of
¢ = (¢, ¢, ¢5.¢,) can be obtained by ordinary least
squares (OLS) as

T -] T
é(?-c)=(Zx,w.c}x,(?*c)’) (Zx,('r,t:).ﬂ)q (9)

=1

where X (v.¢) = (x;(1 = G(y,_ (1 = G(1)),x.G(v,_,)(1 —
G(1)),x, (1 =G(y,_4))G(r), X, G(y,_,)G(1)), and the notation
(7. ¢) is used to indicate that the estimate of ¢ is conditional
on vy and ¢. As suggested by Leybourne, Newbold, and Vougas
(1998), this implies that the sum of squares function can be
concentrated with respect to ¢,, ¢,, ¢, and ¢, as

T

Qr(v.¢) =) (v —@(v,0)x,(y,0))"

=1

This reduces the computational burden considerably, because
(J7(7y.c) need only be minimized with respect to the four
parameters y,, ¢,, ¥,, and ¢,. The corresponding estimates of
¢ follow from (9) at each iteration of the nonlinear optimiza-
tion procedure.

The foregoing also suggests that sensible starting values
for the nonlinear optimization can be obtained by perform-
ing a grid search over y,, ¢,, ¥,, and ¢, and selecting the
parameter values that minimize the sum of squared residu-
als @, (y.c). Making v, and vy, scale-free, as discussed by
Teridsvirta (1994), helps in determining a useful set of grid
values for these parameters.
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The remarks of Teridsvirta (1994, 1998) concerning the
apparent inaccuracy of the estimate of the smoothness param-
eter vy in ST(A)R models when ¥ is large apply to the TV-
STAR model as well. We therefore just repeat the fact that in
such a situation, low *f values” for the estimates of y, and ¥y,
cannot be interpreted as evidence against the TV-STAR model
(for details, see Terdsvirta 1994, 1998).

4. PERFORMANCE OF MODELING STRATEGIES

In this section we evaluate the small-sample performance
of the two modeling strategies for TV-STAR models by
Monte Carlo simulation. First, we assess the size and power
propertics of the LM-type tests used in the specific-to-general-
to-specific approach in Section 4.2. The size and power
properties of the LM-type tests used in the specific-to-general
procedure have been investigated elsewhere (see Teriisvirta
1994; Lin and Terdsvirta 1994; Eitrheim and Terisvirta 1996),
Second, in Section 4.3 we examine the “success rate” of the
two procedures, that is, the frequency of selecting the correct
model when it is included in the set of alternatives.

4.1 Monte Carlo Design

We examine the properties of the modeling strategies for
seven different data-generating processes (DGPs), all of which
are nested in the TV-STAR model (3) with p=d =1,

Y =@y (1 = G(y,_)) + @y, Gy, )1 - G(1)]

+ {‘IDJ.PI—] “ _' G(}'t-l)) + E4 V- G(}Tr—l )]G(I} y € ( ]0}

and &, ~ NID(0, o), where we set g = 1. In all of the
experiments described herein we use 10,000 replications and
an effective sample size of 250 observations. Necessary start-
ing values for the artificial time series are set equal to 0,
whereafter the first 100 observations are discarded to eliminate
any potential influence of this choice. Finally, the autoregres-
sive order p and the delay parameter 4 are assumed known
throughout.

The DGPs can be conveniently characterized by the restric-
tions that they impose on the autoregressive parameters in (10)
as follows:

(a) ¢, = ¢, = @3 = @,. In this case the TV-STAR model
(10) reduces to a linear AR(1) model. This DGP is used only
o evaluate the size properties of the LM-type tests in the
specific-to-general-to-specific approach. The AR parameter is
varied among ¢, = (0, .1, .3,...,.9}.

(b) @, = ¢; and ¢, = ¢,. Under these restrictions, the DGP
1s a STAR model with AR parameters ¢, and ¢, in the regimes
corresponding with G(y,_,) =0 and G(y,_,) = 1. The param-
eterizations for this DGP are taken from Luukkonen et al.
(1988). We set ¢, equal to —.5 or .5, whereas ¢, is var-
ied among ¢, € {—.9, .7, —.5,-.3,0, .3,.5,.7, .9}. For the
logistic function G(y,_,), we set y, =5 and ¢, =0,

(¢) ¢, = ¢, and ¢, = ¢,. In this case the DGP is a TV-AR
model. Again, ¢, is fixed at —.5 or .5, whereas ¢, is varied
as ¢, in DGP (b). To examine the impact of the timing of
the parameter change, the location parameter c, in G(t) is
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varied among ¢, = {.25, .50, .75}. Furthermore, we set y, =
25, which in this case implies that the parameter change takes
about half of the sample to be completed.

(d) ¢, = @,. The DGP resulting from this restriction is a
linear AR model that evolves into a STAR model as G(1)
increases from 0 to 1.

(e) ¢, = ;. This DGP is a STAR model with a constant
AR parameter in the regime G(v,_,) = (0, whereas the AR
parameter in the regime G(v, ;) =1 changes smoothly from
¢, 10 @y.

() ¢4 — @3 = @, —¢,. This DGP is a TV-STAR model
where the (absolute) difference between the AR parameters
in the two regimes of the effective STAR model (which in
a sense can be interpreted as the degree of nonlinearity of
the model) remains constant over time. That is, the difference
between ¢,(r) and ¢,(7) as given in (5) and (6) is the same
forall 0 <r<1.

(g) ¢, = ¢,. This restriction renders a TV-STAR model in
which the dynamic behavior in the regime G(y, ,) =0 before
the structural change is the same as the dynamic behavior in
the regime G(y,_,) =1 after the change.

DGPs (d), (e) and (g) restrict two of the four AR param-
cters @, j = 1,...,4. In all cases, these restricted param-
eters are set equal to .5, whereas the two unrestricted
parameters are varied independently among {—.9,—.7, —.5,
-.3,0,.3,.5,.7,.9}. In DGP (f), we fix ¢, =.5 and vary ¢,
and ¢, independently as in the other DGPs. For each com-
bination of these unrestricted parameters, the value of ¢, is
obtained as ¢; = ¢, — ¢, + ¢;,. We investigate only those
parameter combinations that satisfy sufficient conditions for
weak stationary. Configurations with |¢;| = 1 are thus not con-
sidered. Finally, in DGPs (d)—(g), the values of the slope and
location parameters in the transition functions G(y,_,) and
G(t) are defined as in DGPs (b) and (c).

4.2 Size and Power of LM-Type Statistics

In this section we consider the small-sample properties
of the three LM-type test statistics involved in the specific-
to-general-to-specific procedure, as discussed in Section 3.3.
Rejection frequencies at nominal significance levels a = .01,
.05, and .10 when the DGP is an AR(1) model are given in
Table 1. It is seen that the empirical size of all three tests is
reasonably close to the selected nominal significance levels,

Table 1. Empirical Size of LM-Type Tests in the Specific-to-General-to-Specific Procedure
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although the LMgy,, stalistic becomes quite conservative as
¢, approaches 1.

Detailed results for the power experiments involving a
STAR model [DGP (b)] and a TV-AR model [DGP (c)] are
not given here, but they are available from the authors on
request. The rejection frequencies for the tests under these
DGPs behave as expected. For example, in case of DGP (b),
the rejection frequencies of the LMy grap and LM, statis-
tics are reasonably high and increase monotonically as the
degree of nonlinearity (as measured by the absolute differ-
ence between the AR parameters in the two regimes |¢@, — ¢, |)
increases. The rejection frequencies of the LMy, ., statistic
are close to the nominal significance level for all values of
@,. as expected. Under DGP (c), the rejection frequencies of
the LM,y statistic are close to the nominal significance level
for all values of ¢;, whereas the power of the LM, ¢yap and
LMy op statistics increases monotonically as the difference
l@; — 1| increases. The latter two tests are most powerful if
the change in parameters is centered around the middle of the
sample.

FFor DGPs (d)—(g), which involve both nonlinearity and
structural change, the behavior of the three statistics also cor-
responds to expectations. We illustrate this by presenting some
results for DGPs (d) and (e). Detailed results for DGPs (f)
and (g) are available from the authors on request. The graphs
in the left column of Figure | show the rejection frequencies
of the three statistics at the 5% nominal significance level in
the case where the DGP is a linear model that changes into a
STAR model [DGP (d)], with the change centered at the mid-
dle of the sample (¢, = .50).

The power of the LMy grap and LMy g tests is seen to
increase as the difference between ¢, and ¢, and the restricted
parameters ¢, and ¢, (which are fixed at .5) becomes larger.
In contrast, the power of the LMy, statistic increases when
the difference between ¢, and ¢, (the AR parameters in the
STAR model after the change) becomes larger. Comparing
these results with the findings for the same DGP but with
¢, =.25 and ¢, = .75 shows that the power of the LMy s1ar
and LMy ,n statistics is highest when the change from the
AR to the STAR model is centered at the middle of the sam-
ple, whereas the power of the LMg,p slatistic is highest when
this change occurs earlier in the sample.

The rejection frequencies for the various tests in the case
where the DGP is a STAR model with a smoothly changing
AR parameter in the regime corresponding to G(y,_,) =1

LMya

LMy s7ar LMgraq
@, o 010 050 100 010 .060 100 010 050 100
0 009 042 089 009 .046 095 .009 043 088
g .008 041 087 008 .044 080 .010 .040 .085
3 .008 039 .085 007 042 .086 .009 .040 085
9 007 039 .086 006 040 079 009 041 .082
B ) 006 035 078 004 031 067 007 .040 .084
9 010 084 003 018 045 013 055 100

041

MNOTE: Empirical size of the LM-type test statistics that are involved in the specilic-lo-general-to-specific procedure for specification of
TV-STAR models, as described in Seclion 3.3. Series are generated according to an AR{1) model with autoregressive parameter ¢;. The

lable s based on 10,000 replications.
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Figure 1. Hejection Fraquencias of the Appropriate Null Hypotheses by the Various LM-Type Tests that Are Part of the Specific-to-General-to-
Specific Procedure Outlined in Section 3.3. Resuilts are shown for F variants of the tests at the 5% nominal significance level. Artificial series are
generated according to DGP (d) (left column) or DGP (e) (right column) with ¢, = .50, as described in Saction 4.1. The graphs are based on

10,000 replications. (a) DGP (d), LMyy.stag: (b) DGP (&), LMyy.srag; (€) DGP (d), LMgrq; (d) DGP (8), LMgpan: (6) DGP (d), LMy () DGP

f‘E'): LMW'M'

only [DGP (e)] are shown in the right column of Figure 1.
Again, we present results only for ¢, = .50. The power of the
LMy spag Statistic is seen to be an increasing function of the
absolute differences between the AR parameters in the two
STAR regimes before and after the change, that is, |¢, — ¢, |
and |@, — ¢;|. Changing the parameter ¢, to .25 or .75 affects
the power of this statistic in obvious ways. For example, if
the change occurs early in the sample, then the difference
¢4 — @1| is much more important than the difference ¢, — ¢, |.
This holds even more so for the power of the LM, statistic.
In the case where ¢, = .25, the power of this test is determined
almost entirely by the value of ¢, (relative to ¢,), whereas the

value of ¢, hardly seems to matter. The power of the LM .
statistic increases as the absolute difference between ¢, and
@, increases, which is also as expected.

4.3 Simulating Model Selection Strategies

Next we examine the selection frequencies of the various
models when using the model specification strategies out-
lined in Sections 3.2 and 3.3. Throughout, we use a nom-
inal significance level of 5% to determine the significance
of the (diagnostic) test statistics at the various stages of the
specific-to-general procedure and the LMy gpar, LMsrag, and
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Figure 2. Frequencies of Selecting the Various Models Using the Decision Rules in the Specific-to-General and Specific-to-General-to-Specific
Procedures as Qutlined in Sections 3.2 and 3.3. Artificial series are generated according to a STAR model [DGP (b)] with ¢, = .5 (top row) or a
TV-AR madel [DGP (c)] with ¢, = .50 and &, = .5 (bottom row) as described in Section 4.1. The graphs are based on 10,000 replications. (a) DGP
(b), specific-to-general; (b) DGP (b), specific-to-general-to-specific; (c) DGP (c), specific-to-general; (d) DGP (c), specific-to-general-to-specific.

LMy sp Statistics in the specific-to-general-to-specific proce-
dure. The number of replications for which the decision rule
in the specific-to-general-to-specific procedure does not lead
to a clear-cut model choice is very small, and thus those out-
comes are not reported separately. To save space, in the fol-
lowing we discuss only selected (but representative) results in
detail; a complete set of simulation results is available from
the authors on request.

The tfrequencies of selecting a given model by the specific-
to-general and the specific-to-general-to-specific procedures in
the case where the DGP is a STAR model [DGP (b)] with
¢, = .5 are displayed in the top row of Figure 2. Clearly,
the correct model (STAR) is selected more frequently as the
absolute difference between the AR parameters in the two
regimes, |¢, — ¢,|, increases. The specific-to-general proce-
dure performs slightly better than the specific-to-general-to-
specific procedure, especially for small and moderate values
of the difference |@, — ¢, |.

The trequencies of selecting the different models for series
generated according to a TV-AR model [DGP (¢)] with ¢, =
.50 and ¢, = .5 are given in the bottom row of Figure 2. The
correct model (TV-AR) is chosen more often as the change

in the AR structure of the model, measured by the absolute
difference |¢; — ¢,|, becomes larger. The unreported results
for ¢, = .25 and ¢, = .75 show that both procedures select the
correct AR model less often when the change occurs early or
late in the sample. Again, the true model is selected slightly
more frequently by the specific-to-general procedure than by
the specific-to-general-to-specific procedure.

Finally, Table 2 contains model selection frequencies for
DGP (g). Both procedures tend to select the TV-STAR model
as the differences between the AR parameters in the two
regimes of the STAR models before and after the parame-
ter change are sufficiently large. The specific-to-general-to-
specific procedure selects the true model more frequently than
the specific-lo-general procedure if |@, — ¢, | and |, — @;| are
large, whereas the reverse holds for more subtle nonlinearities
and structural changes.

The results from simulating the remaining DGPs (available
on request) can be roughly summarized as follows. When the
DGP is a TV-STAR model, the specific-to-general-to-specific
strategy yields the best results. When the DGP is a submodel,
either STAR or TV-AR, the specific-to-general strategy yields
the correct model more frequently.
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Table 2. Model Selection Frequencies, DGP (g)

Specific-to-general Specific-to-general-to-specific

b, b, AR STAR TV-AR TV-STAR AR STAR TV-AR TV-STAR

9 -9 290 .001 016 693 0 0 017 883
-9 -5 456 .003 031 .509 0 0 048 952
-9 0 530 019 .053 .399 001 0 113 888
-9 D 189 118 062 631 010 007 119 863

9 9 005 .093 .091 810 0 .003 041 956
-5 -5 398 002 032 569 0 0 135 865
- 0 636 018 062 284 .023 003 284 688
-5 5 S311 178 ki 397 089 037 268 290

D 9 .008 099 155 739 .003 019 A4 833
0 0 679 007 052 261 296 015 .368 307
0 3 .793 049 078 079 568 028 232 158
0 5 610 161 140 .088 613 052 193 A21
0 a 230 239 217 315 391 104 279 167
0 9 017 118 308 557 043 105 378 426
D 5 919 022 033 026 961 009 017 008
2 o 690 057 17 136 858 028 087 017
9 9 105 132 386 377 244 116 386 077
9 9 727 025 112 135 019 .396 144

.398

NOTE: Frequencies of selecting the various models using the decision rules in the specific-to-general and specific-to-general-to-specific
procedures as outlined in Sections 3.2 and 3.3. Series are generated according to DGP (g) with o = .50, as described In Section 4.1. The

table is based on 10,000 replcations.

The general conclusion is, not unexpectedly, that neither of
the two strategies dominates the other. The specific-to-general-
to-specific procedure has the advantage in that no nonlincar
estimation is required at the specification stage. This may also
be regarded as a weakness, because at first sight it could
appear natural to estimate a TV-STAR model if linearity 1s
rejected against it, and thereafier try to reduce it to either sub-
model by specification tests. This alternative is not directly
available, however, due to the aforementioned identification
problems. It would only be possible to estimate either a STAR
or TV-AR model and test its adequacy against TV-STAR. That
step 1s 1n fact a part of the specific-to-general strategy. In prac-
tice, the investigator may well want to test linearity against
STAR, TV-AR, and TV-STAR and use all of the evidence
from these tests in model selection. The relative merits of the
two strategies are discussed further in the next section.

5. NONLINEARITY AND STRUCTURAL INSTABILITY
IN U.S. MACROECONOMIC TIME SERIES

5.1 Testing for Nonlinearity and Structural Instability

As discussed in Section 1, both (business cycle) nonlinear-
ity and structural instability have been found to be important
features of macroeconomic time series. However, most of the
evidence for nonlinearity has been obtained under the assump-
tion of parameter constancy, whereas structural change has
been detected using mainly linear models. In this section we
use the TV-STAR framework to consider the joint presence of
nonlinearity and instability in macroeconomic time series.

We examine the dataset compiled by Stock and Watson
(1999), consisting of 214 monthly U.S. macroeconomic time
series. The series are grouped in the categories that appear
in Tables 3 and 4, with the number of series in each cate-
gory in parentheses. The sample period starts in January 1959
(although some series are not available from the beginning)

and ends in December 1996, a total of 456 observations. The
time series are transformed as was done by Stock and Watson
(1999); that 1s, senes in dollars, real quantities, and price defla-
tors are transformed to logarithms. Many of the time series
are seasonally adjusted. A detailed description of the dataset
appears in the appendix of Stock and Watson (1999).

Stock and Watson (1999) assessed the importance of non-
linearity for these time series by investigating whether STAR
models and artificial neural networks produce forecasts that
improve on those from linear models. Stock and Watson
(1996) investigated the presence of structural change in a com-
parable (but smaller) dataset using various tests for parame-
ter constancy. We examine nonlinearity and structural change
simultaneously using the TV-STAR framework. Specifically,
we apply the LM-type tests and associated model selection
rule from the specific-to-general-to-specific procedure.

An issue of ongoing debate about macroeconomic time
series variables is whether they are best characterized as trend
stationary or as difference stationary. We apply the procedure
under both assumptions in models for levels and first differ-
ences of the series. This also allows us to examine the sensi-
tivity of the results regarding the presence of nonlinearity and
structural change in the time series to the assumptions made
about their long-run properties. Under the assumption of trend
stationarity, we first extract a linear deterministic trend from
the data by estimating the regression

v, =a+Bt+u,

and subsequently examine the residuals #, for nonlinearity and
structural change.

The order of the AR model under the null hypothesis is
determined by the Akaike information criterion (AIC), with
the maximum order set equal to p,., = I8. Because remain-
ing residual autocorrelation may be mistaken for nonlinearity,
(see Terdsvirta 1994), we apply the Ljung—Box test to exam-
ine the significance of the first 12 residual autocorrelations in
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Table 3. Model Selection for U.S. Macroeconomic Time Series Using Specific-to-General-to-Specific

Procedure—Trend Stationarity
Group AR STAR TV-AR TV-STAR NLAR
Production (24) 14(19) 3(2) 3(2) 4(1) 0(0)
(Un)Employment (29) 18(22) 5(2) 1(2) 4(1) 1(2)
Wages and salaries (7) 6(6) 0(0) 1(1) 0(0) 0(0)
Construction (21) 17(19) 3(1) 0(0) 1(1) 0(0)
Trade (10) 8(7) 0(2) 1(1) 1(0) 0(0)
Inventories (10) 5(8) 1(0) 4(2) 0(0) 0(0)
Orders (14) 12(14) 2(0) 0(0) 0(0) 0(0)
Money and credit (20) 10(14) 4(1) 1(3) 3(1) 2(1)
Stock returns (11) 10(11) 1(0) 0(0) 0(0) 0(0)
Dividends and volume (3) 1(3) 0(0) 0(0) 2(0) 0(0)
Interest rates (11) 2(7) 7(3) 0(1) 2(0) 0(0)
Exchange rates (6) 5(5) 0(0) 0(0) 1(1) 0(0)
Producer price inflation (16) 11(15) 0(0) 1(0) 3(0) 1(1)
Consumer price inflation (16) 6(15) B(0) 1(1) 0(0) 1(0)
Consumption (5) 1(2) 0(0) 2(2) 2(1) 0(0)
Miscellaneous (11) 3(7) 4(1) 2(3) 2(0) 0(0)
Total (214) 129(174) 38(12) 17(18) 25(8) 5(4)

NOTE: MNumber of time series for which the dilferent models are selected using the decision rule in the specific-to-general-to-specific
procedure outlined in Section 3.3, under the assumption of trend stationarity. The numbers in parentheses relate (o the procedure in case
heteroscedasticity robust versions of the LM-type tests are used. The "NLAR" column contains the number of series for which the outcomes
of the LM tesis in the specilic-lo-general-to-specific procedure are in conflict and cannot be used to select an appropriaie model.

the AR(p) model selected by the AIC. If necessary, the lag
length p is increased until the null hypothesis of no residual
autocorrelation can no longer be rejected at the 5% signifi-
cance level. The final AR order differs from the order selected
by AIC for 70 series under trend stationarity and 37 series
under difference stationarity. Besides residual autocorrelation,
neglected heteroscedasticity may also lead to spurious rejec-
tion of the null hypothesis. We therefore also report results
based on robustified tests as developed by Wooldridge (1991).

As we consider macroeconomic time series, we are inter-
ested mainly in nonlinearity related to the business cycle. The
transition variable in the (TV-)STAR model should therefore
reflect the property that expansion and contraction regimes

are sustained periods of growth and decline. This excludes
monthly changes, because they are too noisy to be reli-
able indicators of the business cycle regime (see Birchen-
hall, Jessen, Osborn and Simpson 1999; Skalin and Terésvirta,
2002). For that reason, under the assumption of difference
stationarity, we use 12-month differences as a transition vari-
able, that is, s, = Apy, s =YV, g= Vg d=1,...,d ..,
with the maximum value of the delay parameter 4, = 6.
Under the assumption of trend stationarity, we consider lagged
deviations from the deterministic trend, u,_,, as a transilion
variable, again with d,,, = 6. In both cases, the value of d
for which the p value of the LMy ¢r\p Statistic is smallest
i1s selected as appropnate. The LMy, and LMy ., statistics

Table 4. Model Selection for U.S. Macroeconomic Time Series Using Specific-to-General-to-Specific
Procedure—Difference Stationarity

Group AR STAR TV-AR TV-STAR NLAR
Production (24) 5(17) 12(2) 2(1) 4(0) 1(4)
(Un)Employment (29) 14(24) 9(1) 2(2) 4(1) 0(1)
Wages and salaries (7) 6(7) 0(0) 0(0) 0(0) 1(0)
Construction (21) 12(14) 8(4) 0(0) 1(1) 0(2)
Trade (10) 6(8) 3(1) 0(1) 1(0) 0(0)
Inventories (10) 6(9) 1(0) 0(0) 1(0) 2(1)
Orders (14) 8(8) 5(4) 0{0) 1(0) 0(2)
Money and credit (20) 12(15) 2(1) 1(0) 4(4) 1(0)
Stock returns (11) 11(10) 0(1) 0(0) 0(0) 0(0)
Dividends and volume (3) 2(3) 0(0) 0(0) 1(0) 0(0)
Interest rates (11) 0(10) 8(0) 0(0) 3(1) 0(0)
Exchange rates (6) 6(6) 0(0) 0(0) 0(0) 0(0)
Producer price inflation (16) 7(15) 3(0) 0(0) 6(0) 0(1)
Consumer price inflation (16) 2(10) 3(3) 2(0) 4(0) 5(3)
Consumption (5) 0(2) 0(0) 0(2) 4(0) 1(1)
Miscellaneous (11) 3(9) 3(0) 0(1) 3(1) 2(0)
Total (214) 100(167) 57(17) 7(7) 37(8) 13(15)

NOTE: Number of U.S. macroeconomic time series for which the diflerent models are selected using the decision rule in the specific-to-
general-to-specilic procedure outlined in Section 3.3, under the assumption of difference stationarity. Tha numbers in parentheses relate
o the procedure in case heteroscedasticity robust versions of the LM-lype lests are used. The "NLAR" column contains the number of
saries for which the outcomes of the LM tests in the specific-to-general-to-specific procedure are In conflict and cannot be used to select

an appropriate model.
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are computed only for this choice of transition variable and
are used to decide on the appropriate model using the model
selection rule, where a nominal 5% significance level is used
throughout. As mentioned in Section 3.3, there is a combina-
tion of test results for which the specific-to-general-to-specific
procedure does not lead to a clear-cut choice of the appro-
prniate model. The series for which this indeterminacy occurs
are recorded separately in Tables 3 and 4 under the heading
“NLAR” (nonlinear AR).

When using standard versions of the LM-type tests, a non-
linear model is selected for 40% of the series under trend
stationarity and 53% of the series under difference station-
arity. For 12% and 17% of the scries a TV-STAR model is
the preferred choice. This suggests that both nonlinearity and
structural change are present in only a small number of these
macroeconomic time series. Most evidence for nonlinearity is
found for series in the production, (un)employment, interest
rates, and producer and consumer price inflation groups. Non-
lincar models appear to be least promising for stock returns
and exchange rates.

Note that a TV-AR model is selected for only very few
series, especially under the difference stationarity assump-
tion. This finding is in apparent disagreement with the results
of Stock and Watson (1996, 1999) indicating that struc-
tural instability is far more important than nonlinearity for
macroeconomic time series. Nevertheless, the argument in
these articles is based on tests for structural change only
(which convincingly reject parameter constancy in linear mod-
els) and point forecasts from STAR models (which do not
improve on point forecasts from linear models). Thus it seems
that the issue is not settled: different methods yield different
results.

The evidence for nonlinearity and structural change is
reduced considerably when robustified versions of the LM
tests are used. A nonlinear model is selected only in
199% of the series under trend stationarity and 22% of the
series under difference stationarity. The change in test out-
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comes is especially apparent for groups such as production,
(un)employment, interest rates, and inflation. This may sug-
gest that heteroscedasticity is an important feature of many
time series in the dataset and should be taken into account.
However, there is also the possibility that robustifying the lin-
earity tests against heteroscedasticity reduces their power. We
leave this question for further research.

5.2 An lllustrated Example: Help-Wanted
Advertising Index

In this section we apply the specific-to-general procedure to
one of the time series in the dataset, the help-wanted adver-
tising index (LHELX). This index is based on counts of the
number of help-wanted advertisements published in the clas-
sified section of newspapers in 51 major American cities (see
Abraham 1987; and Zagorsky 1998). It is constructed as the
ratio of the number of help-wanted ads to the number of unem-
ployed people in the civilian labor force. The help-wanted
advertising index is often used as a proxy for the job-vacancy
rate, an important indicator of labor demand and the business
cycle. This interpretation of the help-wanted index must be
used with caution, however. Abraham (1987) pointed out that
the index has been drifting upward relative to the underly-
ing job vacancy variable. This drift may be due to the shift
in the composition of vacancies (away from blue-collar jobs
toward white-collar jobs, which in general are more heavily
advertised), changes in employer advertising practices (par-
ticularly due to increased equal employment opportunity and
affirmative action pressures), and the decline in the number of
competing newspapers in metropolitan areas. Because of these
changes, one cannot exclude the possibility of parameter non-
constancy in a time serics model for the help-wanted index.

The help-wanted index series is shown in Figure 3. It
appears that the series displays asymmetnc cyclical behav-
ior, characterized by steep declines during business cycle
recessions followed by slow(er) increases during expansions.
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Figure 3. Monthly Help-Wanted Advertisement Index, January 1959-December 1996.
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Table 5. Diagnostic Tests for Estimated Models for the Help-Wanted Index

AR TV-AR TV-STAR
T2 775 744 691
AIC -6.307 -8.316 —B8.377
SIC —6.251 -6.195 —-6.227
SK -.52(4.9x10°% —-.54(2.3 x 1079 —.43(1.4 x107%)
EK 4.00(1.1 x 107%) 3.96(3.0 x 10 &) 4,02(2.2 x 10 ™)
LJB 311(2.6 x 10~%) 306(3.5 x 10°%) 336(1.4 x 10-7)
ARCH(1) 8.94(2.7 x 1079) 10.00(1.6 x 10 9) 11.22(8.1 x 10 4)
ARCH(4) 39.20(8.3 x 107%) 43.81(7.0 x 107%) 24.23(7.2 x 107%)
LMo (4) S 1.27(.28) 1.56(.18) 1.58(.18)
o R 1.06(.38) 1.01(.40) 1.50(.20)
LM...(8) S 1.45(.18) 1.00(.43) 1.04(.40)
i R 93(.49) 96(.47) .99(.44)

NOTE: The table presents diagnostic lests for the estimated AR, TV-AR, and TV-STAR models for the help-wanted index over the sample
period July 1960-December 1996, T denotes the effective sample size (T — 437), rr,? is the residual varlance, SK is skewness, EK is
excess kurtosis, LJB is the Lomnickl-Jarque Bera test of normality of the residuals, ARCH is the LM test of no autoregressive conditional
heteroscedasticity (ARCH), and LMsg(q) denctes (the F variant of) standard (5) and heteroscedasticity-robust (R} versions of the LM test
of no sarial correlation in tha residuals up to and including order . The numbers in parentheses after the values of the test statistics are
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P valuss,

We assume that the help-wanted index series is globally sta-
tionary but possibly nonlinear and locally nonstationary and
consider models for the level of the series with 12-month dif-
ferences as a transition variable. Skalin and Terédsvirta (2002)
showed, in the context of unemployment rates, how this type
of model can generate stationary time series with asymmet-
ric behavior, but such that the series show strong persistence
of shocks and appear nonstationary in the light of standard
unit root tests. To emphasize this feature, we parameterize the
models in terms of first differences, with a lagged level term
included as additional regressor.

We begin modeling the LHELX series by specifying a linear
AR model. The AIC indicates that a model with four lagged
first differences is appropriate, and the Ljung-Box test of no
residual autocorrelation up to lag 12 does not reject the null
hypothesis at the 5% significance level. To save space, the
estimated model 1s not presented here, bul some diagnostic
tests are shown in the second column of Table 5.

The linear model appears to have several shortcomings,
because the residuals suffer from skewness, excess Kurtosis,
and heteroscedasticity. Closer inspection of the residuals
shows that the apparent nonnormality is due almost entirely to
large negative residuals in January 1970 and April 1980 and a
large positive residual in April 1968. We apply both modeling
strategies for TV-STAR models and begin with the appropri-
ate LM-type tests. Table 6 presents results for standard and

heteroscedasticity-robust versions of the test statistics in the
specific-to-general-to-specific procedure. It is seen that the p
values of the LMy orap Statistic are quite small for all choices
of the delay parameter considered here, with the minimum
attained for d = 1. For d =1 and 2, both null hypotheses asso-
ciated with the LMgyp and LM, ., statistics can be rejected
at conventional significance levels, so that a TV-STAR model
would be selected for these values of the delay parameter. Note
that the p values of the robustified test statistics are actually
smaller than the p values of the standard tests here.

The second and third columns of Table 7, labeled “AR."
contain results for the standard and robustified LM-type tests
in step 2 of the specific-to-general procedure. Based on the
standard tests, linearity can be rejected at the 5% significance
level against STAR with 5, = A,,y,_, for d = 1,2 as well
as against TV-AR (s, = 1). The minimum p value is attained
against the latter alternative, whereas the robustified tests only
allow linearity to be rejected against TV-AR.

Based on the combined test results in the two modeling
strategies, we proceed by estimating a TV-AR model. Again,
to save space, we do not present parameter estimates for this
model here, but the third column of Table 5 contains some
summary statistics and results of misspecification tests,

Columns 4 and 5 in Table 7 contain p values for the LM-
type tests against additional nonlinear structure. The TV-AR
model is tested against the TV-STAR alternative (3) with

Table 6. LM Tests in Specific-to-General-to-Specific Procedure for the Help-Wanted Index

s oo

Standard

Robustified

Transition

variable LMy, stan LMgran LMpan M LMy LM,y
AsYi_i 002 013 .006 003 014 001
AiaYe o 006 047 025 009 041 004
AoYis 023 165 044 021 066 007
AaVia 050 328 .040 037 118 013
AaYis 065 405 022 031 082 006
AiaVi_s 059 372 013 045 089 011

NOTE: p values ol LM test statistics in the specific-to-general-to-specific procedure for first differences of the help-wanted index time
series, based on an AR(4) model with lagged level term under tha null hypothesis.
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Table 7. LM (Misspecification) Tests in the Specific-to-General Procedure for the Help-Wanted Index
AR TV-AR TV-STAR
Transition — -
variable Standard Robustified Standard Robustified Standard Robustified
o 040 309 083 130 254 371
Aga¥io 039 299 093 174 363 352
Ay a 107 406 246 263 628 422
Ay 316 519 560 354 455 303
Nitiis 679 766 682 312 381 314
AsYe 848 870 620 259 350 .353
t 017 034 203 .268 536 R ¥4
NOTE: Columns 2 and 3 contain p values of the LM test slalistic in slep 2 of the specific-lo-general procedure for the help-wanted index
time series, based on an AR(4) model for the first differences, which includes a lagged level term, Columns 4 and § conlain p values ol
the LM test for remaining nonlinear structure in an estimated TV-AR model. Columns 8 and 7 contain p values of the LM test for remaining
nonlinear structure in the estimated TV-STAR model (11}={13).
transition variable given by A,y,_,,d=1,..., 6. Some indi- and
cations for additional structure are found, because the p values
for the standard tests with A,y,_, for d = | and 2 are quite G(t) = (1 +exp{—7.07 (+/T —.533)})) ", (13)
small. This corresponds with the test results in the specific- (3.59) (.097)
to-general-to-specific procedure in Table 6, where a TV-STAR 16.07] [.110]

model is the preferred choice for these values of d. Using
diagnostic tests for the estimated TV-AR model based on
higher-order Taylor expansions gives (much) smaller p val-
ues, especially when A,,y,_, is considered as a transition vari-
able (results are not shown here, but are available on request).
Hence we proceed with estimating a TV-STAR model with
this choice of transition variable. After sequentially omit-
ting regressors with smallest absolute values of the ¢ statistic
until all remaining parameter estimates have absolute r values
exceeding 1, we arrive at the model

Ay, =[(.538 Ay, , +.176 Ay, ») x (1 = G(A,,y,_,))

(.120) (.115)
[.212] [.230]
+(.024 —.017y,_, +.135 Ay, ,+.148 Ay, ,
(.011)(.009)  (.094) (.080)
L013] [L013]  [.147) [.119]
+.3914y, 4) x G(A,,y,_)][1 = G(1)]
(.089)
[.143]
+[(.037 - .088y,_, +.459 Ay, 5—.256 Ay,_,)
(.025) (.040)  (.226) (.232)
[.020] [.035] [.182] [.184]

X (I P G(ﬂl'l.v:—EJ}
+(.037 —.033y,_, —.341 Ay,_, +.180 Ay,_,)

(.019) (.021)  (.195) (.147)
[.013] [.015]  [.181] [.122]
x G(ALy,_ )]G +é,. (11)
G(A12y,-)
= (1+exp{—6.04(A,y,_, +-ng4).'"ﬂ'-:.u;, ,})_I~ (12)
(3.46) (.041)
[3.10] [.038]

where ordinary and heteroscedasticity-robust standard errors
are given below the parameter estimates in parentheses and
brackets.

Results of misspecification tests for the TV-STAR model
are given in the rightmost column of Table 5. The two right-
most columns of Table 7 contains p values of LM tests for
additional nonlinearity or structural change. The large p val-
ues suggest that the foregoing TV-STAR model adequately
captures all nonlinearity and instability in the series.

The estimate of the location parameter ¢, is fairly close
to 0, indicating that the regimes where G(A,,y,_,) = 0 and
G(A,v,_,) = | are characterized by positive and negative
changes in the series over the past 12 months. Because
G(A,,v,_;) is a monotonic transformation of A,,y, |, the peri-
ods 1 which it takes values close to 0 (1) roughly correspond
with business cycle recessions (expansions) (see the upper
panel of Fig. 4). The transition between these two regimes is
smooth, as can be seen in Figure 4(b). The structural change is
centered around r/T = .53, corresponding to December 1979.
The change is very smooth and is not entirely completed by
the end of the sample period, as shown in the lower panel of
Figure 4(c).

To gain a better understanding of the dynamic properties
of the estimated TV-STAR model, it is useful to consider the
skeleton of the model, that is, the determinmistic part of (11).
If the extrapolation of the skeleton is started before the struc-
tural change takes place [G(r) = 0] and is carried out with-
out changing the value of G(r), the realizations converge to a
unique and stable equilibrium y; = 1.467. If the extrapolation
is started assuming that G(t) = 1, the realizations converge to
a limit cycle of 113 months, as shown in Figure 5. The cycle
mimics the dynamic properties of the time series during the
latter part of the sample period. The range and periodicity of
the cycle correspond quite closely with those observed in the
empirical time series. It also contains asymmetry, as the parts
of the cycle during which the series increases and decreases
are somewhat different in length (63 and 50 months).
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Figure 5. Limit Cycle in the TV-STAR Madel for the Manthly Help-Wanted Advertisement Index for G(t) = 1.

In applications to physical ime series, limit cycles may
sometimes have a natural interpretation. In this case it is hardly
possible to seriously suggest that the process generating the
help-wanted advertising index contains a deterministic cycle.
The appearance of the limit cycle may tell us two things, how-
ever. First, the persistence of the series has increased over the
years. The mean reversion early in the period has given way
to a persistent cycle. Second, the shape of the limit cycle indi-
cates that asymmetry is clearly a feature of the series.

To further illustrate the dynamic behavior of our TV-STAR
model, we study the persistence of shocks in the model by
generalized impulse response functions (GI), defined by Koop,
Pesaran, and Potter (1996). To see how the dynamic properties
change over time, we do this for the STAR models occurring
before the start of the structural change [G(7) =0 in (13)] and
after the structural change has been completed [G(r) = 1]. To
illustrate that the effect of a shock depends on the history of
the nme series up to the moment that the shock occurs, the
Gl is computed not only for all histories (“unconditional™),
but also separately for those histories for which the value of
the transition function G(A,y,_,) in (12) is greater (“expan-
sion”) and smaller (“recession™) than .5. The computational
details are given in the Appendix. The Gls are displayed using
highest-density regions (see Hyndman 1995, 1996).

Figure 6 shows 50%, 75%, and 90% highest density
regions (HDRs) of the different GIs at horizons equal (o
0,3,6,. .., 60 months. Comparing panels (a) and (b), it is
seen that shocks have a stronger effect before the start of
the structural change than at the end of the structural change.
Before the structural change, the effect of a shock is ampli-
fied up to 12-15 months after arrival of the shock, followed
by a monotonic decline toward 0. After the structural change,
the mmitial effect is much smaller, whereas the contraction of
the density toward 0 is oscillatory. Focusing on panels (c)—(f),
it appears that before the structural change, shocks occurring
during recessions have larger temporary effects than shocks
occurring during expansions. At the horizon of 60 months,
the effects arc of comparable magnitude once again, After the
structural change, the Gl for shocks occurring during reces-

sions is larger than the GI for shocks occurring during expan-
sions only for horizons up to 6 months. At longer horizons,
the reverse holds. The symmetric shape of the HDRs suggests
that there 1s little asymmetry in the effects of positive and
negative shocks, both before and after the structural change.

Finally, we evaluate the gains (rom allowing for nonlinear-
ity and structural change from a forecasting perspective. We
estimate AR, STAR, TV-AR, and TV-STAR models recur-
sively on an expanding window of data, starting with January
1959-December 1984 and extending up until January 1959-
November 1996. All models are estimated in unrestricted
form, that is, with four lagged first differences and a lagged
level term in each of the regimes. For each window, 1-step-
ahead to 12-steps-ahead forecasts for the level of the series are
formed, rendering a total of 144 1-step-ahead forecasts, 143
2-steps-ahead forecasts, and so on up to 133 12-steps-ahead
torecasts. Table 8 contains mean squared prediction errors
(MSPEs) for selected horizons. For forecast horizons up o
6 months, the STAR model achieves the smallest MSPE,
whereas for longer horizons, the TV-STAR maodel has the
best forecasting performance. For example, compared with
the AR model, the MSPE is reduced by 40% for 12-months
ahead forecasts. It is noteworthy that at both short and long
horizons, allowing only for time-varying parameters leads to
more inaccurate forecasts than those obtained from the AR
model. Table 9 presents pairwise model comparisons based
on Diebold-Mariano statistics for equality of MSPEs and for
forecast encompassing, which in general confirm the afore-
mentioned observations. Note that even though the MSPE
reduction at the 12-month horizon achieved by the TV-STAR
model appears substantial, we cannot formally reject the null
hypothesis that the MSPEs of the other models are equal at
conventional significance levels.

6. CONCLUDING REMARKS

In this article we have considered a smooth transition model
(the TV-STAR model) that allows for regime-switching behav-
ior in conjunction with time-varying parameters. We devel-
oped two strategies for model building, specific-to-general
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Figure 6. The 50% (Black), 75% (Hatched), and 90% (White) Highest Density Regions for Generalized Impulse Response Functions in the
Two-Regime STAR Models for the Help-Wanted Index That Are Effective When G(t) in (13) Equals 0 and 1. Recession and expansion relate to
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unconditional; (c) G(t) = 0, recession; (d) G(t) = 1, recession; (e) G(t) =0, expansion; (f) G(t) = 1, expansion.

Table 8. Mean Squared Prediction Errors of Models for the

Help-Wanted Index
Horizon AR STAR TV-AR TV-STAR
1 93 .88 91 90
3 2.15 1.92 2.31 2.23
6 6.42 5.17 7.15 5.48
9 12.01 9.46 13.92 8.50
12 20.12 16.568 22.40 12.11

MNOTE: Mean squared prediction errors of levels forecasts from AR, STAR, TV-AR and TV-
STAR models for the help-wanted index for the period January 1885-December 1996,

and specific-to-general-to-specific. Monte Carlo simulations
showed that the differences in the performance of the two
modeling strategies are not great. Because the LM-type
tests used in the specific-to-general-to-specific procedure only
require estimation of linear models, they can be used to obtain
an impression of the importance of nonlineanty and/or struc-
tural change in a particular time series. We used this to our
advantage when we examined potential nonlinearity and/or
structural instability of numerous U.S. macroeconomic time
series. The specific-to-general procedure is most useful when
it comes to careful specification of a model with nonlinear
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Table 9. Forecast Evaluation of Modals for the Help-Wanted Index

MSPE tests Forecast encompassing tests
Model AR STAR TV-AR TV-STAR AR STAR TV-AR TV-STAR
h=1
AR 078 .29 32 6.1E-3 070 9.2E- 3
STAR 92 A3 60 .60 14 064
TV-AR g1 27 41 34 011 014
TV-STAR .68 40 .59 083 053 049
h=6
AR 1 82 31 056 31 078
STAR .89 95 61 79 37 076
TV-AR 18 047 21 032 7.2E—-4 B.GE -3
TV-STAR .69 .39 79 21 A2 19
h =12
AR 19 .67 18 A2 .25 12
STAR 81 .B5 19 70 22 A1
TV-AR w33 A5 082 12 016 016
TV-STAR .82 81 92 48 .28 40

NOTE: The table presents pairmse model comparisons of the out-of-sample forecasting results for the AR, STAR, TV-AR, and TV-STAR
maodels for the help-wanted index for the penod January 1885- December 1996, The (/, /jth entry in the panels under the heading "MSPE
tests” is the p value of the statistic of Diebold and Mariano (1985) for testing the null hypothesis that model /'s forecast performance at
horizon h as measured by MSPE is equal to that of model /, against the one-sided alternative that the forecast performance of model
J 18 better. The (i, jjth entry in the panels under the heading “Forecast encompassing lesls” is the p value of the Diebold-Manano type
forecasting encompassing statistic of Harvey, Leybourne, and Newbold (1998) for testing the null hypothesis that model i's forecast at

horizon h encompasses model ['s forecast.

and/or time-varying properties. We demonstrated this by the
detailed example involving the help-wanted advertising index.
In short, the TV-STAR model appears to be a practical tool in
investigations that take account of the possibility of simulta-
neous nonlinearity and parameter instability in economic time
series.
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APPENDIX: GENERALIZED IMPULSE RESPONSE
FUNCTIONS AND HIGHEST DENSITY REGIONS

In this appendix we discuss how we obtain generalized
impulse response functions and highest-density regions for the
two-regime STAR models that occur when G(1) in (13) is
equal to 0 and 1.

The GI for a specific shock g, = 8, and specific information
set or “history,” £}, , = is defined as

i=1*

Giﬁ_‘l'{”' S' mr 1) — E[ﬁy:+u|ﬁr — 5, ﬂq‘ml == ‘mI-I]

— E[Ay, | =w,_,]. (A.l)
To obtain relevant histories w, ;, we generate 250 series of
2,500 observations from the two-regime STAR models that
are effective when G(¢) in (13) is equal to 0 and 1 by
sampling with replacement from the residuals of the esti-
mated TV-STAR model. We use the final values of each
series as histories in the impulse response analysis. We con-
sider values of the normalized initial shock equal to §/0, =
+3,+£2.8,...,%.2,0, where 7, denotes the estimated stan-
dard deviation of the residuals from the TV-STAR model. For
each combination of history and initial shock, we compute
Gl,,(n,d,w, ) for horizons n=0,1,...,N with N = 60.
The conditional expectations in (A.l1) are estimated as the
means over 1,000 realizations of Ay,,,. obtained by iterating
on the STAR model, with and without using the selected initial
shock to obtain Ay,, and using randomly sampled residuals of
the estimated TV-STAR model elsewhere. Impulse responses
for the level of the help-wanted index are obtained by accu-
mulating the impulse responses for the first differences, that
is, GL,(n, 8, w,_)) =23._,Gl,,(i, 8, »,_,).

The Gls for specific histories and shocks are used to esli-
mate the density of G/ (n, &, B), where B denotes a set of
selected histories. The set B is taken to be either all histo-
ries (“unconditional”) or those histories for which the tran-
sition function G(A,y, ) in (12) is larger (“recession™) or
smaller (“expansion”) than .5. The densities are obtained with
a standard Nadaraya—Watson kernel estimator, using ¢&(6/c,)
as weight for GI,(n,0, w,_,), where ¢(z) denotes the stan-
dard normal probability distribution. This weighting scheme
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is used because the standardized shocks &/¢, then are effec-
tively sampled from a discretized normal distribution, and the
resulting distribution of GI (n, &,,,_,) should resemble a
normal distribution if the effect of shocks is symmetric and
proportional to their magnitude (as is the case in linear mod-
els). Finally, highest-density regions are then estimated using
the density quantile method outlined by Hyndman (1996).

[Received April 2000). Revised December 2001.]

REFERENCES

Abraham, K. G. (1987), “Help-Wanled Advertising, Job Vacancies, and
Unemployment” (with discussion), Brookings Papers on Economic Activity,
18, 207-248K.

Andrews, D, W. K. (1993), “Tests for Parameter Instability and Structural
Change With Unknown Change Point,” Econometrica, 61, 821-856.

Andrews, D. W, K., and Ploberger, W. (1994 ), “Optimal Tests When a Nu-
sance Parameter Is Present Only Under The Alternative,” Economertrica,
62, 1383-1414.

Beaudry, P, and Koop. G. (1993), “Do Recessions Permanently Change Out-
put?,” Journal of Monetary Economics, 31, 149-163.

Birchenhall, C., Jessen, H., Osborn, D. R., and Simpson, P. (1999), “Predicting
L1.S. Business Cycle Regimes,” Journal of Business & Economic Statistics,
17, 313-323.

Cooper, S. J. (1998), “Multiple Regimes in U.S. Output Fluctuations,” Journal
of Business & Ecomomic Sraristics, 16, 92-100,

Davies, R. B. (1977), “Hypothesis Testing When a Nuisance Parameter Is
Present Only Under the Alternative, Biometrika, 64, 247-254,

(1987), “Hypothesis Testing When a Nuisance Parumeter Is Present
Only Under the Alternative,” Biomertrika, 74, 3343,

Diebold, F. X., and Mariano, R. 8. (1995), “Comparing Predictive Accuracy,”
Journal of Business & Economic Statistics, 13, 253-263.

Diebold, F. X., and Rudebusch, G. D. (1992), “Have Postwar Eco-
nomic Flucmations Been Stabilized?,” American Economic Review, 82,
093-1004.

Eitrheim, @., and Terisvirta, T. (1996), “Testing the Adequacy of Smonth
Transition Autoregressive Models," Journal of Econometrics, 74, 39-76.
Granger, C. W. 1. (1993), “Strategies for Modelling Nonlinear Time-Series

Relationships,” The Economic Record, 69, 233-238,

Hansen, B, E. (1996), “Inference When a Nuisance Parameter Is not Identified
Under the Null Hypothesis," Econometrica. 64, 413-430.

Harvey, D., Leybourne, 5., and Newbold, P. (1998), “Test for Forecast Encom-
passing,” Journal of Business & Economic Statistics, 16, 254-259.

Hyndman, R. J. (1995), “Highest-Density Forecast Regions for Nonlinear and
Nonnormal Time Series,” Journal of Forecasting, 14, 431-441.

(1996), “Computing and Graphing Highest-Density Regions,” The
American Statistician, 50, 120~126.

Kim, C.-J., and Nelson, C. R. (1999), “Has the U.S. Economy Become More
Stable”? A Bayesiun Approach Based on a Markov-Switching Model of the
Business Cycle,” Review of Economics and Statistics, 81, 608-616.

Koop, G., Pesaran, M. H., and Potter, 5. M. (1996), “Impulse Response
Analysis in Nonlinear Multivariate Models,” Journal of Econometrics, 74,
119-147,

Leybourne, S., Newbold, P, and VYougas, D. (1998), “Unit Roots and Smooth
Transitions,” Journal of Time Series Analvsis, 19, 83-97.

Lin, C.-F. 1., and Teriisvirta, T. (1994), “Testing the Constancy of Regression
Parameters Against Continuous Structural Change.” Journal of Economet-
rics, 62, 211-228,

Luginbuhl, R., and De Vos, A. (1999), “Bayesian Analysis of an Unobserved-
Component Time Series Model of GDP With Markov-Switching and Time-
Varying Growths,” Journal of Business & Economic Statistics, 17, 456-
463.

Litkepohl, H., Terdsvirta, T., and Wolters, J. (1998), “Investigating the Sta-
hility and Linearity of a German M1 Money Demand Function,” Review af
Economicys and Statisties, 80, 399-409.

Luukkonen, R., Saikkonen, P., and Teriisvirta, T. (1988), “Testing Linenr-
ity Against Smooth Transition Autoregressive Models,” Biomerrika, 73,
491499,

Parker, R. E., and Rothman, P. (1996), *Further Evidence on the Stahilization of
Postwar Economic Fluctucations,” Journal of Macroeconomics, 18, 289-298.

Pesaran, M. H., and Potter, 5. M. (1997), A Floor and Ceiling Model of U.5.
Output,” Journal of Economic Dynamics and Control, 21, 661695,

Poiter, S. M. (1995), “A Nonlinear Approach to U.S. GNP,” Journal of Applied
Econometrics, 10, 109-125.

Sichel, D. E. (1993), “Business Cycles Asymmetry: A Deeper Look,” Eco-
nomic Inguiry, 31, 224-236.

Skalin, J. (1998), “Testing Linearity Against Smooth Transition Autoregres-
sion Using a Parametric Bootstrap,” SSE/EFI Working Paper Series in Eco-
nomics and Finance No. 276, Stockholm School of Economies.,

Skalin, J., and Terdsvirta, T, (2002), “Modeling Asymmetrics and Mov-
ing Equilibria in Unemployment Rates,” Macroeconomic Dynamics, 6,
202-241].

Stock, J. H., and Watson, M. W, (1996), “Evidence on Structural Instability in
Macroeconomic Time Series Relations,” Journal of Business & Economic
Statistics, 14, 11-30.

(1999), “A Comparison of Linear and Nonlinear Univaniate Models
for Forecasting Macroeconomic Time Senes,” in Cointegration, Causalify,
and Forecasting: A Festschrift in Honour of Clive W, J. Granger, eds.
R. F. Engle and H. White, Oxford, UK: Oxford University Press, pp. 1-44.

Terisvirty, T. (1994), “Specification, Estimation, and Evaluation of . Smooth
Transition Autoregressive Models,” Jowrnal of the American Statistical
Associarion, 89, 208-218.

(1998), “Modeling Economic Relationships with Smooth Transition
Regressions,” in Handbook of Applied Ecenomic Statistics, eds. A. Ullah
and D. E. A. Giles, New York: Marcel Dekker, pp. 507-552.

Terdsvirta, T., and Anderson, H. M. (1992), “Characterizing Nonlinearities in
Business Cycles Using Smooth Transition Autoregressive Models,” Journal
of Applied Econometrics, 7, S119-8136.

Tiao, G. C., and Tsay, R. S. (1994), “Some Advances in Non-Linear and
Adaptive Modelling in Time-Series” (with discussion), Journal of Fore-
casting, 13, 109-140.

Van Dijk, D., and Franses, P. H. (1999), *Modeling Multiple Regimes in the
Business Cycle,” Macroeconomic Dynamics, 3, 311-340.

Watson, M. W. (1994), “Business Cycle Durations and Postwar Stabilization
of the U.S. Economy,” American Economic Review, 84, 24-46.

Wolters, J., Teriisvirta, T, and Liitkepohl, H. (1999), *Modelling the Demand
for M3 in the Unified Germany,” Journal of Applied Econometrics, 14,
511-525.

Wooldridge, J. M. (1991), “On the Application of Robust, Regression-Based
Diagnostics to Models of Conditional Means and Conditional Variances,”
Journal of Econometrics, 47, 5-40,

(1994), “Estimation and Inference for Dependent Processes,” in Hand-
book of Econometrics, vol. IV, eds. R. F. Engle and D, L. McFadden, Ams-
terdam: Elsevier Science, pp. 2639-2738.

Zagorsky, J. L. (1998), “Job Vacancies in the United States: 1923 to 1994,
Review of Economics and Statistics, 80, 338-345,




