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Over recent years, several nonlinear time series models have been proposed in the lit-
erature. One model that has found a large number of successful applications is the threshold
autoregressive model (TAR). The TAR model is a piecewise linear process whose central
idea is to change the parameters of a linear autoregressive model according to the value
ol an observable variable, called the threshold variable. 1f this variable is a lagged value
of the time series, the model is called a self-exciting threshold autoregressive (SETAR)
model. In this article, we propose a heuristic to estimate a more general SETAR model,
where the thresholds are multivariate, We formulate the task of finding multivariate thresh-
olds as & combinatorial optimization problem. We develop an algorithm based on a greedy
randomized adaptive search procedure (GRASP) to solve the problem. GRASP is an itera-
tive randomized sumpling technique that has been shown to quickly produce good quality
solutions for a wide variety of optimization problems. The proposed model performs well
on both simulated and real data.

Key Words: Combinatorial optimization; GRASP; Nonlinear time series analysis: Piece-
wise linear models: Search heuristic.

1. INTRODUCTION AND PROBLEM DESCRIPTION

The most frequently used approaches to time series model building assume that the
data under study are generated from a linear Gaussian stochastic process (Box, Jenkins, and
Reinsel 1994). One of the reasons for this popularity is that linear Gaussian models provide a
number of appealing properties. such as physical interpretations, frequency domain analysis,
asymptotic results, statistical inference, and many others that nonlinear models still fail
to produce consistently. Despite those advantages. it is well known that real-life systems
are usually nonlinear, and certain features. such as limit-cycles. asymmetry, amplitude-
dependent frequency responses, jump phenomena, and chaos cannot be correctly captured
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by linear statistical models.

Over recent years, several nonlinear time series models have been proposed both in
classical econometrics (Tong 1990); Granger and Terédsvirta 1993; van Dijk, Teriisvirta, and
Franses 2000) and in machine learning theory (Zhang, Patuwo, and Hu 1998; Kuan and
White 1994; Leisch, Trapletti. and Hornik 1999). One model that has found a large number
ol successful applications is the threshold autoregressive model (TAR), proposed by Tong
(1978) and Tong and Lim (1980). The TAR model 15 a precewise linear process whose
central idea is to change the parameters of a linear autoregressive model according to the
value of a single observable variable, called the threshold variable. 1f this variable is a
lagged value of the time series, the model s called a self-exciting threshold autoregressive
(SETAR) model.

In this article, we propose a heuristic to estimate SETAR models with thresholds defined
by more than one variable. This is a generalization of the procedures described by Tong
and Lim (1980) and Tsay (1989), where the switching mechanism is controlled by a single
threshold vanable.

Multivariate thresholds are useful in describing complex nonlinear behavior and allow
for different sources of nonlinearity. Several papers concerning multiple threshold vari-
ables have appeared in the literature duning the past years. However. they assumed that
the threshold was controlled by known hnear combination of individual variables. See, tor
example, Tiao and Tsay (1994) where the thresholds are controlled by two lagged values
of a transformed U.S. GNP series reflecting the situation of the economy. In the present
framework, we adopt a less restrictive formulation, assuming that the linear combination
ol variables 15 unknown and s jointly estmated with the other parameters of the model.
An alternative approach is the adaptive spline autoregressive (ASTAR) model proposed
by Lewis and Stevens (1991), which 1s based on multivariate adaptive regression splines
(MARS) of Friedman (1991).

We formulated the task of finding multivariate thresholds as a combinatorial optimiza-
tion problem. Combinatorial optimization is a field of applied mathematics that treats a
special type of mathematical optimization problem where the set of feasible solutions is
finite. We developed an algorithm based on a greedy randomized adaptive search procedure
(GRASP). proposed by Feo and Resende (1989) (see also Feo and Resende (1995) and
Resende (1999)). to solve the problem.

The article 1s orgamized as follows. Section 2 gives a general description of threshold
models. Section 3 presents the proposed procedure. Section 4 deals with the specification of
the model. Section 35 briefly describes the GRASP methodology and presents its application
to our particular problem. Section 6 presents some numerical examples illustrating the
performance of the proposed model. Section 7 shows an application with a real dataset.
Concluding remarks are made in Section 8.

2. THRESHOLD AUTOREGRESSIVE MODELS

The threshold autoregressive (TAR) model was first proposed by Tong (1978) and was
further developed by Tong and Lim (1980) and Tong (1983). The main idea of the TAR
model is to describe a given stochastic process by a piecewise linear autoregressive model,
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where the determination of whether each of the models is active or not depends on the value
of a known variable.
A time series y; is a threshold process if it follows the model
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where =, ~ NID(0. 7). The terms ry.. . .. (hyy and Ag;. . ... Az © = L, I, are real
coethcients. /,(-) is an indicator function. defined by
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where {r..... it s a linearly ordered subset of the real numbers, such that — ~ < "<
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2 < - <Dy < e, Usually, the variance of the error term is allowed to change according
to the regime.
The model can be rewritten in vector notation as
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Model (2.3) is composed of | = ) + | linear autoregressive models of order p. AR(p),
cach of which will be active or not depending on the value of ¢;.

The choice of the threshold variable ¢1. which determines the dynamics of the process,
allows a number of possible situations. An important case is when iy 18 replaced by y,

—f
where the model becomes the self exciting threshold autoregressive model
¥
! r ;
W= oz E Azl (yt—u) + &4 (2.4)

p=1

denoted by the acronym SETAR(/). The scalar  is known as the delay parameter or the
length of the threshold.

Due to the discontinuity at each threshold., the derivative based optimization techniques
cannot be applied to estimate the parameters of model (2.4). However. once the locations
of the thresholds are determined. the least squares algorithm can be used to estimate each
of the [ linear models. Tong and Lim (1980) proposed a grid search based on Akaike's
information criterion (Akaike 1974) to specify the model and to estimate the parameters,
Tsay (1989) proposed a simple model building procedure based on the residuals of an
arranged autoregression. He suggested a simple statistic (o test for the threshold nonlinearity
and to specity the threshold variable. He also proposed graphical techmiques 1o identify the
number and the candidate locations of the thresholds. Both methodologies consider only
thresholds controlled by a single lagged observation of the time series.
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2

Figtire |. Hyperplane defined by w'x = 3 in =,

3. THE MULTIVARIATE THRESHOLD
AUTOREGRESSIVE MODEL

3.1 Mobpgl PRESENTATION

As stated in Section 2, the dynamics of a SETAR model are controlled by a partition
ol the real line ¥ induced by the parameters r;, 1 = 1...., fi. In a more general situation,
however, 1t will be interesting to consider a partition of a y-dimensional space, say Y.
This article proposes a procedure 1o estimate SETAR models with evolution controlled by
a partitton of a multidimensional space induced by /i separating hyperplanes.

Consider a ¢-dimensional Euclidean space and a point x in that space. A hyperplane
is defined by

H = {x € Rw'x = #}. (3.1)

where w is a g-dimensional parameter vector and /7 is a scalar parameter. Figure | shows
an example in [£=, The direction of w determines the orientation of the hyperplane and the
scalar term ;7 determines the position of the hyperplane in terms of its distance from the
origin,

A hyperplane induces a partition of the space into two regions defined by the halfspaces

H* = {x € R!

w'x > |1}, (3.2)
and

H™ = {x € B'lw'x < i1}, (3.3)
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With /i hyperplanes, a ¢-dimensional space will be split into several polyhedral regions.
Each region is defined by the nonempty intersection of the halfspaces (3.2) and (3.3) of
each hyperplane.

For a given hyperplane, defined by w and 3, denote by I, 5(x) an indicator function

I, if wx> /3 |
; = ' T 3.4
o, 3(x) { (). otherwise. (34)

The main idea of the proposed procedure is to use (3.4) to create a multidimensional
threshold structure. Suppose that a g-dimensional space is spanned by ¢ lagged values of

a given stochastic process y;, say x, = [y (..... Yt ql. and suppose we have /i functions
Ly, g (xp)ot=1...., h. each of which defines a threshold. Now consider
h
r s
i = & By} E AiZily, 3. (%) + £ (3.5)

=]

Equation (3.5) represents a SETAR model with multivariate thresholds, hereafter de-
noted by the acronym SEMTAR(h)—self-exciting multivariate threshold autoregressive.
The maximum number of polyhedral regions M (. ¢) created by the hyperplanes is defined
by the following recursive formula

M(h,g)=M{h—1.q)+ M(h—-1,9—1), (3.6)

where M(1.q) = 2and M (h. 1) = h + 1 are the boundary conditions.

Although a model with a large number of hyperplanes is difficult to interpret, in most
practical situations we expect to have only a small number of separating hyperplanes.

Note that model (3.5) is, in principle, neither globally nor locally identified. There
arc two characteristics of the model which cause the nonidentifiability: the first is due
to symmetries in the model architecture. The likelihood function of the model will be
unchanged 1if we permute the indicator functions, resulting in /! possibilities for each
coefficient of the model. The second characteristic is the relationship T, 4 (x;) = | —
I_w,,~3,(%¢). The third characteristic is the mutual dependence of the parameters A, and
e Bi=dy 505 h. If all the elements of A, equal zero, the corresponding w; can assume any
value without affecting the value of the likelihood function. On the other hand., if w, = 0,
then A; can take any value.

The first problem is solved by imposing the restrictions 4y < --- < 3,. The second
problem can be circumvented. for example, by imposing the restriction w;, = 1. i —
h. To remedy the third problem, it is necessary to ensure that the model contains no

irrelevant hyperplanes. This is solved with the techniques described in Section 4.3.

3.2  ESTIMATION OF THE PARAMETERS

Rewrite model (3.5) as

y = Z6 + &, (3.7)
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Once the parameters w; and /7, have been determined, the parameter vector & can be
estimated by

; -

0= (Z2'2) Zy. (3.8)
The covariance matrix of # conditional on w.and 3..i=1,..., /1. can be estimated as

- o . _ |

=4 (Z'Z) (3.9)

where &~ is the estimated variance of the residuals. We can thus use (3.9) to test restrictions
in the autoregressive parameters such as equality of models in different regimes.

The problem now is to estimate parameters w; and ;. ¢ = 1.....h. As stated earlier
in this section, these parameters define a hyperplane in a g-dimensional space. If we have
N observations of x;. we must consider hyperplanes that separate the observed points. Of
course, these hyperplanes are not unique. All that matters is how the points are partitioned.
In that sense. we only need to consider the hyperplanes defined by combinations of these
points. Consider y the set of observations of x,, then the set of possible hyperplanes is
defined by

T = {(w;, ;) |wrexp = G i = 1,004, h.xy € x}. (3.10)

Hence, if we have N points, there are N!/(n!' (N — n)!) possible hyperplanes to search.
One way would be to search all the possible combinations of hyperplanes and choose
the combination that munimizes the sum of squared errors. Of course, for most practical
problems this is infeasible. In Section 5 we propose a procedure based on GRASP that,
given X;. is able to choose the set of /i hyperplanes with small cost. In the next section, we
discuss the specification of x; and the selection of /i.

4. MODEL SPECIFICATION

In this section, a specific-to-general specification strategy is developed. From Equation
(3.5) two specification problems require special care. The first is variable selection; that 1s,
the correct selection of elements of z; and x;. The problem of selecting the right subset of
variables is very important because selecting a too small subset leads to misspecification,
whereas choosing too many variables aggravates the “curse of dimensionality.” The second
problem is the selection of the correct number of separating hyperplanes. The specihcation
procedure as a whole may be viewed as a sequence consisting of the following three steps:
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. Specifying a linear autoregressive model.
. Testing linearity and selecting the elements of x,.
3. Determining the number of hyperplanes.

12

4.1 SPECIFICATION OF THE AUTORFGRESSION

The elements of z, are determined with the use of an information criterion such
as the AIC (Akaike 1974) or the SBIC (Schwarz 1978). Given a candidate set of lags,
=11, ... pmax }. we have 1o estimate several linear models and select the variables that
minimize the information criteria. If we test each possible combination of lags, we would
need to estimate "™ Py !/ (11 (s — 411 linear models. If g, is very large. it is not
reasonable 1o test every possible combination. In that case, the practitioner may only esti-
MAle pyyy autoregressive models ranging from an AR(1) to an AR(pa ) model. However,
In most practical situations we expect a low value Tor py.,.

The main drawback of this approach is that when the true data generating process is
nonlinear. the algorithm tends to select more lags than necessary. Nevertheless. this does
not pose any problem because after estimating the parameters of the nonlinear model. we
can test the null hypothesis that an autoregressive parameter is zero.

4.2  TESTING LINEARITY AND SPECIFYING THE THRESHOLD VARIABLES

In practical nonlinear time series modeling, testing linearity plavs an important role.
[n the context of model (3.5). testing linearity has two objectives. The first is to verify if a
hnear model is able 10 adequately describe the data generating process. If this is true. it is
not necessary to fit a nonlinear model, The second is to determine the elements of x; .

The linearity test used in this paper is the F-test, proposed by Tsay (1989), based on
the recursive least squares estimates of the parameters of an arranged autoregression.

Suppose we have the AR(p) model for 1,. We refer to |-_-'h‘ Lo iy i A _F_? as a case
of data. An arranged autoregression is an autoregression with the cases reordered. based
on the values of a particular variable. In the framework of the SETAR model. arranged
dautaregression becomes useful if we reorder the cases according to the threshold variable
tt - Tsay (1989) proposed running the linearity for different values of ¢, and choosing the
one that mmmimize the p value of the test,

In the present framework it is, in principle. impossible to reorder the autoregression
because we do not know the linear combination of threshold variables. To circumvent this
problem. we adopt the following heuristic. Set x; equal to each possible subset of the
clements of z,. reorder the autoregression according to the first principal component ot x,
and run the linearity test. Then, select the threshold variables that minimize the p value of
the test. Of course, the model builder can also use the other principal components to reorder
the autoregression,
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4.3 DETERMINING THE NUMBER OF HYPERPLANES

In real applications, the number of separating hyperplanes is not known and should be
estimated from the data, One possible solution is to start estimating a model with only one
hyperplane, and then continue adding one hyperplane at a time to the model until the value
of the SBIC (or the AIC) of the fitted model is not further improved. The SBIC and the AIC
are dehned as

3 8
SBIC(h) = In(a”) + )

:-c|h}{_;':+q+l,'|+p]. (4.1)

|h : [_;r—-—r,r—l—]}—l—pl
T :

where @7 is the estimated residual variance. This means that 1o choose a model with /i

AIC( i) ]n[ﬁ'z_} + 2 (4.2)

separating hyperplanes, we need to estimate /i + 1 models.

5. A GRASP FOR PIECEWISE LINEAR MODELS

A GRASP (Feoand Resende 1989, Feo and Resende 1995:; Resende 1999) 18 a multistart
iterative randomized sampling technique. with each GRASP iteration consisting of two
phases, a construction phase and a local search phase. The best overall solution is kept as
the result,

The construction phase of GRASP is essentially a randomized greedy algorithm, where
a feasible solution is iteratively constructed, one element at a time. At cach construction
iteration, the choice of the next element to be added to the solution is determined by ordering
all candidate elements in a candidate list with respect 10 a greedy function. This function
measures the (myopic) benefit of selecting each element. The heuristic is adaptive because
the benefits associated with every element are updated at cach iteration of the construction
phase to reflect the changes brought on by the selection of the previous element. The
probabilistic component of a GRASP is characterized by randomly choosing one of the
best candidates in the hist. but not necessarily the top candidate. The list of best candidates
1s called the restricted candidare list (RCL). This choice technique allows for different
solutions to be obtained at each GRASP iteration, but does not necessarily compromise the
power of the adaptive greedy component of the method.

As 1s the case for many deterministic methods, the solutions generated by a1 GRASP
construction are not guaranteed to be locally optimal with respect to simple neighbor-
hood definitions. Hence, it is almost always beneficial to apply a local search o attempt
o improve each constructed solution. Normally, a local optimization procedure, such as a
lwo-exchange, is employed. Although such procedures can require exponential time from
an arbitrary starting point, empirically their efficiency significantly improves as the initial
solution improves. Through the use of customized data structures and careful implementa-
tion, an efficient construction phase can be created which produces good initial solutions for
etheient local search. The result is that often many GRASP solutions are generated in the
same amount of time required for the local optimization procedure to converge from a sin-
gle random start. Furthermore, the best of these GRASP solutions is generally significantly
better than the solution obtained by a local search from a random starting point.
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procedure grasp( )

1 dok=1, - .., Maxlter —

2 ConstructGreedyRandomizedSolution( );
3 LocalSearch( );

4 UpdateSolution( );

5 end do;

6 return(BestSolutionFound);

end grasp;

Figure 2. Generic GRASP

Figure 2 illustrates a generic GRASP in pseudo-code. The GRASP takes as input
parameters for setting the maximum number of GRASP iterations and the seed for the
random number generator. The GRASP iterations are carried out in lines 1-5. Each GRASP
iteration consists of the construction phase (line 2), the local search phase (line 3) and, if
necessary, the incumbent solution update (line 4).

In the framework of the piecewise linear time series modeling problem. we built a
GRASP 1o estimate the separating hyperplanes of model (3.3), The greedy function proposed
orders the possible hyperplanes with respect to the mean squared error (MSE) of the fitted
model. As the number of hyperplanes is not known in advance, we build an outer loop where
at each iteration we increase the number of hyperplanes by a unit. We stop when the SBIC
(or the AIC) of the model is not further improved. The estimation is carried out in a static
way, where we keep the estimates of the previous hyperplanes fixed and estimate only the
last one. This is done to speed up the estimation process and does not have an adverse effect
on the quality of the solution. Figure 3 shows the main loop in pseudo-code.

Because the number of possible hyperplanes can grow very fast as a function of the
number of observed points, before we start the outer loop we randomly select a subset of
the cases and then generate the set of all possible hyperplanes, denoted by (.

Figure 4 illustrates the GRASP procedure applied to the SEMTAR model.

We next describe each one of the components in detail,

procedure main( )

1 BestSolutionFound=0LS:
2 h=20;

3 RandomSelectCases( );

4 while SBIC is improved —
5 h=h+1;

6 Gplts( );

7 UpdateSolution( );

R ComputeSBIC( );

9 end do;

10 return(BestSolutionFound);
end gptls;

Figure 3. Main loop procedure.
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procedure gplts()

1 dok=1, - .-, Maxlter —

2 ConstructGreedyRandomizedSolution( );
3 RotationLocalSearch( );

4 TranslationLocalSearch( );

5 UpdateSolution( );

6  enddo;

y, return(BestSolutionFound);

end gplts;

Figure 4. GRASP procedure

5.1 CONSTRUCTION PHASE

In the construction phase each possible hyperplane is ordered according to the mean
squared error (MSE) of the fitted model. To capture the adaptive component, at each time a
hyperplane 1s chosen. the remaining hyperplanes are reordered to reflect the benefits of the
selection of the previous ones.

The random component of this GRASP sequentially selects, at random. the hyper-
planes from the restricted candidate list (RCL) until the maximum number of hyperplanes
iIs reached. In the case of static estimation, this means that only one hyperplane has to
be chosen at each iteration. Otherwise, the construction phase selects h hyperplanes. Let
o € 0. 1] be a given parameter and MSE(H) the cost of selecting a given hyperplane from
the set of all possible alternatives (', then the RCL is defined as

RCL={He C|MSE(H) <H + o(H — H)}, (5.1)

where H = min{MSE(H) | H € ('} and H max{MSE(H) | H € C'}.

[n this implementation at each GRASP iteration the parameter o is randomly chosen
from a uniform distribution between 0 and 1. Figures 5 and 6 illustrate the construction
phase of the GRASP for both static and full estimation. In the case of static estimation,
the construction procedure receives as parameters the previous chosen hyperplanes that
compose the solution s, the RCL parameter o and the subset (" of candidate hyperplanes.
Otherwise. only v and the subset €' of candidate hyperplanes are passed to the construction

procedure.,

procedure ConstructGreedyRandomizedSolution()
I H= max{MSE(H) | H € C};

2 H=min{MSE(H) |He C};

3 RCL={HeC|MSEH) <H + a(H - H)};

4 SelectHyperAtRandom(RCL);

5 s=sU{H}:

6 AdaptCost( );

end ConstructGreedyRandomizedSolution;

Figure 5. Construction phase—stalic estimdation,
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procedure ConstructGreedyRandomizedSolut ion()
s =0;
dok =1, --- |, MaxHyperSolution —
H = max{SSE(H) | H € C};
H = min{SSE(H) | H € C};
RCL = {H e C | SSE(H) < H + o(H - H));
SelectHyperAtRandom(RCL);
s = s U{H};
AdaptCost( );
end do;
end ConstructGreedyRandomizedSolution:

Figure 6. Construcrion phase—full estimation,

5.2 LocCAL SEARCH

Fora given problem, a local search algorithm works in a iterative fashion by successively
replacing the current solution by a better solution in the neighborhood of the current solution
with respect to some cost function. It terminates when there is no better solution in the
neighborhood. Figure 7 shows the pseudo-code of a general local search.

The local search implemented in this GRASP is a two-exchange local search, where
a hyperplane that is in the solution set is replaced by another hyperplane that is not in
the solution set. The local search is divided into two main blocks. The first rotates each
hyperplane in the solution set. The rotation is carried out by substituting a point that generate
the hyperplane by another point from the sample. Figure 8 illustrates the procedure in R,
The mmtial hyperplane (bold line) is defined by two points (white circles). The rotation local
search consists of substituting the original points. one at a time, by all the other points in
the sample (black circles), defining new hyperplanes. The possible hyperplanes are shown
by the dashed lines. We finally select the hyperplane with the smallest cost.

The second block translates each hyperplane. This is accomplished by substituting, for
each hyperplane, /3; by the elements of the projection w!x,. i = 1..... /i and choosing
the hyperplane with the smallest cost. See Figure 9 for details. The initial hyperplane is
represented by the bold line. The gray circles are the projection of the points in the sample
(black circles) in the direction of the vector w. The hyperplanes generated by the translation
local scarch are represented by the dashed lines.

Note that in the local search we consider all the points in the sample, and not only the
subset of points that initially generated the hyperplanes.

procedure LocalSearch()

1 do s is not locally optimal in N(s) —
2 FindBetterSolution( );

3 ReplaceSolution( );

4 end do;

end LocalSearch;

Figure 7. Local search phase.
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Fivuire 8. Rotation local search,

6. MONTE CARLO EXPERIMENT

In this section. we report the results of a simulation study designed to study the behavior
of the proposed algorithms. The experiments were done on a Pentium 11 266 MHz computer
with 128 Mbytes of RAM. All the algorithms were programmed in MatLab.

We simulated several models, discarding the first 500 observations to avoid any initial-
Lzation effects. The first two models are variations of the following basic model

e = 0534+08y, 1 —02¢ s+ (=05—1.2y,_,
+0. 7y o) w, 4, (%) + 24, =0 ~ NID(O, 17). (6.1)

!

where x; = |m_ Lo 3

e Model l: w; = [1,0|"and ¢, = 0.5

e Model II: w; = [I, —1|"and /3, |

The last two models are based on the following specification

m = 0534+08By =02 >+ (—05 =129 + 0Ty 2w 4 (%)
+(1.5+ 0.6 1 — 030 —2) 1w, 5.(%) + 24 24 ~ NID(O. 17).
(6.2)

where x; = |y 1. U2,

e Model I wy = |1, -1\ w2 = [1, 1], 3y = —0.5, and /3 = 1.6.
e Model IViw, = [I. —1]'.wr =[l.—1]. 3 = —l.and }, = I.
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Figure 9,

Transtanion local search.

Iterations Over 100 Replications of the Models. True values between parentheses.

100 observations
Modqr_fr Model 1} Model IV
Parameter Mean Sid. dev. Mean Std. dev, Mean Sid. dev.
w9 1 - 1 - 1 =
(1) (1] (1)
o - - 1 = 1 s
(1) (1]
Wia D.B{?EE 0.3400 D.{DEHD 3.1300 - ?B? 14 0.2538
—(1) = =1}
i - — 2.3{?00 26.1600 —0.89519 0.2B86
) (—1)
{3 D.H{ﬁm 0.4212 _t1 .?}?5? 3.3367 0.9375 1.0216
—0.5) (—1)
i3 - - 3.7917 12,7735 1.1140 0.6558
(1.6) (1)
J00 observations
.'.:_;'|‘| 1 - 1 - .[ -
(1) (1] (1)
(1) (1)
WHa —?.919’?3 0.0711 —E{LEE}?E 3.5463 - T‘.D?.?B 0.0482
(Wan - - 0.6772 2.1848 0.9996 0.0413
(1) (—1)
{31 0.9946 0.0668 -0.3749  0.4538 ~-0.9940  0.1771
) {1 [ —0.5) (—1)
3o - - 2.0941 1.5065 0.9971 0.0991

(1.6}

(1]
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Table 2. Mean and Standard Deviation of the Estimates of the Parameters Based on 20 GRASP
Iterations Over 100 Replications of the Models. True values between parentheses.

100 observations

Mode! Il Model! Il _ Model IV
Parameter Mean Std. dev. Mean Sid. dev. Mean Std. dev.
L::"1 1 1 — 1 - 1 —
(1) (1) (1)
4 - - 1 - 1 -
(1) (1)
@2 —-0.9588 0.2966 —1.0185 5.9265 —0.9984 0.9845
(—1) {—1) (=1)
Wag - - 1.9920 22.8731 —1.0090 0.5848
i) (—1)
1y 0.8561 0.3825 —2.5887 11.5999 -1.0922 1.5785
) (1) (—0.5) =1}
s - = 37791  13.3591 1.4848  3.0249
(1.6) {1}

300 observations

La:.‘” 1 e 1 T 1 -
(1) (1) {1

.-.:531 - == 1 - 1 -
(1] (1)
Wi 1.0167  0.0975 0.1061 1.2249 —0.9984 0.0470
(—1) {—1) {(—=1)
wiop = = 0.0426  2.3131 —-1.0001 0.0477
i) (—1)
A 0.9826 0.1413 0.4099 0.6778 —-0.9720 0.2025
(1) [ —0.5) (—1)
3 - - 1.8328 0.7254 0.9974 0.0891

(1.6} (1)

Table 3. Solution Quality Based on 100 Runs

100 observations

10 GRASP iterations 20 GRASP iterations
Model Min. Max. Mean Std. dev Min Max. Mean Std. dev.
i 0.5907 1.2096 0.9015 0.1174 0.6091 1.4795 0.8836 0.1416
1 0.5487 1.1549 (0.8054 0.1310 0.5560 1.1887 0.8020 0.1293
IV 0.5879 1.2260 0.8911 0.1224 0.5723 1.2814 (.8453 0.1359

300 _nbserva tions

Il 0.7889 1.1857 0.9692 0.0860 : 0.8135 1.3008 0.9799 0.0755
1l 0.7863 1.2179 09727 0.0968 0.7602 1.2617 0.9743 0.0882
A% 0.8062 1.1805 0.9630 0.0795 0.7658 1,1996 0.9694 0.0845
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6.1 ESTIMATION ALGORITHM

To evaluate the performance of the estimation algorithm in small samples, we simulated
100 replications of the last three models. each with 100 and 300 observations. We estimated
the parameters for each replication, with z, and x, correctly specified and assuming that the
number of hyperplanes was known. The GRASP is based on the static estimation, where
each hyperplane is estimated one at a time. Tables | and 2 show the mean and the standard
deviation of the estimates based respectively on 10 and 20 GRASP iterations. The true
value of the parameters are shown between parentheses. Table 3 shows solution quality. For
Models I, I, and 1V, the table shows the minimum. maximum. and mean (over 100 runs)
MSE of the best solution found. If the models are correctly estimated we expect that the
MSE of all the fitted models is around one, because in all the simulated models the error
term 1s a normally distributed independent random variable with zero mean and variance
one. Table 4 shows solution times. For Models I1. 111, and TV, the table shows the minimum.
maximum, and mean (over 100 runs) total running time.

Observing Tables | and 2 we can see that the estimates of the hyperplanes in Models
[T and IV are rather precise in all cases considered. The performance is improved when
we increase the sample size. The results presented in Table 3 show that the MSE of the
fitted models is around one (as expected). Considering the solution times, the speed of the
algorithm can be increased (up to 30%) if the code is implemented in C. Compiling the
Matlab code is also a possibility,

6.2 MobpeL SELECTION TESTS

6.2.1 Variable Selection

Table 5 shows the results of the variable selection procedure based on 1000 replications
of each model. The selection was made among the first five lags of y,. The column C
indicates the relative frequency of correctly selecting the elements of z,. The columns
U and O indicate. respectively, the relative frequency of underfitting and overfitting the
dimension of z,.

Table 4. Solution Times Based on 100 Runs (in minutes)

100 ubserj}faﬁnns

10 GRASP iterations 20 GRASP jterations
Mode! Min. Max. Mean  Sid. dev, Min Max. Mean Std. dev.
Il 0.4880 0.9355 (0.6797 0.0832 0.9198 2.0119 1.3360 0.1597
1] 1.2488 1.7941 1.4720 0.1058 2.2209 3.4525 2.85459 0.1965
v 1.2930 1.8525 1.5308 0.1072 1.9211 3.4680 2.9214 0.2481
o 300 observations
il 2.8259 48039 3.8499 0.4224 5.9120 10.8464 7.9806 0.9111
1 7.38928 10.9424 B8.7800 0.7447 147106 228912 17.7978 1.2776

AY 7.6323 12.4441 9.3979 0.8337 151007 22.2525 18.5962 1.3210
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Table 5. Relative Frequency of Selecting Correctly the Variables of the Model at Sample Sizes of 100
and 300 Observations Based on 1000 Replications Among the First Five Lags

100 observations
U
Mode! SBIC AlC SBIC AlC SBIC AlC
| 0.0280 0.0780 0.5870 0.4230 0.3750 0.4990
I 0.0430 0.1250 0.6320 0.3510 0.3250 0.5240
i 0.5490 0.3450 0.1330 0.0460 0.3180 0.6090
v 0.1210 0.2740 0.6800 0.2420 0.1990 0.4840
300 observations
| 0.0960 0.2370 0.6910 0.2820 0.2130 04810
I 0.2780 0.2430 0.3930 0.0930 0.3290 0.6640
i 0.5080 0.2000 0.0010 0 0.4900 0.8000
IV 0.4190 0.4340 0.4370 0.04860 0.1440 0.5200
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Observing Table 5, we can see that the SBIC strongly underfits the models while the AIC
tends to select more lags than necessary. With the exception of Model [11, the performance
of the variable selection procedure is improved, as it should, when we increase the sample
s1ze.

6.2.2 Linearity Tests and Threshold Variable Selection

In this section, we show results concerning the power of the linearity test and the se-
lection of the threshold variables. Figures 10 and 11 show the size-power curve based on.
respectively, 100 and 300 observations of 1,000 replications of each one of the models
using different lags of i, as threshold variables. In power simulations we assume that Zi 18
correctly specified and we also tested the ability of the linearity test to identify the correct
set of elements of x;. We expect that when x, is correctly defined, the power increases.
Table 6 shows the minimum. maximum, mean, and standard deviation of the F-statistic for
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Table 6. Results of the Linearity Test Over 1000 Replications of each Model

F-statistic

100 observations 300 observations
Model Min. Max. Mean  Std, dev. Min Max, Mean  Std. dev.
| 1.4259 27.7415 B8.B306 3.8273 10.1949 52.1402 25.1747 6.3151
0.0209 7.9549 12486 1.0375 0.0135 128424 15743 1.3101

0.0142 23.1537 6.6123 3.5042 1.6805 38.5694 19.3797 5.5554

I 0.3635 18.8083 5.7503 2.8052 5.3294 379985 15.7418 4.7390
0.0255 10,7039 2.7226  1.6893 1.0323 20.1099 6.6388 2.8829
0.0484 28.0097 10.5415 4.4804 141164 57.5102 31.4149 7.0637

I 0.1182 18.1091  3.5234 2.5165 0.6327 36.5506 B8.3836 4.3773
0.0226 16.1936 2.1128 1.8736 0.0494 26.6049 4.3220 3.2329
0.1513 16.7074 4.7543  2.8791 26213 288574 13.0340 45432

IV 0.3207 14.8957 45251 2.0066 46570 21.6156 122263 2.89986

1.0746x 10 * 66403 16398 1.0258 02203 10.4931 3.6886 1.5507
6.4409 328783 16.3745 4.5413  27.8204 77.7052 48.1796 7.3982

each of the models based on 1,000 replications. For each model, the first line indicates the
results setting x; = ¢, the second line refers o x;, = y; -, and the third line concerns
X = [ 1. 42", As we can see, the F-statistic is a useful tool to identify the threshold
variables.

6.2.3 Selecting the Number of Hyperplanes

Here we present the results concerning the selection of the number of hyperplanes.
Table 7 shows the results using the SBIC and the AIC 10 select the number of hyperplanes.
For models 11, 111, and 1V, the table shows the frequency (over 100 runs) of selecting the
second hyperplane based on 10 GRASP iterations. As we can see, the AIC overtfits the
model (model I1). In that sense we recommend the use of the SBIC to select the number of
hyperplanes.

7. EXAMPLES

In this section we present an illustration of the modeling techniques discussed in this
article,

Table 7. Frequency of Accepting the Second Hyperplane (over 100 runs). The hyperplanes are esti-
mated with 10 GRASP iterations.

100 observations 300 observations
Mocdlel SBIC AlC SBIC AlC
il 0 0.8200 0 0.95
11 0.0500 0.8200 0.8600 1

IV 0.3300 1 1 1
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Figwre 12, Time series generated by model (7.7

7.1  ExAMPLE 1: SIMULATED DATA

The first time series is generated by the following data generating process.

o = L3S +05y 1 — 08y »+ 0.5y
(=40 =04y +05y-2 — 0.2y, ) T, 5 (%)
HI+ 020 1+ 0.2y + 0.1y 1) . a.(%) + 24,
= ~ NID(0.0.25%). (7.1)

where x; = iyf_1._r,r,_3 W = [L=1"ws = [1,-1). 3, = —1.and /3 = 1. The time
series 18 illustrated in Figure 12,

To estimate the parameters we ran the GRASP described in Section 5 with 30 iterations
and using 50 sample points (0 generate the initial hyperplanes. The estimated residual
standard deviation is & = 0.251. @) = [1. — 1185, &= = |1, 1,069/, 3, = —1.114. and
B = 1.022. Figure 15 shows the scatter plot of the transition variables, the true (dashed
lines) and estimated (solid lines) hyperplanes. As we can see. the algorithm has successfully
estimated the separating hyperplancs.

7.2  EXAMPLE 2: SIMULATED DATA

The second time series is generated by the following data generating process.

w = —02+05y - — 08y 2+ 0.5y ;
HO.8 =04y, + 0552 — 0.2y 3) Ly, 3, (x;)
F(=04+02y ) + 0.2y 2+ 00y )y, 5,(x,) + 4.
=y ~ NID(0.0.257), (7.2)
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where x; = [p—1 pp—2|,wi = [1L0],wy = [I. =], 3, = 0, and 2 = 0. The time series
i1s illustrated in Figure 14.
The esumated residual standard deviation is @ = 0.25, &, = [1.0.015]", @, =

(1, —1.0377, 4 = 0.013,and > = 0.015. Figure 13 shows the scatter plot of the transition
variables, the true (dashed lines) and estimated (solid lines) hyperplanes. The algorithm has
successtully estimated the hyperplanes.

7.3 EXAMPLE 3: ANNUAL SUNSPOT NUMBERS

In this example we consider the annual sunspot numbers over the period 1700-1998,
The observations for the period 17001979 were used 1o estimate the model and the remain-
ing were used to forecast evaluation. We adopted the same transtormation as in Tong ( 1990),
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Figure 14, Time series generated by model (7.2)
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Figure 15, Estimated hyvperplunes,

iy = 2 [\/fl + N}) — H where N, is the sunspot number. We selected lags 1, 2, and 9
using SBIC, among the first 12 lags. Linearity was rejected and the p value of the linearity
test was minimized (0.0044) with lags | and 2 as threshold variables,

The final estimated model is

i = —0.727 o []quy; 1 — U.{}E{Jl{”_] T 0. ]ﬁth ) {?,,3}
(0.504) (0. 105) (0L 106 (0,030}
+(3.605 + 0267y, — 0451y, 2 +  0.035y_9)
((L.874) (0. 144 (0. 146) (0.054)

}':_.lrm”.}(x.r} -+ ::.f-

where x, = [*u;_J.m 3]1. w = [1.—1.021]", and 3 = 0.216. The estimated in-sample
residual standard deviation is - = 1.916. It is important to notice that the estimated linear
combination of threshold variables is almost the first difference of y, ;.

We continue considering the out-of-sample performance of the estimated model, We
compare our results with the ones obtained by the SETAR model fitted by Tong (1990, p.
420) and the model estimated by Chen (1995), a threshold autoregression system with open-
loop (TARSO) (Tong 1990, p. 101) where the threshold variable is a nonlinear function of
lagged values of the time series. The estimated model is

[ 0490 + 1.453y,_, 0.790y, > + 03004 3 —  0.1504, 4
(0 B66G) (0098 (h.165) (0. 176) (0. 125)
—I-U.-_j]?;fn_g. if (fy << ():
(0.056)
W = 4
0.133  +  1.010y; 0.255y—2 + 0036y, 7+ — 0.158y, ¢«
(0,649) (0.060) (0.06K) (0.061) (0,097)
+0.295y, 4, otherwise.
L (0.066)

(7.4)
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Table 8. One-Step Ahead Forecasts, Their Root Mean Square Errors, and Mean Absolute Errors for
the Annual Number of Sunspots for the Period 1980-1998.

SETAR Model TARSO model SEMTAR Model

Yoar Observation Forecast  Error Forecast  Error Forecast Error

1980 154 6 16096 —6.36 134,33 20.27 148.40 6.20
1981 140.4 137.21 3.19 125,39 15.01 117.75 2265
1982 115.9 99.04 16.86 99.30 16.60 100.45 15.45
1883 66.6 75.96 9.36 B5.03 -—-18.43 8278 —16.18
1984 45.9 35.66 10.24 41,16 4.74 44.42 1.47
1985 17.9 24.22 —6.32 2982 -—-11.92 3082 -—-12.92
1986 13.4 10.72 2.68 9.76 3.64 14.11 -0.72
1987 29.4 20.11 9.29 16.54 12.86 16.89 12.50
1988 100.2 54.49 45.71 B66.44 33.76 67.57 32.63
1989 157.6 155.72 1.88 121.84 35.76 153.13 4.46
1990 142.6 156.39 —13.78 152.47 -9.87 16412 —21.51
1991 145.7 93.25 52.44 123.71 21.99 117 .47 28.23
1892 943 111.27 16.97 11598 —21.68 111.25 —-16.95
1993 54.6 T . T 69.22 —14.62 69.87 15.27
1994 29.9 27.03 2.B7 35.74 —5.84 37.34 —7.44
1995 17.5 18.36 -0.87 1891 —-1.41 2033 —-2.83
1996 8.6 18.04 —9.44 11.64 -3.04 1443 583
1997 21.5 12.31 917 11.82 9.68 12.82 B.68

1998 64.3 46.70 17.60 58.54 .76 59.76 4.54
RMSE 18.71 16.94 15.28
MAE 13.06 14.05 12.45

where ¢, = (y,—; — 10)* — 10y,—1 — 113.

Table 8 shows the results of the one-step ahead forecast computed by the SETAR model
estimated 1n Tong (1990, p. 420), the TARSO htted by Chen (1995), and model (7.3). The
table shows the one-step ahead forecasts, their rool mean square errors, and mean absolute
errors for the transformed annual number of sunspots for the period 1980-1998. Both the
root mean squared errors (RMSE) and the mean absolute errors (MAE) of the SEMTAR with
variables selected by SBIC are lower than the ones of the SETAR and TARSO specifications.

8. CONCLUSIONS

This article considers a generalization of the SETAR model to deal with a Aexible
specification of the threshold variables. We propose a heuristic to estimate SETAR models
with thresholds defined by more than one variable. A model specification procedure based
on statistical inference is developed and the results of a simulation experiment showed
that the proposed methodology works well. A GRASP has been developed to estimate the
parameters of the model. Both the simulation study and the real examples suggest that the
theory developed here is usetul and the proposed model thus seems to be a useful tool for
the time series practitioner. Finally, the results presented here can be easily generalized into
a regression framework with exogenous variables.
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