
Detection of Undocumented Changepoints Using Multiple Test Statistics and
Composite Reference Series

MATTHEW J. MENNE AND CLAUDE N. WILLIAMS JR.

NOAA/NESDIS/National Climatic Data Center, Asheville, North Carolina

(Manuscript received 27 May 2004, in final form 14 April 2005)

ABSTRACT

An evaluation of three hypothesis test statistics that are commonly used in the detection of undocu-
mented changepoints is described. The goal of the evaluation was to determine whether the use of multiple
tests could improve undocumented, artificial changepoint detection skill in climate series. The use of
successive hypothesis testing is compared to optimal approaches, both of which are designed for situations
in which multiple undocumented changepoints may be present. In addition, the importance of the form of
the composite climate reference series is evaluated, particularly with regard to the impact of undocumented
changepoints in the various component series that are used to calculate the composite.

In a comparison of single test changepoint detection skill, the composite reference series formulation is
shown to be less important than the choice of the hypothesis test statistic, provided that the composite is
calculated from the serially complete and homogeneous component series. However, each of the evaluated
composite series is not equally susceptible to the presence of changepoints in its components, which may be
erroneously attributed to the target series. Moreover, a reference formulation that is based on the averaging
of the first-difference component series is susceptible to random walks when the composition of the
component series changes through time (e.g., values are missing), and its use is, therefore, not recom-
mended. When more than one test is required to reject the null hypothesis of no changepoint, the number
of detected changepoints is reduced proportionately less than the number of false alarms in a wide variety
of Monte Carlo simulations. Consequently, a consensus of hypothesis tests appears to improve undocu-
mented changepoint detection skill, especially when reference series homogeneity is violated. A consensus
of successive hypothesis tests using a semihierarchic splitting algorithm also compares favorably to optimal
solutions, even when changepoints are not hierarchic.

1. Introduction

Climatic time series that are free of artificial change-
points are indispensable to the study of observed cli-
mate variability and change, especially at local and re-
gional scales (Easterling et al. 1996). Unfortunately,
few climate series of even modest historic length are
characterized only by variations in weather and climate.
Even minor changes in a meteorological station’s envi-
ronment or in observation practices can artificially alter
the mean level of measurements and/or introduce a lo-
cal trend (Conrad and Pollack 1962). In situ observa-
tion practice changes include instrument relocations or
replacement, sensor drift from calibration, changes in

land use/land cover surrounding the observing site, and
changes to the daily observation schedule. The chal-
lenge of artificial changepoint detection and adjustment
in climate series is reflected by the expansive literature
on the subject. Peterson et al. (1998a) provide a review
of many of the techniques that have been used or pro-
posed in the climate literature. Techniques to evaluate
documented risks of changepoints have been used (e.g.,
Karl and Williams 1987), in addition to those applied in
the detection of unknown (undocumented) change-
points (e.g., Solow 1987; Easterling and Peterson 1995;
Alexandersson and Moberg 1997; Vincent 1998; Lund
and Reeves 2002). Archives or other knowledge of ob-
servational practice can be used to test for artificial
shifts at the instant of known observation practice
changes. Unfortunately, station histories (metadata)
are often incomplete, and climate series may contain
undocumented changepoints, even when relatively ex-
tensive metadata exist.
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In the absence of corroborating metadata, however,
questions regarding the veracity of apparent undocu-
mented changepoints can arise. This is especially true
when the interest lies in the continuity of a single or
small number of time series versus a collection of series
used en masse to calculate, for example, the spatial
mean across a large region (Easterling et al. 1996).
Some questions are probably inevitable because a cer-
tain background rate of type I and type II errors is
always present. Nevertheless, determining the appro-
priate sensitivity of an undocumented changepoint test
can be an iterative process, and many “false” change-
points may be revealed if an inappropriate sensitivity
level or test statistic is used (Lavielle 1998, Lund and
Reeves 2002). Visual inspection of a time series can
provide insight into possible changepoints, but such in-
spection becomes impractical when a large number of
time series requires evaluation. Moreover, even with
visual inspection, the presence of a nonclimatic change-
point may still be debatable (Lund and Reeves 2002),
and the analyst has little recourse other than to specu-
late on its cause or lack thereof.

Given the necessity of testing for undocumented
changepoints and requirements for automated detec-
tion in some circumstances (e.g., the reprocessing and/
or update of large datasets), a comparison of the char-
acteristics of some commonly used test statistics is de-
scribed below. Rather than compare, for example, the
percentage of simulated changepoints that are identi-
fied by various tests (see Ducré-Robitaille et al. 2003
for a recent comparison of eight methods), this com-
parison was undertaken to ascertain whether multiple
tests can be combined to improve overall confidence in
undocumented changepoint detection. Specifically, the
goal was to evaluate to what degree various test statis-
tics provide independent assessments of the presence of
undocumented changepoints and their position in a se-
ries. The comparison between tests was likewise moti-
vated by the desire to evaluate undocumented change-
point detection as a function of the method that was
used to formulate a composite reference series against
which a target (candidate) series is compared. Fre-
quently, a difference or ratio series is formed between
the target and reference series in order to differentiate
artificial changepoints from those rooted in true climate
change and variability. Changepoint detection skill was,
therefore, evaluated using different formulations of
composite reference series. In addition, because the test
statistics that are commonly applied to climate series
are strictly relevant to determining the likelihood of a
single changepoint, the skill of detection was evaluated
for series that contain multiple changepoints, including
in the component series that are used to form a com-

posite reference. In practice, multiple changepoints are
commonly present in both the target climate series and
in series from nearby locations used to estimate the
background climate signal. Situations in which multiple
undocumented changepoints occur in all series are par-
ticularly challenging. Therefore, the skill of successive
hypothesis testing using multiple tests is compared to
an alternative approach, which optimizes a statistic
based on an exhaustive comparison of all possible
changepoint number and position combinations.

A description of the test statistics used in the com-
parison is given in section 2. Methods used to detect
multiple undocumented changepoints and the frame-
work for evaluating changepoint detection skill are also
described in section 2. Three alternative formations of
composite reference series are discussed in section 3, as
well as the simulation of groups of cross-correlated cli-
mate series. Changepoint detection results are pre-
sented in section 4. A discussion and concluding re-
marks are provided in section 5.

2. Changepoint tests and quantification of
detection skill

Three test statistics that are commonly applied to
climate series were used in the comparison. Ducré-
Robitaille et al. (2003) found these statistics to be
among the highest performing in terms of the combi-
nation of changepoints that are correctly identified and
the number “falsely detected” in the series with mul-
tiple step changes. Thorough descriptions of the test
statistics can be found in Alexandersson (1986), Vin-
cent (1998), and Lund and Reeves (2002), so only brief
descriptions are provided below. These tests can be
used with or without comparison to observations from
nearby stations. In practice, however, a reference series
is commonly used and the exposed changepoints are
relative nonhomogeneities (Conrad and Pollack 1962;
Alexandersson and Moberg 1997). While each test sta-
tistic may be used to detect a change in slope (trend) as
well as a change in mean, here changes in mean level
only were considered. Lund and Reeves (2002) note
that step- and trend-type changes are difficult to un-
confound in general. Wang (2003) discusses the poten-
tial of confounding artificial changepoints and those
that are associated with true periodic variations in a
climate series. That risk should be alleviated with the
use of a reference series, provided that it and the target
series are characterized by similar true variations. Nev-
ertheless, the automated, skillful detection of local cli-
mate trends remains a difficult problem.

The likelihood ratio test for a shift in mean described
by Hawkins (1977) and Alexandersson (1986) involves
the comparison of the means of adjacent segments that
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form a series {Yt} of length n in its standardized form.
The series {Yt} may be either a raw climate series or a
sequence of differences or ratios formed with a refer-
ence series. Assuming that {Yt} is normally distributed,
a single shift in the level of the standardized series {zt}
is determined using the null hypothesis Ho and alterna-
tive hypothesis Ha, given by

Ho: zt → N�0, 1�, t � 1, n

Ha: �zt → N��1, 1�, t � 1, c

zt → N��2, 1�, t � c � 1, n� .

If Ho is rejected in favor of Ha, the implication is that
there has been a shift in the level of the z series. With
the sample means that are used as the maximum like-
lihood estimators for the means before (z1) and after
(z2) all possible instances of shift, the test statistic can
be calculated as (Hawkins 1977; Alexandersson 1986)

Tc � cz1
2 � �n � c�z2

2. �1�

Percentiles of Tc are generated via Monte Carlo simu-
lations of z under the null hypothesis, recording the
maximum Tc value for each realization as

Tmax � max
1�c�n

Tc � max
1�c�n

�cz1
2 � �n � c�cz2

2�. �2�

Here Ho is rejected when Tc in a series exceeds the
chosen percentile of Tmax for one or more values of c,
the instant of the change (defined here as the last value
at the former level). Alexandersson and Moberg (1997)
discuss how the likelihood of a change in trend can be
similarly obtained using a likelihood ratio test. Potter
(1981) describes a different version of the likelihood
ratio test in which comparison to a reference is implicit
to the test statistic (see also Maronna and Yohai 1978).

The formulation for a simple two-phase regression
describing a series {Yt} is given by (Lund and Reeves
2002)

Yt � ��1 � �1t � �t, 1 � t � c

�2 � �2t � �t, c � t � n�. �3�

Under the null hypothesis of no changepoint, the two
phases of the regression should be statistically equiva-
lent. In that case, both the difference in means (�1 �
�2) and slope (	1 � 	2) should be close to zero for each
c ∈ {1, . . . , n}, and a single phase of the regression
would be justified because �1 
 �2 
 �RED and 	1 
 	2


 	RED. The subscript “RED” refers to a single-phase
or “reduced” model. To evaluate the null hypothesis of
no changepoint versus the alternative hypothesis of an
undocumented changepoint, an F statistic is calculated
at each position c in the time series as

Fc �
�SSERED � SSEFULL��2

�SSEFULL��n � 4��
, �4�

where SSEFULL refers to the sum of the squared errors
about each of the two phases (the “full” model). As
with a Tmax test statistic, percentiles of the F statistic are
obtained via simulations under the null hypothesis
(Lund and Reeves 2002), in this case, recording the
maximum Fc value in each series of Fcs,

Fmax � max
1�c�n

Fc. �5�

The null hypothesis of a “one phase” time series is
rejected when the magnitude of Fmax is greater than the
chosen percentile (significance level).

If there is reasonable confidence that there is no
trend in a time series, then estimation of the slope pa-
rameter 	 can be eliminated and the two-phase model
for {Yt} becomes (Lund and Reeves 2002)

Yt � ��1 � �t, 1 � t � c

�2 � �t, c � t � n�, �6�

and the F statistic will have 1 numerator degree of free-
dom and n � 2 denominator degrees of freedom. If (6)
is used, the two-phase regression test is equivalent to
the likelihood ratio test; however, while a series of Fcs
based on (6) will be similar to a series of Tcs using (1),
critical values depend on which form of test statistic is
used, as shown in Fig. 1. Unlike the F1,n�2 and t statistic,
which can be appropriate for evaluating the likelihood
of a shift at the instant of a known risk of changepoint
(Lund and Reeves 2002), Fmax for model (6) is not the

FIG. 1. The Fmax and Tmax critical values (0.05 significance level);
Fmax critical values based on the two-phase model given as in (6).
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square of a Tmax statistic, and large differences in criti-
cal values exist for smaller sample sizes (n).

a. Detection of multiple changepoints

The presence of multiple breaks in a series can com-
plicate the interpretation of these test statistics. When
there are K segments to a series (or K � 1 change-
points), the time series may be treated as

Yt � �k � �t, ck�1 � 1 � t � ck, k � 1, K, �7�

assuming, as in (6), that it is piecewise stationary and c0

� 1 and CK � n. The solution to (7) frequently has been
based on successive hypothesis testing using a hierar-
chic binary segmentation of the series (Hawkins 2001).
In this approach, a series is split at the location where
the hypothesis test statistic reaches a maximum, pro-
vided that its critical value is exceeded. Subsequences
on either side of the split are likewise evaluated, and
the process is repeated recursively until either the mag-
nitude of the statistic does not exceed the chosen sig-
nificance level in the remaining subsequences or the
sample size in a segment is too small to test. This kind
of solution is called “greedy” because changepoints are
selected to maximize the separation between segments
at each split, as opposed to evaluating all possible
changepoint combinations iteratively to identify the op-
timal multiway split. The solution is hierarchic because
it will reliably converge to the optimal solution only
when the true changepoints are hierarchic, which may
not be the case (Hawkins 2001).

An optimization algorithm also may be used to solve
(7) by, for example, minimizing a penalized contrast
statistic, the pooled residual sum of squares about each
kth segment. The penalized contrast function in La-
vielle’s (1998) approach takes the form

U � �
k�1

K

�
t�ck�1�1

ck

�Yt � �̂k�2 � ��K � 1�, �8�

where � � 2	
2
�. The first term on the right-hand side

of (8) measures the fidelity of the model to the obser-
vations {Y}, while the second term, the penalty func-
tion, is proportional to the number of changepoints.
The estimated number of segments will be, in this case,
the greatest K with a p value that is larger than 	, the
configuration of which is determined by minimizing U.
An optimal global solution, therefore, requires evalua-
tion of the large number of possible changepoint num-
ber and position combinations (a total of 2n�1), for
which dynamic programming can be used to reduce
computational complexity (Lavielle 1998; Hawkins
2001).

Because the number of artificial shifts in a climate
series is generally unknown, an optimal global solution

will likely require calibration in order to avoid reveal-
ing too many “unimportant” or “false” changepoints
(Lavielle 1998). The nature of the jumps that are iden-
tified in a series is calibrated via a penalty function like
� (see also Akaike 1974; Schwarz 1978; Caussinus and
Mestre 2004). Ideally, the penalty function should set
the desired balance between the probability (power) of
detection and probability of false detection. A solution
using a relatively large penalty function will expose
only the more important “jumps,” but will overlook
others. On the other hand, a small penalty function may
reveal too many changes that are caused only by chance
variation in the time series. Consequently, the best
choice of the penalty function may not be obvious, but
could be selected by a specialist with experience using
the data. We used a very small p value (0.000 01) to
solve (8) because too many changes are detected with a
larger value (M. Lavielle 2005, personal communica-
tion). Nevertheless, the choice will likely require some
level of intervention, ideally for each series tested (La-
vielle 1998; Caussinus and Mestre 2004).

For successive hypothesis testing, we used a semihi-
erarchic splitting algorithm to compare hypothesis test-
ing to optimal solutions. In the semihierarchic algo-
rithm, each splitting step is followed by a merging step
to test whether a split chosen at an earlier stage has lost
its importance after subsequent break points are iden-
tified (Hawkins 1976). At each splitting step, Ho is
evaluated separately for all subsequences that occur be-
tween the apparent changepoints identified up to that
stage. The subsequences are defined as 1 to c1, c1 � 1 to
c2, etc., up to cK�1 � 1 to n. If Ho is rejected in any
subsequence, that segment is split and K is incre-
mented. In the merging step that follows each splitting
step, Ho is evaluated for all subsequences that include
only one of the K � 1 apparent changepoints. In this
case, the segments are defined from 1 to c2, from c1 �
1 to c3, up to cK�2 � 1 to n. If Ho is not rejected in one
of these subsequences, the apparent changepoint that is
contained therein is removed and K is decremented.
The process ends when no subsequence is split and no
subsequences are merged on a pass through the full
sequence. Although an improvement over strictly hier-
archic solutions, this algorithm may not always con-
verge to an optimal solution when K is greater than two
and the changepoints are not hierarchic (Hawkins
2001) and/or occur close in time. In such circumstances,
an optimal approach should have a higher power of
detection.

b. Quantification of detection skill

The general framework in which forecast skill is
quantified in light of the joint probability distributions
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of forecasts f and observations o (e.g., Murphy and
Winkler 1987) also may be applied to hypothesis testing
(Stephenson 2000). In this case, “forecast” refers to the
rejection or acceptance of the null hypothesis of homo-
geneity at each position in a series. “Observation” re-
fers to the true, known occurrence or nonoccurrence of
a simulated changepoint. The possible joint outcomes
of changepoint detection ( f ) and occurrence (o) are
represented as

f �
1, Ho rejected

0, Ho accepted
o �

1, change point present

0, change point not present
.

Measures that quantify various aspects of the joint fre-
quency distribution of f and o then can be calculated
using a 2 � 2 contingency table, containing counts of
the four possible outcomes as shown in Table 1. The
rate of type I (reject null hypothesis when it is true: a
“false alarm” or “false positive”) and type II (fail to
reject null hypothesis when it is false: a “miss” or “false
negative”) errors can be calculated for each test statistic
individually and for the “consensus” of multiple tests.
The hit rate H measures the ratio of correctly classified
changepoints to the total number of changepoints and
is known as the sensitivity. Here, H and its counterpart,
the false alarm rate F, are calculated as

H �
a

a � c
� “the probability �power� of detection” �9�

F �
b

b � d
� “the probability of false detection”, �10�

where a � f1, �1 (hit), b � f1, �0 (false alarm), c � f0, �1

(miss), and d � f0, �1 (correct acceptance of Ho). The
term hit rate is sometimes used to refer to the quantity
(a � d)/n (the “percent correct”) while the false alarm
rate or ratio (FAR), or false positive rate, will some-
times (e.g., Wilks 1995) refer to the quantity

FAR �
b

�a � b�
. �11�

A third quantity, bias, is calculated as

B �
�a � b�

�a � c�
, �12�

which represents the ratio of the number of Ho rejec-
tions to the number of simulated changepoints. When
the base rate of event occurrence is much lower than
the rate of nonoccurrence, skill scores like the Heidke
Skill Score (HSS) are commonly used to adjust for the
large number of correctly predicted nonevents. Be-
cause changepoints do not occur in a majority of years
(or months), that is, the quantity d in Table 1 is much
larger than a � c, a changepoint reasonably can be
treated as a rare event. The HSS compares the propor-
tion that are correct to a random no-skill forecast with
the same base rate of event occurrence (Doswell et al.
1990; Stephenson 2000), and can be calculated as

HSS �
2�ad � bc�

�a � c��c � d� � �a � b��b � d�
. �13�

The most likely position of a changepoint is where
the test statistic reaches a maximum (or minimum in
the case of the simple sum of squares). A hit is tallied
when this maximum (or minimum) coincides with the
true position of a simulated changepoint. If the test
statistic exceeds the critical value, but the maximum
(minimum) is not coincident with a simulated change-
point, it is counted as a false alarm. When the null
hypothesis is not rejected in a sequence that contains a
changepoint, a miss is recorded. As shown in Fig. 2, the
time series of a test statistic may exceed the critical
value across a range of locations around the true posi-
tion of the changepoint, and the highest value is subject
to some chance variation. Consequently, it may be de-
sirable to qualify a rejection of the null hypothesis as a
“hit” when the maximum in the test statistic occurs
within one to a few time steps of its true position. Here,
coincidence between tests was defined as �2 time steps.

3. Reference series formulation and simulation of
climate series

A good choice of reference series should capture the
background climate signal that is common to the target
and surrounding station series. Under the assumption
that the composite reference series is at least approxi-
mately homogeneous, when a changepoint is revealed
in a difference or a ratio series is formed between
the target and its reference, the conclusion is that

TABLE 1. Contingency table for the detection of undocumented changepoints. The null hypothesis for each test is series
homogeneity (no changepoint).

Changepoint detected

Changepoint occurred

TotalYes No

Yes a ( f1, o1) (hit/correct rejection of Ho) b ( f1, o0) (false alarm/false positive/type I) a � b
No c ( f0, o1) (miss/false negative/type II) d ( f0, o0) (correct acceptance of Ho) c � d
Total a � c b � d (a � b � c � d) � n
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an artificial shift is present in the target series. How-
ever, an artificial shift in one or more of the m nearby
stations series that is used to form the reference may
carry through to the series of differences or ratios and
the assumption of reference series homogeneity can be
invalid. In that case, a changepoint in the reference may
be erroneously attributed to the target series (see also
Szentimrey 1999).

To quantify the potential for such impacts, three dif-
ferent composite reference series were calculated using
component series with and without simulated change-

points. In one case, changepoints were identified in a
difference series {Yt}, formed between observations at
the target station and the average from nearby stations,
calculated according to Alexandersson and Moberg
(1997) as

Yt � �yt � y� �

�
j�1

m

�j
2�xjt � xj�

�
j�1

m

�j
2

, t � 1, n, �14�

FIG. 2. Example of Monte Carlo simulation with one changepoint in target series (in bold)
and none in the composite reference series components (case 2a). (a) Target (candidate)
series and five correlated composite reference component (“neighboring”) series; (b) target
and ANWA composite reference series (correlation-weighed average of five reference com-
ponent series); (c) difference between candidate and composite reference series and residuals
from multiple linear regression prediction of target series; (d) series of Tc and Fc statistics and
residual sum of squares (SSEFULL) for two-phase model.
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where yt and xjt are monthly or annual temperatures for
the candidate and each of m neighboring stations, re-
spectively, and �j represents the correlation coefficients
between observations at the candidate station and the
jth instance of m surrounding stations. The quantities
with an overbar may be calendar monthly (e.g., Menne
and Duchon 2002) or annual means over a series of
length n. We refer to the term to the right of the minus
sign in (14) as the anomaly-weighted average (ANWA)
composite reference series.

Peterson and Easterling (1994) suggest using first-
difference-filtered values of each series (i.e., where
Y�t � yt � yt�1) to calculate each �j to reduce the chance
of making poor estimates of the magnitude of correla-
tion between the candidate and neighboring series
when one or both series contain a shift or trend. In their
method, the first-difference correlation coefficients are
used as weights to form an average first-difference se-
ries from the m nearby station series. We refer to this
formulation as the first-difference-weighted average
(FDWA) composite reference series. Using common
weights and serially complete (i.e., no missing values)
reference series components, the ANWA and FDWA
composite reference series are exactly correlated and
differ only by the offset that is used to convert the
FDWA series back to raw averages.

Vincent (1998) does not use a reference series per se.
Rather, the residuals et from a multiple linear regres-
sion (MLR) equation, using observations from neigh-
boring stations to estimate values at the candidate sta-
tion, are examined for evidence of changepoints using
either the Durbin–Watson or lag-1 test for serial cor-
relation, et (et � Yt � Ŷt). In the case of identifying a
step change or artificial trend, the null hypothesis of
serial independence in the residuals is evaluated against
the alternative hypothesis that they are consistent with
a first-order autoregressive process (Wilks 1995;
Durbin and Watson 1950, 1951, 1971). A step or trend
in the target series will tend to cause serial correlation
in the regression residuals. When the value of the test
statistic is sufficient to reject the null hypothesis of un-
correlated residuals, a binary variable is introduced it-
eratively at each series position to separate the multiple
linear regression estimates into all combinations of two

phases. The changepoint position, which minimizes the
pooled residual sum of squares (SSEFULL) about the
two phases, is considered to be the most likely break
point. The relative performance of these three formu-
lations of reference series was evaluated by controlling
for the test statistic whereby each reference was paired
with each test as shown in Table 2.

a. Simulation of climate series

Simulations of temperature anomaly series were pro-
duced by generating large numbers (1000 in each of
several cases) of Box–Jenkins first-order autoregressive
[AR(1)] model realizations, given by

xt�1 � � � 	�xt � �� � �t�1, � � N�0, 1�, �15�

where � is the mean of the time series (in this case 0),
� is the autoregressive parameter, and � is a random
error component (Wilks 1995). For each realization
(n � 100), the autoregressive parameter � was ran-
domly selected from a sample distribution of observed
lag-1 (1 yr) autocorrelation coefficients that are calcu-
lated using the time series of mean annual temperatures
from stations in the United State Historical Climatol-
ogy Network (USHCN; Karl et al. 1990). The values in
each AR(1) series, though approximately standard nor-
mal, then were restandardized. To create groups of
cross-correlated series, a constant of 2.0 times a random
cross-correlation coefficient, also drawn from observed
values, was added a total of (m � 1) times to each of the
original 1000 series (m � 5 “neighboring” series plus
the target). Each of the (m � 1) series in a group is
formed, therefore, from the same “parent” series,
which is not used. Because the target (candidate) and
reference component (neighbor) series are all “sibling”
series, each has approximately the same degree of cross
correlation, on average, with every other series in its
group.

b. Addition of random changepoints

Detection results are based on time series that con-
tain zero, one, two, or a variable number changepoints
in the combinations shown in Table 3. The amplitude of
each simulated changepoint was selected at random
from the standard normal distribution with no restric-

TABLE 2. Matrix of possible composite reference series formulation and test statistic pairings.

Test statistic

Reference series formulation

MLR ANWA FDWA

Lag 1 test (lag 1) MLR–lag 1 ANWA–lag 1 FDWA–lag 1
Likelihood ratio test (Tmax) MLR–Tmax ANWA–Tmax FDWA–Tmax

Two-phase regression test (Fmax) MLR–Fmax ANWA–Fmax FDWA–Fmax
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tions. As shown in Fig. 3, the standard normal distribu-
tion is a reasonable proxy for the distribution of known
changepoints in the USHCN (expressed in standard-
ized form). The simulated changepoint position was al-
lowed to vary randomly. It should be noted, however,
that when two changepoints are separated in time by no
more than a few time steps, a changepoint detection
algorithm may identify only one changepoint that is, in
effect, an amalgam of the two nearby changepoints. If
the two are of a comparable amplitude but opposite in
sign, neither changepoint may be detected. On the
other hand, if the changepoints are of disparate ampli-
tudes, the larger shift may eclipse the smaller. To avoid
sorting out the impact of these confounding scenarios
on measures of detection skill, the results presented
below are based on simulated shifts separated in time
by no fewer than five positions in a sequence. In prac-
tice, however, nearby changepoints are a distinct pos-
sibility, especially in the analysis of annual values. In
Fig. 2, a realization of a target/neighbor series from case
2a was shown that includes the values of each reference
series formulation and test statistic at the first splitting
step.

4. Results

In practice, the number of true changepoints in a
climate series is unknown. Moreover, the presence of
multiple shifts can sometimes suppress the magnitude
of the test statistics near each true break point to such
a degree that none exceeds its critical value. In these
situations, the first split can be made at the position
where the test statistic reaches a maximum without re-

gard to the significance level (0.05 is used here) to avoid
the possibility that the series will be overlooked com-
pletely when there is a complicated multi-break-point
configuration. Of course, it is generally not known in
advance that such a situation exists so the first split
must be made in all series, which necessitates the merg-
ing steps in the semihierarchic method. It is worth
pointing out, however, that the number of Ho rejections
using hierarchic binary splitting in series where the null
hypothesis is true is greater relative to the expected
value in a test for a single changepoint (no splitting).
This is because when the critical value is exceeded
somewhere in a sequence, a split is made at the point
where the test statistic reaches a maximum. At that
point, the subsequences on either side of the split are
evaluated separately, each having some probability of
type I error as in the case of testing the full series.
Inclusion of the merging steps will rejoin some of the
“false splits” and reduce the number of type I errors,
but the number may, nevertheless, be larger than the
expected value.

The consequence of the larger number of hypothesis
tests can be seen in Table 4, where changepoint detec-
tion is summarized for case 1 (null hypothesis always
true). For most of the nine test statistic/reference pairs,
the number of false alarms is higher than the expected
value of 5% (not all combinations are shown). On the
other hand, when Ho is true, the null hypothesis is
rarely rejected at the same position in a series (�2 time
steps) by more than one test so the false alarm rate
when agreement between tests is required is less than
the expected value for one test, suggesting some inde-
pendence between tests.

TABLE 3. Number of added changepoints in each target–
reference component series groups used in five Monte Carlo case
studies. Each case comprised of 1000 simulated series groups.

Number of simulated
changepoints (K � 1)

Candidate series
Each reference

series component

Case 1 (null case) 0 0
Case 2 (a) 1 (b) 2 (a) 0 (b) 0
Case 3 (a) 0 (b) 0 (a) 1 (b) 2
Case 4 (a) 1 (b) 2 (a) 1 (b) 2
Case 5 (with missing

values)
(a) 0 (b) 1 (a) 0 (b) 1

Case 6 Between 0 and 6* Between 0 and 6*
Case 7 6** 0

* The number of changepoints in each series is approximately
normally distributed about an average of 3.

** Changepoint position and amplitude are fixed as in Caussinus
and Mestre (2004). See Table 9 for details.

FIG. 3. Distribution of the estimated amplitude of step changes
at known risks of artificial changepoints in the USHCN. Step-
change amplitude is expressed in standardized form.
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The detection results summarized for cases 2 through
6 (Tables 5–9 ), indicate that, apart from the optimal
algorithm, the likelihood ratio statistic is generally the
most sensitive of the three calculated statistics (cf. the
single test hit rates H, for cases 2, 4, 5b, and 6). The
superior sensitivity, however, comes at the price of a
larger number of false alarms, especially when change-
points are present in the reference series components
(cases 3, 4, 5b, and 6), but even when the reference

series is truly homogeneous (case 2). In the case 2 simu-
lations, as in case 1, a large reduction in type I errors
occurs when a consensus is required that includes at
least two different test statistics. Likewise, in case 2
changepoint detection is essentially the same whichever
composite reference series formulation is paired with
the likelihood ratio test. In fact, results from pairing all
three reference formulations with a common statistic
(all combinations not shown) suggest that the choice of

TABLE 5. Skill scores for simulations with one (case 2a) or two (case 2b) changepoints in the candidate and none in the reference
series components.

Case 2a

Hit
False
alarm Miss B H F FAR HSSReference series–statistic

(1) MLR–lag 1 42.9% 16.0% 57.0% 0.59 0.43 0.0016 0.27 0.54
(2) FDWA–Fmax 44.9% 20.0% 55.5% 0.65 0.45 0.0020 0.31 0.54
(3) ANWA–Tmax 58.9% 21.7% 41.0% 0.81 0.59 0.0022 0.27 0.65

Consensus
(1) and (2) 38.9% 4.8% 61.0% 0.44 0.39 0.0005 0.11 0.54
(2) and (3) 44.2% 4.0% 55.7% 0.48 0.44 0.0004 0.08 0.59
(1) and (3) 41.6% 3.7% 58.3% 0.45 0.42 0.0004 0.08 0.57
(1) and/or (2) and/or (3)* 48.3% 9.2% 51.6% 0.58 0.48 0.0009 0.16 0.61

ANWA–Fmax and/or ANWA–Tmax and/or MLR–Tmax** 57.1% 16.9% 42.8% 0.74 0.57 0.0017 0.23 0.65
Optimal 60.1% 132.3% 39.9% 1.92 0.60 0.0134 0.69 0.40

Case 2b

(1) MLR–lag 1 40.9% 14.0% 59.1% 0.55 0.41 0.0028 0.25 0.52
(2) FDWA–Fmax 41.4% 12.8% 58.7% 0.54 0.41 0.0026 0.24 0.53
(3) ANWA–Tmax 55.4% 14.6% 44.6% 0.70 0.55 0.0030 0.21 0.65

Consensus
(1) and (2) 35.4% 3.6% 64.7% 0.39 0.35 0.0007 0.09 0.50
(2) and (3) 40.0% 2.6% 60.1% 0.43 0.40 0.0005 0.06 0.56
(1) and (3) 39.6% 2.7% 60.5% 0.42 0.40 0.0005 0.06 0.55
(1) and/or (2) and/or (3)* 45.6% 6.4% 54.5% 0.52 0.46 0.0013 0.12 0.59

MLR–Tmax and/or ANWA–lag 1 and/or ANWA–Tmax** 53.8% 11.1% 46.3% 0.65 0.54 0.0023 0.17 0.65
Optimal 58.5% 62.6% 41.6% 1.2105 0.58 0.0128 0.52 0.52

* Any two of three.
** Best 2 of 3 of all 84 possible reference series–test statistic triplets.

TABLE 4. Skill scores for simulations with no changepoints in the candidate or in the reference component series (case 1).

Case 1

Hit
False
alarm Miss B H F FAR HSSReference series–statistic

(1) MLR–lag 1 0.0% 4.9% 0.0% — — 0.0004 1.00 0.00
(2) FDWA–Fmax 0.0% 8.2% 0.0% — — 0.0008 1.00 0.00
(3) ANWA–Tmax 0.0% 11.2% 0.0% — — 0.0011 1.00 0.00

Consensus
(1) and (2) 0.0% 1.0% 0.0% — — 0.0000 1.00 0.00
(2) and (3) 0.0% 1.9% 0.0% — — 0.0002 1.00 0.00
(1) and (3) 0.0% 0.8% 0.0% — — 0.0001 1.00 0.00
(1) and/or (2) and/or (3)* 0.0% 2.7% 0.0% — — 0.0003 1.00 0.00

MLR–Tmax and/or ANWA–Fmax and/or MLR–lag 1** 0.0% 2.3% 0.0% — — 0.0002 1.00 0.00
Optimal 0.0% 125.4% 0.0% — — 0.0125 1.00 0.00

* Any two of three.
** Best 2 of 3 of all 84 possible reference series–test statistic triplets.
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test statistic is more important than choice of reference
series formulation when the reference series compo-
nents are serially complete and homogeneous. In that
case, the ANWA and the FDWA reference series are
identical because they differ only by an offset.

The impact of changepoints in reference component
series is illustrated in Table 6 (case 3). Because in these
realizations each reference component contains either 1
(case 3a) or 2 (case 3b) changepoints, a composite ref-
erence will incorporate 5 (case 3a) or 10 (case 3b)
changepoints of various amplitudes and locations. The
number of false alarms using the likelihood ratio test
and the ANWA or FDWA composite reference in-
creases from just over 100 in the null case (case 1) to
over 700 in case 3a and over 1000 in case 3b. Similarly,
the ANWA and FDWA composite reference paired
with the two-phase regression test statistic show a four-
fold or better increase in the number of false alarms. In
contrast, paired with the MLR reference series, the
likelihood ratio and two-phase regression tests have
less than half the number false alarms (not shown) and
the increase over the sample of “ideal” reference series
(case 1, 2, or 5a) is, therefore, much smaller. The MLR–
lag 1 combination produced the smallest number of
false alarms for a single reference series–test statistic
pair.

It appears that a step change in a reference compo-
nent series of anomalies or raw values will reduce the
magnitude of the series coefficient in the MLR equa-
tion, and, therefore, its weight, effectively filtering the
impact of the step changes in the composite. On the
other hand, using first-difference-filtered series to cal-
culate truer correlation-based weights when artificial
break points may be present helps to ensure that step
changes in the component series will carry through to
the composite by minimizing the impact of a step
change on the correlation coefficients. Nevertheless,
the value of a consensus result is especially evident in
case 3 from the large reduction in false alarms linked to
nonhomogeneities in the composite reference series.

In case 4, when all series contain one or two change-
points, the number of false alarms can approach, or, in
the case of ANWA–Tmax even exceed the number of
hits. As in other cases, the advantage to using a con-
sensus result is apparent by the large reduction in false
alarms relative to most single tests. Unfortunately, no
consensus combination of reference series–test statistic
pairs clearly stands out as the more skillful because
many appear to optimize test sensitivity while others
produce the fewest false alarms. Nevertheless, the pair-
ing of MLR–Tmax forms a good combination with many
other reference series–test statistic pairs because this

TABLE 6. Skill scores for simulations with no changepoints in the candidate and one (case 3a) or two (case 3b) changepoints in each
reference series component

Case 3a

Hit
False
alarm Miss B H F FAR HSSReference series–statistic

(1) MLR–lag 1 0.0% 9.9% 0.0% — — 0.0010 1.00 0.00
(2) FDWA–Fmax 0.0% 30.0% 0.0% — — 0.0030 1.00 0.00
(3) ANWA–Tmax 0.0% 71.4% 0.0% — — 0.0071 1.00 0.00

Consensus
(1) and (2) 0.0% 2.6% 0.0% — — 0.0003 1.00 0.00
(2) and (3) 0.0% 14.1% 0.0% — — 0.0014 1.00 0.00
(1) and (3) 0.0% 2.6% 0.0% — — 0.0003 1.00 0.00
(1) and/or (2) and/or (3)* 0.0% 16.5% 0.0% — — 0.0016 1.00 0.00

MLR–Tmax and/or MLR–Fmax and/or MLR–lag 1** 0.0% 5.6% 0.0% — — 0.0006 1.00 0.00
Optimal 0.0% 202.3% 0.0% — — 0.0202 1.00 0.00

Case 3b

(1) MLR–lag 1 0.0% 14.3% 0.0% — — 0.0014 1.00 0.00
(2) FDWA–Fmax 0.0% 57.2% 0.0% — — 0.0057 1.00 0.00
(3) ANWA–Tmax 0.0% 106.4% 0.0% — — 0.0106 1.00 0.00

Consensus
(1) and (2) 0.0% 4.2% 0.0% — — 0.0004 1.00 0.00
(2) and (3) 0.0% 23.9% 0.0% — — 0.0024 1.00 0.00
(1) and (3) 0.0% 4.1% 0.0% — — 0.0004 1.00 0.00
(1) and/or (2) and/or (3)* 0.0% 28.5% 0.0% — — 0.0029 1.00 0.00

MLR–Tmax and/or MLR–Fmax and/or MLR–lag 1** 0.0% 10.2% 0.0% — — 0.0010 1.00 0.00
Optimal 0.0% 229.9% 0.0% — — 0.0230 1.00 0.00

* Any two of three.
** Best 2 of 3 of all 84 possible reference series–test statistic triplets.
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pairing filters the impact of changepoints in the refer-
ence series components while retaining much of the test
sensitivity. However, skillful consensus detection with
this reference series–test statistic pair is possible only
when none of the other pairings includes the MLR ref-
erence series because its use has a large impact on test
sensitivity with all of the test statistics.

Based on the HSS, a consensus of any two of three
tests is generally more skillful than agreement between
a single pair of reference series–test statistic combina-
tions. In fact, a consensus of any two or three reference
series–test statistic pairs is more skillful than the use of
either any two of four, or three of five pairs, etc. This is
because a consensus of a large number of reference–
test combinations will maximize both the number of
coincident hits and the number of coincident false
alarms. Because there is probably more independence
between tests in terms of the position of false alarms,
the small gain in hits using an agreement between, say,
any two of four over any two of three tests is more than
offset by the gain in the number of consensus false
alarms. In case 2, the highest skill scores for any 2 of 3
of the 84 reference series–test statistic pairings are
those paired combinations that include all three test
statistics. In case 3, it is for pairings that include only
the MLR reference.

In case 5a and 5b, which are comprised of simulations
with randomly censored values, results are similar to
the analogous cases 1 and 4a, respectively, with one
exception: all test statistics that are paired with the
FDWA show a large increase in false alarm numbers
relative to the serially complete counterpart scenarios
(cf. e.g., the false alarm column in Tables 4 and 8). This
large increase in pairings that include the FDWA ap-
pears to be caused by random walks introduced into the
FDWA series that are a consequence of biased esti-
mates of the average first difference when one or more
of a component’s series values are censored (missing) at
various positions. Such biased estimates are unavoid-
able when values are missing, and they also impact the
ANWA reference series, but in that case cause only a
small increase in false alarms. In the case of the FDWA,
however, a biased estimate at one position in a series
will cause all subsequent composite averages (or, in this
case, working backward, all earlier averages) to exhibit
the same bias. If there are missing values in the various
reference series at different positions scattered
throughout the summary period, the combination can
cause a random walk, rather than a simple step change,
the range of which may be large (e.g., one standard
deviation), as shown in Fig. 4. When the FDWA com-
posite reference series is used to form a difference (or

TABLE 7. Skill scores for simulations with one (case 4a) or two (case 4b) changepoints in the candidate and one (case 4a) or two
(case 4b) changepoints in each reference series component.

Case 4a

Hit
False
alarm Miss B H F FAR HSSReference series–statistic

(1) MLR–lag 1 35.3% 28.8% 64.7% 0.64 0.35 0.0029 0.45 0.43
(2) FDWA–Fmax 45.4% 38.2% 54.7% 0.84 0.45 0.0039 0.46 0.49
(3) ANWA–Tmax 57.8% 63.2% 42.2% 1.21 0.58 0.0064 0.52 0.52

Consensus
(1) and (2) 32.2% 5.4% 67.8% 0.38 0.32 0.0005 0.14 0.47
(2) and (3) 43.9% 11.5% 56.1% 0.55 0.44 0.0012 0.21 0.56
(1) and (3) 34.2% 5.5% 65.8% 0.40 0.34 0.0006 0.14 0.49
(1) and/or (2) and/or (3)* 46.9% 19.1% 53.1% 0.66 0.47 0.0019 0.29 0.56

MLR–Tmax and/or ANWA–Tmax and/or ANWA–Fmax** 53.0% 26.5% 47.0% 0.80 0.53 0.0027 0.33 0.59
Optimal 61.7% 181.1% 38.3% 2.43 0.62 0.0183 0.75 0.35

Case 4b

(1) MLR–lag 1 29.7% 53.6% 70.3% 0.56 0.30 0.0055 0.47 0.37
(2) FDWA–Fmax 38.0% 50.5% 62.1% 0.63 0.38 0.0052 0.40 0.46
(3) ANWA–Tmax 50.3% 85.0% 49.7% 0.93 0.50 0.0087 0.46 0.51

Consensus
(1) and (2) 24.2% 11.0% 75.8% 0.30 0.24 0.0011 0.19 0.37
(2) and (3) 34.3% 14.6% 65.7% 0.42 0.34 0.0015 0.18 0.48
(1) and (3) 27.4% 9.4% 72.7% 0.32 0.27 0.0010 0.15 0.41
(1) and/or (2) and/or (3)* 39.2% 27.7% 60.8% 0.53 0.39 0.0028 0.26 0.51

MLR–Tmax and/or ANWA–Tmax and/or ANWA–lag 1** 45.1% 42.3% 54.9% 0.66 0.45 0.0043 0.32 0.54
Optimal 55.7% 189.6% 88.6% 1.51 0.56 0.0193 0.63 0.43

* Any two of three.
** Best 2 of 3 of all 84 possible reference series–test statistic triplets.
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ratio) with the target series, the difference series will
incorporate the characteristics of a step change or ran-
dom walk in the reference and lead to a large increase
in false alarms relative to that based on serially com-
plete data or other reference series formulation. Thus,
the averaging of first difference series should be
avoided when serially incomplete values or a changing
station mix must be used. In addition, the potential for
a biased estimate using the ANWA or FDWA formu-
lation will differ according to the relative magnitude of
the field variance of anomalies versus the field variance
of first differences (interannual variability).

Not surprisingly, a comparison of detection results
for simulations containing one shift to those with two
suggests that there is a general reduction in the hit rate
when more than one undocumented changepoint oc-
curs in a series. However, in the simulated scenarios
with a maximum of two changepoints, the number of
false alarms increases proportionately less than the
number of hits when there are two shifts in the series
versus one, so the skill of detection (the HSS) is not
necessarily greatly reduced. The disproportionate
change in the number of false alarms relative to hits is
reflected by the reduction in bias (B) when there are
two changepoints instead of one. Compare, for ex-

ample, case 2a to 2b (Table 5) or case 4a to 4b (Table
7). In some reference series–test statistic pairings, the
HSS is essentially equivalent in scenarios with one and
two breaks, especially in reference series–test statistic
pairings that include the likelihood ratio test.

In general, the optimal solution using the method
defined in (8) is more sensitive than successive hypoth-
esis tests, especially in case 7. The case 7 scenario is
precisely the kind of situation in which the optimal so-
lution should be superior because the imposed change-
points are not hierarchic and they have equal ampli-
tudes but opposite signs at positions 70 and 75. Never-
theless, while the optimal solution has a higher hit rate
than any single hypothesis test, the best of an agree-
ment between any two of three hypothesis test statistic–
reference series pairings also has a very high hit rate.
Given that a consensus of successive hypothesis tests
has many fewer false alarms than the optimal solution,
the skill of a consensus of successive hypothesis testing
is nearly identical to the optimal skill in case 7 and is
higher than the optimal solution in the other cases.

Because the number of false alarms in the optimal
solution, expressed in Tables 4–9 as the total number of
false alarms over the number of target series, is high, a
different penalty function might be used to reduce this

TABLE 8. Skill scores for simulations with one, two, or five missing values in a row at random positions but no changepoints in the
candidate and or reference series components (case 5a) or with missing values and one changepoint in the candidate and one
changepoint in each reference series component (case 5b).

Case 5a

Hit
False
alarm Miss B H F FAR HSSReference series–statistic

(1) MLR–lag 1 0.0% 5.3% 0.0% — — 0.0005 1.00 0.00
(2) FDWA–Fmax 0.0% 27.5% 0.0% — — 0.0027 1.00 0.00
(3) ANWA–Tmax 0.0% 13.8% 0.0% — — 0.0014 1.00 0.00

Consensus
(1) and (2) 0.0% 1.4% 0.0% — — 0.0001 1.00 0.00
(2) and (3) 0.0% 3.9% 0.0% — — 0.0004 1.00 0.00
(1) and (3) 0.0% 1.3% 0.0% — — 0.0001 1.00 0.00
(1) and/or (2) and/or (3)* 0.0% 5.1% 0.0% — — 0.0005 1.00 0.00

MLR–Tmax and/or MLR–Fmax and/or MLR–lag 1** 0.0% 2.1% 0.0% — — 0.0002 1.00 0.00
Optimal 0.0% 115.9% 0.0% — — 0.0116 1.00 0.00

Case 5b

(1) MLR–lag 1 27.6% 25.6% 72.4% 0.53 0.28 0.0026 0.48 0.36
(2) FDWA–Fmax 39.3% 51.7% 60.0% 0.91 0.39 0.0052 0.57 0.41
(3) ANWA–Tmax 54.7% 64.8% 45.3% 1.20 0.55 0.0065 0.54 0.49

Consensus
(1) and (2) 23.2% 4.3% 77.0% 0.27 0.23 0.0004 0.16 0.36
(2) and (3) 37.4% 12.1% 62.6% 0.50 0.37 0.0012 0.24 0.50
(1) and (3) 26.0% 3.5% 74.0% 0.29 0.26 0.0004 0.12 0.40
(1) and (2) and (3)* 41.5% 17.8% 58.5% 0.59 0.41 0.0018 0.30 0.52

MLR–Tmax and/or ANWA–Tmax and/or ANWA–lag 1** 49.2% 28.1% 50.8% 0.77 0.49 0.0028 0.36 0.55
Optimal 58.0% 185.7% 42.0% 2.44 0.58 0.0188 0.76 0.33

* Any two of three.
** Best 2 of 3 of all 84 possible reference series–test statistic triplets.
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total. Caussinus and Mestre (2004), for example, speci-
fied a penalty function for the same type of optimal
solution, which, in contrast to methods by Akaike
(1974) and Schwarz (1978), did not produce an exces-
sive number of changepoints. In Fig. 5, a histogram of
the number of detected changepoints by position is
shown using the solution that is provided by the best
two of three test statistic–reference series pairings. A
comparison of Fig. 5 and a similar histogram provided
in Table 1 of Caussinus and Mestre (2004) indicates
that the consensus result of successive hypothesis tests
is more sensitive than their approach to a penalty func-
tion, while at the same time it limits the number of false
alarms. Thus, successive hypothesis testing using mul-
tiple tests might be a reasonable alternative to optimal
solutions, even when complicated multi-break-point
scenarios occur. Moreover, in the most realistic of
changepoint scenarios, case 6, the optimal hit rate is not
as high as the ANWA–Tmax combination when a
semiempirical splitting algorithm is used for the hy-
pothesis test.

5. Discussion and conclusions

The quantification of detection skill using Monte
Carlo case studies indicates that the likelihood ratio test

is the most sensitive of the three successive hypothesis
test statistics in all but one of the simulated scenarios.
As a result, it is also the most sensitive to changepoints
in reference series components and, thus, has a higher
probability of detection and a higher probability of
false detection. The higher sensitivity of the likelihood
ratio test is not surprising given that the assumption of
no slope in the form of the test used here was met
perfectly by the Monte Carlo simulations. The assump-
tion that there is no local trend may be reasonable in
many situations, but nevertheless should be evaluated
in practice. Wang (2003), arguing from the standpoint
of sampling variability, noted that the sensitivity of the
two-phase regression test can be increased, especially in
short segments, by using a common slope parameter
between the two phases. By eliminating the slope pa-
rameter altogether, the sensitivity of the two-phase re-
gression test is equivalent to that of the zero-slope ver-
sion of likelihood ratio test, and there is no benefit to
including both zero-slope test models in multiple test-
ing.

Even when no phase break points or trends are an-
ticipated, there are step-change configurations in which
allowance for trend changes may vastly increase step-
change detection sensitivity. This was illustrated by the

TABLE 9. Skill scores for simulations with zero to six changepoints of random amplitude and position (case 6) and with six change-
points of fixed amplitude and position (case 7). In case 7, changepoints with an amplitude of 2.0 were added or subtracted as in
Caussinus and Mestre (2004), i.e., �2.0 at position 20, �2.0 at position 40, �2.0 at position 50, �2.0 at position 70, �2.0 at position 75,
and �2.0 at position 85.

Case 6

Hit
False
alarm Miss B H F FAR HSSReference series–statistic

(1) MLR–lag 1 28.1% 63.8% 72.0% 0.49 0.28 0.0066 0.43 0.36
(2) FDWA–Fmax 33.8% 58.3% 66.2% 0.53 0.34 0.0060 0.36 0.43
(3) ANWA–Tmax 45.4% 96.9% 54.7% 0.78 0.45 0.0100 0.41 0.50

Consensus
(1) and (2) 20.9% 10.5% 79.1% 0.24 0.21 0.0011 0.14 0.33
(2) and (3) 28.3% 15.0% 71.7% 0.33 0.28 0.0015 0.15 0.42
(1) and (3) 23.5% 11.9% 76.5% 0.27 0.24 0.0012 0.14 0.36
(1) and/or (2) and/or (3)* 35.1% 31.9% 64.9% 0.46 0.35 0.0033 0.23 0.47

ANWA–Tmax and/or MLR–Tmax and/or ANWA–lag 1** 41.5% 49.4% 58.5% 0.58 0.41 0.0051 0.28 0.51
Optimal 44.3% 200.8% 55.7% 1.14 0.44 0.0215 0.61 0.40

Case 7

(1) MLR–lag 1 86.3% 47.1% 13.9% 0.94 0.86 0.0050 0.08 0.88
(2) FDWA–Fmax 81.8% 31.7% 18.4% 0.87 0.82 0.0034 0.06 0.87
(3) ANWA–Tmax 70.4% 26.3% 29.8% 0.75 0.70 0.0028 0.06 0.79

Consensus
(1) and (2) 73.7% 7.1% 26.4% 0.75 0.74 0.0008 0.02 0.83
(2) and (3) 60.5% 2.1% 39.7% 0.61 0.60 0.0002 0.01 0.74
(1) and (3) 65.3% 2.9% 34.8% 0.66 0.65 0.0003 0.01 0.78
(1) and (2) and (3)* 86.2% 10.1% 13.8% 0.88 0.86 0.0011 0.02 0.91

ANWA–Fmax and/or MLR–lag 1 and/or ANWA–lag 1** 94.3% 15.8% 5.7% 0.97 0.94 0.0017 0.03 0.95
Optimal 99.9% 46.8% 0.1% 1.08 0.999 0.0050 0.07 0.96

* Any two of three.
** Best 2 of 3 of all 84 possible reference series–test statistic triplets.
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case 7 detection results and in a simulation by Easter-
ling and Peterson (1995) who imposed simulated
changepoints with equal amplitudes but opposite signs
10 positions apart. Inclusion of the two-phase regres-
sion model with a slope parameter greatly increases the
likelihood of finding the “temporary” jumps relative to
a zero-slope test model because the apparent change in
trend near the step is frequently sufficient to reject the

null hypothesis of a one-phase segment. In case 7,
where the step changes are not hierarchic, the semihi-
erarchic splitting algorithm that seeks to resolve only
changes in mean often failed to converge on the opti-
mal solution. Even in case 7, however, detection using
successive hypothesis testing is improved with the use
of multiple tests and the consensus skill is comparable
to an optimal solution. In arguably the most realistic of
the simulations, case 6, the consensus of successive hy-
pothesis testing can be more skillful at undocumented
changepoint detection than an optimal solution by lim-
iting the number of false alarms without reducing sen-
sitivity too much. Thus, successive hypothesis testing
may be preferable in situations where intervention in
the result of an optimal algorithm is impractical.

The comparison of various combinations of test sta-
tistics and composite reference series formulations sug-
gests that for reasonably well correlated time series, the
choice of reference series formulation has relatively
little impact on target series changepoint detection
skill, provided that the reference component series are
homogeneous. Though probably rare in practice, under
such circumstances the choice of the test statistic has a
greater impact. In the case where reference series com-
ponents contain changepoints, and/or values are miss-
ing, the choice of reference series formulation has more
important implications in changepoint detection. Step

FIG. 4. (a) Example of FDWA and ANWA composite reference series with randomly
censored values in the five component series; (b) difference between the true value of the
ANWA and FDWA composite reference series and its estimate using component series with
censored values (from case 5a).

FIG. 5. Histogram of the number of detected changepoints by
position for case 7. Detection is from the best consensus result
using three test statistic–reference series pairs (agreement be-
tween any two of three) as indicated in Table 9.
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changes in the various component series are more
readily transferred to the composite reference when
first-difference-filtered climate series are used to calcu-
late truer correlation-based weights and increase the
likelihood that heterogeneities in the composite refer-
ence will be erroneously identified as changepoints in
the target series. On the other hand, a multiple linear
regression or non-first-difference correlation-based-
weighted reference series will tend to reduce the impact
step changes on the composite reference. To confound
the problem, an analyst risks weighting most heavily
those station series that contain similar artificial breaks
when anomaly or raw value correlation weights are
used, reducing changepoint detection sensitivity. This is
a pervasive problem when coincident or nearly coinci-
dent network-wide practice changes are imposed.

The first-difference composite reference has been ad-
vocated to facilitate changepoint detection in shorter,
incomplete series for which anomaly calculation using a
common base period is problematic (Peterson et al.
1998b). Moreover, the removal of spurious first differ-
ences in reference series components, presumably
caused by step changes, also has been recommended
prior to computing the average (Peterson and Easter-
ling 1994). The results of this analysis suggest that com-
posite first differences should be avoided if values are
missing or removed from one or more component se-
ries or, more generally, when the composition of com-
ponent series changes through time. In such circum-
stances, the averaging of first differences introduces
step changes or random walks when the series is con-
verted back to a raw value average. Random walks and
spurious steps increase the number of false alarms if
this form of composite reference is subtracted from a
target series and may lead to erroneous conclusions
about the nature of the background climate signal in a
region when only a small number of reference compo-
nent series is available. To avoid such artifacts in first-
difference-based reference calculations, only serially
complete segments should be used. In that case, the
average first-difference series that is converted back to
raw observations is exactly correlated with a similarly
weighted average anomaly or raw value series, and
there is no advantage to the use of first differences. If
missing values are estimated, the estimate error still will
cascade throughout the average first difference series
and potentially lead to the same type of random walks.

A principal benefit of a multitest consensus, in addi-
tion to improved detection when changepoints are not
hierarchic, occurs in situations where the composite ref-
erence series is not homogeneous because there ap-
pears to be greater independence between tests in the
occurrence of false alarms than in detected change-

points. A consensus of a large number of test statistic–
reference series pairs, however, maximizes the number
of false alarms, while the consensus of only two test
statistics–reference series pairs limits detection to the
least sensitive pairing. Consequently, the most skillful
consensus appears to be any two of three test statistic–
composite reference series pairs. Using the agreement
between any two of three tests, detection skill in simu-
lations where reference series components contain
changepoints (case 4) are comparable to the perfectly
homogeneous reference series case and the use of a
single test (case 2). The reference series–test statistic
combinations that are most appropriate for a particular
evaluation of nonclimatic changepoints may depend, in
large part, on the relative priority of reducing false
alarms or avoiding misses. If a climate series is to be
adjusted for undocumented changepoints, then the re-
duction of false alarms may be critical and multiple
linear regression or non-first-difference-based correla-
tion weights should be used in a least one of the three
reference series formulations. If sensitivity is critical,
then multiple linear regression or non-first-difference-
based weighting should be used in, at most, one of the
reference series formulations.

Even in the use of a consensus approach, however,
the proportion of detected changepoints that are false
(the FAR) remains substantial, over 25%, for example,
in the most realistic simulations (case 6). Alternative
strategies, therefore, are likely required to reduce the
false alarm rate in real world applications. Such strat-
egies may include increasing the number of references
series components that are used to form the average (Li
et al. 2005, manuscript submitted to J. Geophys. Res.),
or an iterative recalculation of the composite reference
where the target series is the only series common to all
calculated difference series (Szentimrey 1999). False
alarms that are linked to changepoints in the composite
reference series also may be avoided through a pairwise
comparison of climate series (Jones et al. 1986; Menne
and Duchon 2001; Caussinus and Mestre 2004). In a
pairwise approach, the concept of target and reference
lose their meaning and the offending series may be
more readily identified. Detection skill based on this
approach to undocumented changepoint analysis will
be discussed in a forthcoming paper.
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