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Abstract

The Bayesian literature on the change point problem deals
with the inference of a change in the distribution of a set of time-
ordered data based on a sample of fixed size. This is the so-called
“retrospective or off-line” analysis of the change point problem.
A related but different problem is that of the “sequential” change
point detection, mainly analyzed from a frequentist viewpoint.
While the former typically focuses on the estimation of the

position in which the change point occurs, the latter is a testing
problem which has a natural formulation as a Bayesian model
selection problem. In this paper we provide such a Bayesian
formulation, which generalizes previous formulations such as the
well-known CUSUM stopping rule.
We show that the conventional improper priors (also called

non-informative, objective or default), cannot be used either for
sequential detection of the change or for retrospective estimation.
Then, we propose objective intrinsic prior distributions for the
unknown model parameters. The normal and Poisson cases are
studied in detail and examples with simulated and real data are
provided.
Keywords: change point, intrinsic priors, model selection,

sequential detection, retrospective estimation.

1 Introduction

There is an extensive literature on the subject of quick detection of
changes in the parameters of a model of a stochastic system on the basis
of sequential observations of the system, see for instance Lai (1995), and
references therein. The simplest case of this problem can be described
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as follows. For a given experiment a sample of independent sequential
observations {xn, n ≥ 1} is available. When the experiment is under
control the observations come from a specific density f0(x), and when the
experiment is out-of-control at a certain point, the following observations
are then coming from a known but different density f1(x). Therefore,
the sampling density of the first n observations x = (x1, ..., xn) is given
by

fn(x|r) =

Qr

i=1 f0(xi)
Qn

i=r+1 f1(xi), if 1 ≤ r ≤ n− 1,Qn
i=1 f0(xi), if r = n,

(1)

where the discrete unknown parameter r indicates a change point in the
sample.
Two related problems are here of interest. One is that of testing

sequentially whether the experiment is under control, i.e., for each n we
want to test the null hypothesis of no changeH0 : fn(x|n) =

Qn
i=1 f0(xi),

versus the alternative of a change point H1 : {fn(x|r), 1 ≤ r ≤ n − 1}.
As a consequence, we stop the experiment at the first value of n for
which H0 is rejected. The other one is the retrospective estimation of a
change point based on the whole dataset.
From a Bayesian viewpoint we need to solve a testing problem which

is formulated as a model selection problem between

M0 : fn(x|n),
M1 : {fn(x|r), π(r|n)}, (2)

where π(r|n) is a prior distribution on the set {1, 2, ..., n− 1}.
The paper is organized as follows. In Section 2 we formulate the se-

quential detection and the retrospective estimation of the change point
problem. Section 3 deals with the analysis of the change point problem
for parametric families of sampling distributions and presents our pro-
posal of using intrinsic priors for the model parameters. Section 4 and 5
provide formulae for the Poisson and normal cases, respectively. Section
6 illustrates the findings using five sets of data: the British coal-mining
disaster data of Jarret (1979), the simulated data of Page (1955), the
industrial data analyzed in Pettitt (1979), the stock market returns stud-
ied by Hsu (1979), and the annual volume of the Nile river for the years
1871 to 1970 taken from the work of Cobb (1978). Section 7 provides
concluding remarks.

2 Bayesian stopping rules

Consider a loss function L(di,Mj) = cij, where di represents the decision
of choosing model Mi, and cij is the cost associated to the decision di
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when the underlying model is Mj for i, j = 0, 1. Assuming that the cost
of a correct decision is zero, that is c00 = c11 = 0, the optimal decision
is to reject M0 if the posterior risk R(d1|x) is smaller than R(d0|x). If
we denote P (M0) and P (M1) as the prior probabilities of the two model
involved, then simple calculations show that the optimal decision is to
reject M0 when the inequality

P (M1|x)
P (M0|x) ≥ c

holds, where c = c10/c01 and

P (M1|x) =
Pn−1

r=1 fn(x|r)π(r|n) P (M1)

fn(x|n)P (M0) +
Pn−1

r=1 fn(x|r)π(r|n) P (M1)
.

The above inequality can be written asPn−1
r=1 fn(x|r)π(r|n)

fn(x|n) ≥ c1,

where c1 = c P (M0)/P (M1).
An anonymous referee has pointed out that it might not be reason-

able to maintain the loss cij constant in value during the course of an
experiment. We are in complete agreement. When this is the case, the
Bayesian stopping rules below can be easily adapted to this setting.
A default (also called objective) choice for P (M0) is 1/2 for which

the resulting Bayesian stopping rule is

Nπ = inf

(
n :

Pn−1
r=1 fn(x|r)π(r|n)

fn(x|n) ≥ c

)
. (3)

The prior π(r|n) is typically chosen as the uniform distribution π(r|n)
= 1/(n− 1) (Chernoff and Zacks 1965, Smith 1975, Carlin et al. 1992),
for which the Bayesian stopping rule becomes

NU = inf

(
n :

1

(n− 1)
Pn−1

r=1 fn(x|r)
fn(x|n) ≥ c

)
. (4)

If π(r|n) in (3) is chosen to be a degenerate distribution on the max-
imum likelihood estimator of r (this is a non-orthodox data dependent
prior), then the likelihood ratio test is obtained and the corresponding
stopping rule would then be

NMLE = inf

(
n : max

1≤r≤n−1

nY
i=r+1

f1(xi)

f0(xi)
≥ c

)
. (5)
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This is the CUSUM stopping rule introduced by Page (1954).
An extension of CUSUM to allow the single density f1 to describe

the out-of-control distribution to belong to the exponential family fθ(x)
have been considered by Lorden (1971). The proposed stopping rule has
the form

NL = inf

(
n : max

1≤r≤n−1
sup
θ∈Θ

nY
i=r+1

fθ(xi)

f0(xi)
≥ c

)
.

More general situations where f0(x) and f1(x) belong to a family
of densities have already been considered, see, for instance, Sen and
Srivastava (1973), Hsu (1979), Pettitt (1979), Worsley (1986), Siegmund
(1988), Pollak and Siegmund (1991) and Müller (1992), among others.

2.1 Retrospective estimation of a change point
Suppose that a sample of fixed size n is drawn from the sampling model
with a change point fn(x|r), where 1 ≤ r ≤ n − 1. In this setting, the
so-called retrospective analysis refers to the problem of estimating r, the
position of the change point. For a prior π(r|n), the Bayesian estimation
of r is based on the posterior distribution

π(r|x) = fn(x|r)π(r|n)Pn−1
r=1 fn(x|r)π(r|n)

, 1 ≤ r ≤ n− 1.

Sometimes, we may assume that several changes might occur. Then,
model (2) should be modify accordingly. Note, however, that in the
sequential detection of a first change no assumption of this nature is
required.

3 The parametric change point problem

The Bayesian literature on the change point problem focuses on the
retrospective analysis for situations where f0(x) and f1(x) belong to a
parametric family of densities; see, for instance, Ferreira (1975), Smith
(1975), Choy and Broemeling (1980), Smith and Cook (1980), Men-
zefrike (1981), Raftery and Akman (1986), Carlin et al.(1992), among
others. When f0(x) and f1(x) are densities belonging to a parametric
family to be denoted as f(x|θ1) and f(x|θ2) respectively, where θ1 and
θ2 are unknown points of a parameter space Θ, the sampling density of
the first n observations is

fn(x|r, θ1, θ2) =
rY

i=1

f(xi|θ1)
nY

i=r+1

f(xi|θ2), if 1 ≤ r ≤ n− 1, (6)

and

fn(x|n, θ) =
nY
i=1

f(xi|θ), if r = n. (7)
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We notice that fn(x|n, θ) is nested in fn(x|r, θ1, θ2) for any 1 ≤ r ≤ n,
a useful property that we will use later.
For some priors distributions π0(θ), π1(θ1, θ2), and the loss function

stated in Section 2, the Bayesian stopping rule is now given by

Nπ0,π1 = inf

(
n :

Pn−1
r=1 π(r|n)

R
fn(x|r, θ1, θ2)π1(θ1, θ2)dθ1dθ2R
fn(x|n, θ)π0(θ)dθ ≥ c

)
,

where as before c = c10/c01. This stopping rule can also be written as

Nπ0,π1 = inf {n : Tn(x) ≥ c} , (8)

where Tn(x) =
Pn−1

r=1 Brn(x)π(r|n) and

Brn(x) =

R
fn(x|r, θ1, θ2)π1(θ1, θ2)dθ1dθ2R

fn(x|n, θ)π0(θ)dθ , (9)

is the Bayes factor for comparing model (6) and (7) for a fixed r.
Given a sample of size n, and assuming that one change point has

occurred before n with prior probability π(r|n), the posterior probability
that the change point is located at position r is computed as

π(r|x) = π(r|n) R fn(x|r, θ1, θ2)π1(θ1, θ2)dθ1dθ2Pn−1
r=1 π(r|n)

R
fn(x|r, θ1, θ2)π1(θ1, θ2)dθ1dθ2

, (10)

for 1 ≤ r ≤ n− 1.
Sometimes we are interested in the magnitude of the change. For

instance, when θ1 and θ2 are either scale or location parameters then
the posterior density of ϕ(θ1, θ2) = θ1/θ2 or ϕ(θ1, θ2) = θ1− θ2 might be
of interest. The posterior density of ϕ can be obtained from the posterior
density

π(θ1, θ2|x, n) =
Pn−1

r=1 fn(x|r, θ1, θ2)π1(θ1, θ2)π(r|n)Pn−1
r=1 π(r|n)

R
fn(x|r, θ1, θ2)π1(θ1, θ2)dθ1dθ2

, (11)

with an appropriate change of variables.

We note that while the Bayesian stopping rule (8) depends on the
prior distributions π0(θ) and π1(θ1, θ2), the posterior distributions (10)
and (11) only depend on the prior π1(θ1, θ2). This makes sense since in
the derivation of (10) and (11) we have assumed that before n a change
has occurred.
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3.1 Objective Bayesian methods
Both the retrospective analysis and the sequential detection of a change
point, share the difficulty of assessing prior distributions to the unknown
parameters. On parameter r a uniform prior is the common choice, and
for the sampling densities parameters either conjugate priors or vague
priors, which are obtained as a limit of conjugate priors with respect to
some of the hyperparameters, are typically used.
However, the use of such a priors is far from simple: conjugate pri-

ors need to assess values for the hyperparameters, so that some sort of
subjective input or empirical Bayes estimation is necessary. Further, the
use of vague priors hides the fact that they are improper. On the other
hand, the Jeffreys‘s or the reference (Berger and Bernardo 1992) priors
are typically improper. Unfortunately, for improper priors the result-
ing marginals of the data are not well-defined, in fact they are defined
up to an arbitrary positive constant. Thus, when using such a type of
priors neither the posterior distribution of r nor the Bayesian stopping
rule do exist. An alternative approach is the use of recent methods
(called objective) based on partial Bayes factors or in intrinsic priors,
which have become very popular (Berger 2000, Clyde 2001, Kim and
Sun 2000, Wasserman 2000, Berger et al. 2001, Sweeting 2001, Casella
and Moreno 2003).
In this paper, we propose the use of intrinsic priors for the unknown

parameters of the models involved. They are derived from the arithmetic
intrinsic Bayes factor (Berger and Pericchi 1996) plus an asymptotic ar-
gument (Moreno et al. 1998). Interestingly, among the existing objective
procedures this seems to be the only one that can be employed for the
change point problem. This assertion follows from the fact that most of
the objective methods use real samples for training the improper prior,
and such a real training samples might not exist for the change point
model. Indeed, in a retrospective analysis, conditional on a sample of
fixed size n, a change point might occur at a position smaller in value
than the minimal training sample size and hence no training sample ex-
ists. On the other hand, for the sequential detection of the change point,
the stopping rule assumes that a change may occur at any position, and
therefore the same difficulty arises.
Intrinsic priors, however, do not use real training samples, but the-

oretical training ones, and hence the difficulty with the absence of a
real training sample dissappear. Furthermore, reasons for using intrin-
sic priors include (i) they are free of hyperparameters, (ii) they provide
a well-defined Bayesian solution for testing problems, and (iii) under
the intrinsic prior distribution, the parameters in the alternative model
are not independent and they are “centered” at the null, a condition
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widely required in testing scenarios (Jeffreys 1961, Berger and Sellke
1987, Casella and Berger 1987, Morris 1987). Moreover, intrinsic priors
have proved to behave extremely well for a wide variety of problems (see,
for instance, Moreno et al. 1999, 2000, 2003, Moreno and Liseo, 2003.
Kim and Sun 2000, Casella and Moreno 2002, 2003a, 2003b). The main
inconvenient of the intrinsic priors for complex models is that they are
difficult to compute. In particular, a closed form for them is typically
not available.

3.2 Intrinsic priors
The essential feature of the change point problem is that the obser-
vations come from either model f(x|θ) or f(x|θ1)f(x|θ2). Hence the
canonical form of the problem is that of testing the null H0 : f(x|θ) ver-
sus H1 : f(x|θ1)f(x|θ2). Let us denote πD(θ) the conventional improper
prior for θ. For nested scenarios, as is our case, an standard solution
to the difficulties mentioned in subsection 3.1 is to replace the improper
prior πD(θ1)πD(θ2) with the intrinsic prior πI(θ1, θ2), so that the model
selection problem becomes that of choosing between M0 and M1

M0 : {fn(x|n, θ), πD(θ)},
M1 : {fn(x|r, θ1, θ2), πI(θ1, θ2)π(r|n)}.

The intrinsic prior (Berger and Pericchi 1996; Moreno et al. 1998) for
the parameters θ1, θ2 is given by

πI(θ1, θ2) = πD(θ1)π
D(θ2)EX|θ1,θ2B

D
01(X1(c), X2(c)), (12)

where

BD
01(X1(c), X2(c)) =

mD
0 (X1(c), X2(c))

mD
1 (X1(c), X2(c))

.

In this expression X = (X1(c), X2(c)) is a random vector with 2c i.i.d.
components, and c is the minimum size such that the marginal

mD(X1(c)) =

Z
f(X1(c)|θ1)πD(θ1)dθ1

is positive and finite a.s.. The pair {πD(θ), πI(θ1, θ2)} is called intrinsic
priors.
The use of intrinsic priors has many advantages that we briefly sum-

marize.
i) The Bayes factor (9) for the intrinsic priors {πD(θ), πI(θ1, θ2)},

BIP
rn (x) =

R
fn(x|r, θ1, θ2)πI(θ1, θ2)dθ1dθ2R

fn(x|n, θ)πD(θ)dθ , 1 ≤ r ≤ n− 1, (13)
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is well defined as it does not depend on any arbitrary constant.
ii) The parameters θ1 and θ2 are dependent under the intrinsic prior
πI(θ1, θ2), which seems to be reasonable.
iii) The intrinsic prior πI(θ1, θ2) can also be written as the mixture

πI(θ1, θ2) =

Z
πI(θ1, θ2|θ)πD(θ)dθ.

This means that the intrinsic prior is “centered at the null” (Casella and
Moreno, 2002).
iv) The intrinsic priors are fully determined, so there is no parameter to
be adjusted.

3.3 Intrinsic stopping rule and posterior probabil-
ity of a change point

For the intrinsic priors {πD(θ), πI(θ1, θ2)} and the uniform π(r|n) =
1/(n− 1) the Bayesian stopping rule (8) becomes

N IP = inf

(
n :

1

n− 1
n−1X
r=1

BIP
rn (x) ≥ c

)
, (14)

where the Bayes factor inside the bracket is given in (13) .
On the other hand, the posterior probability that a change occurs at

position r, conditional on a sample of size n, when using the intrinsic
πI(θ1, θ2) and the uniform π(r|n) = 1/(n− 1) priors, is given by

π(r|x, n) =
R
fn(x|r, θ1, θ2)πI(θ1, θ2)dθ1dθ2Pn−1

r=1

R
fn(x|r, θ1, θ2)πI(θ1, θ2)dθ1dθ2

, (15)

for 1 ≤ r ≤ n− 1.
4 The Poisson case

Let us assume that the sampling density is a Poisson distribution. For
a sample x = (x1, ..., xn) the likelihood function under the null of no
change is

fn(x|n, θ) =
nY
i=1

θxi

xi!
exp{−θ}, θ > 0,

and is

fn(x|r, θ1, θ2) =
rY

i=1

θxi1
xi!
exp{−θ1}

nY
i=r+1

θxi2
xi!
exp{−θ2}, if 1 ≤ r ≤ n− 1,
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under the alternative that a change occurs. The Jeffreys prior for the
Poisson parameter is the improper prior πD(θ) = k θ−1/2, where k is an
arbitrary positive constant.
Lemma 1. The intrinsic prior for θ1, θ2, conditional on θ, is

πI(θ1, θ2|θ) =
2Y

i=1

θ
−1/2
i

exp{−(θ + θi)}
Γ(1/2)

F 1
0 (1/2, θθi), (16)

where F 1
0 denotes the hypergeometric function (Abramowitz and Stegun

1970).
Proof. See Appendix 1.
By construction this prior is a probability density for any value of θ,

so that
R
πI(θ1, θ2|θ)dθ1dθ2 = 1. This density factorizes as πI(θ1, θ2|θ) =

πI(θ1|θ)πI(θ2|θ), so that the parameters are independent, conditional on
θ. The marginal distribution of θi, conditional on θ, is a unimodal
continuous density with mode at 0 for i = 1, 2.
The unconditional intrinsic prior for θ1, θ2,

πI(θ1, θ2) = k

Z
πI(θ1, θ2|θ) 1

θ1/2
dθ,

and they are not independent. It is an improper distribution, as it is
typically the case for a non subjective prior, although the Bayes factor
BIP
rn (x) for the intrinsic priors {πD(θ), πI(θ1, θ2)} is well defined.
4.1 Bayes factor for intrinsic priors
Using some algebra it can shown that the marginal of the sample x under
model {fn(x|r, θ1, θ2), πI(θ1, θ2|θ)}, for 1 ≤ r ≤ n−1, can be written as

mr(x|θ) = k(r,x) exp{−2θ}

×F 1
1 (rx̄1(r) + 1/2, 1/2,

θ

r + 1
)F 1

1 ((n− r)x̄2(r) + 1/2, 1/2,
θ

n− r + 1
),

(17)
where F 1

1 denotes the Kummer function (Abramowitz and Stegun 1970),

k(r,x) =
1Qn

i=1 xi!

µ
1

r + 1

¶rx̄1(r)+1/2µ 1

n− r + 1

¶(n−r)x̄2(r)+1/2
×Γ(rx̄1(r) + 1/2)Γ((n− r)x̄2(r) + 1/2)

Γ(1/2)Γ(1/2)
,

and

x̄1(r) =
1

r

rX
i=1

xi, x̄2(r) =
1

n− r

nX
i=r+1

xi.
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On the other hand, under no change the marginal mn(x|θ) is simply

mn(x|θ) = 1Qn
i=1 xi!

θnx̄ exp{−nθ}, (18)

where x̄ =
Pn

i=1 xi/n. From (17) and (18) the Bayes factor for intrinsic
prior BIP

rn (x), is

BIP
rn (x) =

R∞
0

mr(x|θ)θ−1/2dθR∞
0

mn(x|θ)θ−1/2dθ

=

Ã
nY
i=1

xi!

!
nnx̄+1/2

Γ(nx̄+ 1/2)

Z ∞

0

mr(x|θ)θ−1/2dθ. (19)

We note that in this expression the statistic
Qn

i=1 xi! cancels out, so that
the Bayes factor only depends on the sufficient statistics (x̄1(r), x̄2(r), x̄).
We also note that the computation of BIP

rn (x) requires a one-dimensional
numerical integration, which can be done with the help of a standard
package.
Once {BIP

rn (x), 1 ≤ r ≤ n − 1} is found the Bayesian stopping rule
(14) for the Poisson case follows immediately. Likewise, the posterior
probability (15) turns out to be

π(r|x, n) =
R∞
0

mr(x|θ)θ−1/2dθPn−1
r=1

R∞
0

mr(x|θ)θ−1/2dθ
, 1 ≤ r ≤ n− 1. (20)

5 The normal case

For the normal family of densities and assuming that the observations
x = (x1, ..., xn) are independent, the likelihood function under the null
of no change is

f(x|θ, τ , n) =
nY
i=1

N(xi|θ, τ 2),

where the location θ and scale τ parameters are unknown. Under the
alternative of a change point at position r,

f(x|µ,σ, r) =
rY

i=1

N(xi|µ1, σ21)
nY

i=r+1

N(xi|µ2, σ22), if 1 ≤ r ≤ n− 1,
(21)

is the likelihood function for the parameters µ = (µ1, µ2), σ = (σ1, σ2)
and r.
Intrinsic priors for the change point problem are derived by compar-

ing the two models

M0 :

½
N(x|θ, τ 2), πD(θ, τ) = k0

τ

¾
,
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and

M1 :

½
N(x|µ1, σ21)N(y|µ2, σ22), πD(µ,σ) =

k1
σ1σ2

¾
,

where πD represents the reference prior, and c0 and c1 are arbitrary
positive constants.
Lemma 2. In comparingM0 versusM1 the intrinsic prior for (µ, σ),

conditional on (θ, τ), is

πI(µ,σ|θ, τ) =
2Y

i=1

N(µi|θ,
σ2i + τ 2

2
)HC+(σi|0, τ),

where HC+ denotes a half Cauchy distribution on the positive part of
the real line. The unconditional intrinsic prior is

πI(µ,σ) =

Z
πI(µ,σ|θ, τ) πD(θ, τ)dθdτ.

Proof. See Appendix 2.
By construction the intrinsic prior πI(µ,σ|θ, τ), conditional on (θ, τ),

is a probability density. The marginal intrinsic prior for µi conditional
on θ and τ , is a unimodal distribution with mode at θ,mean θ, and it has
very heavy tails. Indeed, it does not have moments of order greater than
one; this follows from the fact that all moments of the mixing distribution
are infinite. This behaviour is close to that advocated by Jeffreys (1961)
when testing that the mean of a normal distribution has a zero value.
He proposed a Cauchy prior for the mean and the conventional default
improper prior, 1/σ say, for the nuisance parameter σ. Note, however,
that the marginal intrinsic prior for σi, conditional on τ , is a proper
distribution.
However, although the unconditional intrinsic prior πI(µ,σ) is an

improper density, the pair (πD(θ, τ), πI(µ,σ)) depends on the same ar-
bitrary positive constant k0 so that the corresponding Bayes factor is
well defined (some authors refer this as to well-calibrated distributions).

5.1 Bayes factor for intrinsic priors
Given the sample x = (x1, ..., xn), we set

x̄1(r) =
1

r

rX
i=1

xi, x̄2(r) =
1

n− r

nX
i=r+1

xi

s21(r) =
1

r

rX
i=1

(xi − x̄1(r))
2, s22(r) =

1

n− r

nX
i=r+1

(xi − x̄2(r))
2.
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The Bayes factor BIP
rn (x) for the intrinsic priors {πI(µ,σ), πD(θ, τ)}

is computed as follows. The marginal of x under modelMr with respect
to πI(µ,σ) is given by

m(x|r) = k(r) I(r,x),

where

k(r) = k0
2Γ(n/2)

π2(2π)(n−1)/2(r(n− r))1/2
,

I(r,x) =

Z π/2

0

Z π/2

0

(cosψ)−(n−2) sin(ψ)(cosϕ)−(r−2)(sinϕ)−(n−r−2)³
cos2 ψ cos2 ϕ

r
+ cos2 ψ sin2 ϕ

n−r + cos2 ψ
2
+ sin2 ψ

´1/2
× A(r,x,ψ, ϕ)−n/2

(cos2 ψ cos2 ϕ+ sin2 ψ)(cos2 ψ sin2 ϕ+ sin2 ψ)
dϕdψ,

and

A(r,x,ψ, ϕ) =
rs21(r)

2 cos2 ψ cos2 ϕ
+
(n− r)s22(r)

2 cos2 ψ sin2 ϕ

+
(x̄1(r)− x̄2(r))

2

2(cos2 ψ cos2 ϕ/r + cos2 ψ sin2 ϕ/(n− r) + cos2 ψ/2 + sin2 ψ)
.

The marginal m(x|n) with respect to πD(θ, τ) is given by

m(x|n) = k0
Γ((n− 1)/2)

2π(n−1)/2nn/2s1(n)(n−1)
.

The Bayes factor for intrinsic prior BIP
rn (x) is the ratio

BIP
rn (x) =

m(x|r)
m(x|n) , 1 ≤ r ≤ n− 1,

We remark that the computation of BIP
rn (x) requires a two-dimensional

numerical integration on the square [0, π/2]2. With the values BIP
rn (x)

in (14) the Bayesian stopping rule for the normal family is obtained.
The retrospective analysis, conditional to a sample size n, is obtained
immediately from (20).

5.2 The homoscedastic case
For some applications it is reasonable to assume that σ1 = σ2. Then,
the sampling model f(x| µ,σ, r) in (21) becomes

f1(x|µ, σ, r) =
rY

i=1

N(xi|µ1, σ2)
nY

i=r+1

N(xi|µ2, σ2). (22)
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This likelihood involves a parameter space with lower dimension than
that of (21), so that it is of interest to test whether or not the ho-
moscedastic condition can be accepted.
For testing homoscedasticity the Bayesian nested models to be com-

pared are

{f1(x|η, σ, r), πN1 (η, σ, r) =
c0
σ

1

n− 1}, (23)

{f(x|µ,σ, r), πN(µ,σ, r) = c1
σ1σ2

1

n− 1}, (24)

where c0 and c1 are arbitrary positive constants.
Lemma 3. When comparing model (23) and (24) the intrinsic prior

for (µ,σ), conditional on (η, σ), is

πI(µ,σ|η, σ) =
2Y

i=1

N(µi|ηi,
σ2i + σ2

2
)HC+(σi|0, σ). (25)

The unconditional intrinsic prior for (µ,σ) is

πI(µ,σ) = c0

Z (
2Y

i=1

HC+(σi|0, σ)
)
1

σ
dσ.

Proof.- The proof is similar to that of the Lemma 3 and hence omitted.
Note that under the unconditional intrinsic prior, σ1 and σ2 are inde-

pendent and µ is uniformly distributed on the plane. The Bayes factor
for comparing model (23) and (24) when using the intrinsic prior is

BIP
12 (x) =

m1(x)

m2(x)
=

Pn−1
r=1 m1(x|r)Pn−1
r=1 m2(x|r)

,

where

m1(x|r) = c0

2π(n−2)/2
p
r(n− r)

Γ(n−2
2
)

(rs21(r) + (n− r)s22(r))
(n−2)/2 ,

m2(x|r) = k(r)I3(r,x),

and

I3(r,x) =

Z π/2

0

Z π/2

0

(cosψ)−(n−3) sin(ψ)(cosϕ)−(r−1)(sinϕ)−(n−r−1)

(cos2 ψ cos2 ϕ+ sin2 ψ)

× A1(r,x,ψ, ϕ)
−(n−1)/2

(cos2 ψ sin2 ϕ+ sin2 ψ)
dϕdψ,

with

A1(r,x,ψ, ϕ) =
rs21(r)

2 cos2 ψ cos2 ϕ
+
(n− r)s22(r)

2 cos2 ψ sin2 ϕ
.
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5.3 Bayesian stopping rule and posterior probabil-
ity of a change

Conditional on the homoscedastic condition, the likelihood function of
the sample x is either f1(x|µ, σ, r) as given in (22) for some r = 1, ..., n−
1, or f(x|θ, τ , n). The Bayesian stopping rule needs the Bayes factor for
comparing models

Mr : {f(x|θ, τ , n), πD(θ, τ) = c0/τ}, (26)

and
Mn : {f1(x|µ, σ, r), πD(µ, σ) = c1/σ}, (27)

where πD represents the reference prior distribution (Berger and Bernardo
1992). As before, we compute the intrinsic priors for the models involved.
Lemma 4. When comparing model (26) versus (27) the intrinsic

prior for (µ, σ), conditional on (θ, τ), is given by

πI(µ, σ|θ, τ) = N(µ1|θ,
σ2 + τ 2

2
)N(µ2|θ, σ2 + τ 2)HC+(σ|0, τ).

Proof. The proof is similar to that of Lemma 3 and hence omitted.
We note that under the conditional intrinsic prior µ1 and µ2 are inde-

pendent but they are not identically distributed. The reason is that the
theoretical minimal training sample we have considered involves three
independent random variables, two of them with normal distribution
N(x|µ1, σ2), and the third one distributed as N(x|µ2, σ2). If, instead,
we consider instead two of them as N(x|µ2, σ2) distributed and the third
one as N(x|µ1, σ2), then we obtain the conditional intrinsic prior as

π(µ, σ|θ, τ) = N(µ1|θ, σ2 + τ 2)N(µ2|θ,
σ2 + τ 2

2
)HC+(σ|0, τ).

However, the resulting Bayes factors by using either πI(µ, σ|θ, τ) or
π(µ, σ|θ, τ) are exactly the same.
For comparing model {f1(x|µ, σ, r), πI(µ, σ|θ, τ)πN(θ, τ)} and {f(x|θ, τ , n),

πN(θ, τ)}, the Bayes factor is BIP
rn (x) = mIP (x|r)/mIP (x|n) where

mIP (x|n) = k0
Γ((n− 1)/2

2π(n−1)/2nn/2s1(n)(n−1)
,

and
mIP (x|r) = k1(r)I4(r,x),

with

k1(r) = c0
Γ(n−1

2
)

2(n−1)/2π(n+1)/2
p
r(n− r)

,

14



I4(r,x) =

Z π/2

0

C(r,x, ϕ)−(n−1)/2

(sinϕ)n−2
q

n
r(n−r) sin

2 ϕ+ 3
2

dϕ,

and

C(r,x, ϕ) =
rs21(r) + (n− r)s22(r)

2 sin2 ϕ
+

(x̄1(r)− x̄2(r))
2

2
³

n
r(n−r) sin

2 ϕ+ 3
2

´ .
The Bayesian stopping rule follows from expression (14) with the above
Bayes factor. The posterior distribution of the change point follows from
expression (20) with the marginals {mIP (x|r), 1 ≤ r ≤ n}.
6 Some examples

We apply the results given in Sections 3 and 4 to five datasets: the
intervals of time between coal-mine disasters (Jarret 1979), the simulated
data of Page (1955), the industrial data considered by Pettitt (1979), the
stock rates of return data given in Hsu (1979), and the Nile River flows
of Cobb (1978).
Example 1.
Consider the data of the number of intervals between British coal-

mining disasters during the 112-year period, between 1851-1962 (Jarret
1979). The observed annual counts given in Table 1, have been taken
from Carlin et al. (1992).
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Table 1: British coal-mining disaster data by year, 1851-1962. C=Count

Year C Year C Year C Year C Year C Year C
1851 4 1871 5 1891 2 1911 0 1931 3 1951 1
1852 5 1872 3 1892 1 1912 1 1932 3 1952 0
1853 4 1873 1 1893 1 1913 1 1933 1 1953 0
1854 1 1874 4 1894 1 1914 1 1934 1 1954 0
1855 0 1875 4 1895 1 1915 0 1935 2 1955 0
1856 4 1876 1 1896 3 1916 1 1936 1 1956 0
1857 3 1877 5 1897 0 1917 0 1937 1 1957 1
1858 4 1878 5 1898 0 1918 1 1938 1 1958 0
1859 0 189 3 1899 1 1919 0 1939 1 1959 0
1860 6 1880 4 1900 0 1920 0 1940 2 1960 1
1861 3 1881 2 1901 1 1921 0 1941 4 1961 0
1862 3 1882 5 1902 1 1922 2 1942 2 1962 1
1863 4 1883 2 1903 0 1923 1 1943 0
1864 0 1884 2 1904 0 1924 0 1944 0
1865 2 1885 3 1905 3 1925 0 1945 0
1866 6 1886 4 1906 1 1926 0 1946 1
1867 3 1887 2 1907 0 1927 1 1947 4
1868 3 1888 1 1908 3 1928 1 1948 0
1869 5 1889 3 1909 2 1929 0 1949 0
1870 4 1890 2 1910 2 1930 2 1950 0

Frequentist change point analyses of these data are found in Jarret
(1979), Rudemo (1982), Worsley (1986) and Siegmund (1988). Bayesian
analyses have been given by Raftery and Akman (1986) and Carlin et
al. (1992).
We assume that the data come from the Poisson family of distribu-

tions as suggested by Jarret (1979) and Rudemo (1982). Figure 1 shows
the values of the stopping rule Tn given by expression (8), when using
the intrinsic priors, for n ≤ 46. These values are quite small for n below
46, but afterwards Tn increases considerably, giving strong evidence for
a change point in the year 1896.
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Figure 1. Values of the intrinsic stopping rule

On the other hand, a retrospective analysis on the position of the
change point based on the total number of observations, shows that the
posterior probability π(r|x, n = 112) is close to zero for all r except for
those r between r = 36 and r = 46. A plot of the posterior probability
of r is given in Figure 2. The mode of the posterior distribution of r is
attained at point r = 41, which corresponds to the year 1891.
While the retrospective analysis, which uses the whole set of data,

finds 1891 as the most plausible candidate for a change, the sequential
detection procedure finds evidence for a change in the year 1896. It
suggests that the sequential procedure detects a change point with some
delay. This is a sensible result, however, since the model needs some
data to recognize a change.
The posterior probability of the mode is 0.24 and the posterior mean

of r is 39.9. The expectation of the magnitude of the change isE(λ1/λ1|x) =
3.38. Raftery and Akman (1986) and Carlin et al. (1992) obtained sim-
ilar results. The estimate of the change point found by Worsley (1986)
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was 1890.
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Figure 2. Intrinsic posterior probabilities of the changepoint

Example 2 (Page’s data).
The data is based on a simulation with forty observations with a

change point at r = 20. The first twenty observations are taken from
a normal distribution with mean 0 and standard deviation 1, and the
remaining ones from a normal with mean 1 and standard deviation 1.
The data are plotted in Figure 3.
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Figure 3: Simulated normal data (Page,1955)

Assuming a normal model, we first test the homoscedastic constraint.
The Bayes factor for testing homoscedasticity (HO) against heteroscedas-
ticity (HE) has a value of 5.2 so conveying enough evidence for rejecting
heteroscedasticity. In fact, for the prior Pr(HO) = Pr(HE) = 0.5, the
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posterior probabilities of the homoscedastic and heteroscedastic models
turn out to be

Pr(HO|x) = 0.84, Pr(HE|x) = 0.16.

Under the homoscedastic normal model, the sequence of values of the
stopping rule Tn is plotted in Figure 4. These values provide evidence
of a change point at r = 20, a very accurate inference.
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Figure 4. Values of the intrinsic stopping rule

Based on the whole sample and the evidence of a change point, the
posterior distribution of the change point is plotted in Figure 5.
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Figure 5: Intrinsic posterior probabilities of the changepoint

The mode of this distribution is r = 17 and the probability of the mode
is 0.36. The mean is E(r|x,HO) = 20.6, and the posterior expected
value of the change is E(µ1 − µ2|x,HO) = −1.02. So that we expect a
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shift of the location of 1.02. The posterior standard deviation turns out
to be SD((µ1 − µ2|x,HO) = 0.43.
Under the heteroscedastic normal model the distribution of r is very

close to that presented in Figure 1. The mode is at point r = 17 and the
posterior mean is E(r|x,HE) = 23.4. The expectation of the magnitude
of the change is found to be E(µ1 − µ2|x,HE) = −1.39, the standard
deviation is SD((µ1 − µ2|x,HE) = 0.59, and E(σ1/σ2|x,HE) = 1.07.
Therefore, a summary of the inference conditional on the data is

E(r|x) = 20.6× 0.84 + 23.4× 0.16 = 21,

E(µ1 − µ2|x) =− 1.02× 0.84− 1.39× 0.16 = −1.08,
SD(µ1 − µ2|x) =0.43× 0.84 + 0.59× 0.16 = 0.45

which seems to be an accurate inference.
A nonparametric analysis of the above data has been done by Petitt

(1979) who obtained the estimation of the change point r̂ = 17. Smith
(1975) also found for the posterior mode the value 17 and 17.72 for the
posterior mean; he used conjugate priors with subjective values for the
hyperparameters.

Example 3 (Pettitt’s data).
We consider the data given in Table 3 in Pettitt (1979) presenting

the observed percentage of a given material in 27 batches. A plot of
these data is given in Figure 6.
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Figure 6. Industrial data (Pettitt, 1979)

Following Menzefricke (1981) we will assume that the data follow a nor-
mal distribution with a possible change point. We do not impose any re-
strictions on the normal mean and variance. The values for the Bayesian
stopping rule Tn obtained under this model are plotted in Figure 7. For
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n ≤ 20 the values of Tn are quite small, and they considerably increase
as n increases giving evidence for a change point at position r = 21.
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Figure 7. Values of the intrinsic stopping rule

Based on the whole dataset and the prior Pr(HO) = Pr(HE) = 0.5 the
test for homoscedasticity renders

Pr(HO|x) = 0.004, Pr(HE|x) = 0.995.

This implies a strong evidence against homoscedasticity. Under the
heteroscedastic normal model, the resulting posterior distribution of a
change point conditional on the whole dataset is plotted in Figure 8.
We note that there is no a single abrupt change point but many points
between r = 10 and r = 20 supporting positive probability masses. The
mode of π(r|x) is located at r = 15 and the mean value is E(r|x) = 14.2.
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Figure 8: intrinsic posterior probabilities of the changepoint
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The posterior expectation of the change in location and scale, and the
posterior standard deviation of µ1 − µ2 are

E(µ1 − µ2|x) = −0.67, E(
σ1
σ2
|x) = 3.78, SD(µ1 − µ2|x) = 1.09.

These numbers suggest a small shift of the location, and a reduction of
the scale parameter by the factor 1/3.78 .
Using a conjugate analysis on the normal model Menzefricke (1981)

obtained the same mode for π(r|x). He also detects a change in vari-
ance, while the nonparametric analysis by Pettitt (1979) only gave the
estimation of r = 16.

Example 4 (Stock rates of return data).
We consider the weekly closing price values Pi of the Dow-Jones In-

dustrial Average from July 1, 1971 through August 2, 1974, given in Hsu
(1979). This is a rather peculiar period of time in which we assume, as in
Hsu (1979), Menzefricke (1981) and Worsley (1986), that the data follow
a normal distribution. As a matter of fact, these dataset do not repre-
sent current stock rates of return research . Nevertheless, it is considered
here as an illustrative example of how the intrinsic Bayesian procedure
is able to detect a change point for the variance of the underlying nor-
mal distribution without imposing any restriction on the mean. This
data has been analyzed by Hsu (1979), Menzefricke (1981) and Worsley
(1986) under the assumption that the mean does not change.
The respective rates of return are defined as

xi =
Pi+1 − Pi

Pi
, i = 1, ..., 161.

A plot of these returns is given in Figure 9.
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Figure 9. Rates of return (Hsu, 1979)
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Figure 10 shows the values of the stopping rule Tn for n = 2 to n = 101.
For n ≤ 99 the values of Tn are smaller than 1, and for n = 100, 101, 102
the values of Tn are 2.85, 2.84, 5.25, respectively, suggesting a change
point located at position 100.
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Figure 10. Values of the intrinsic stopping rule
On the other hand, the homoscedastic constraint is strongly refuted

by the data. Under the heteroscedastic model, the distribution of the
change point is plotted in Figure 11.
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Figure 11. Intrinsic posterior probabilities of the changepoint

The mode of this distribution is r = 89 and the mean E(r|x) = 85.1.

The posterior expectation of the change in location and scale are

E(µ1 − µ2|x) = 0.008, E(
σ1
σ2
|x) = 1.6.
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The posterior standard deviation of µ1−µ2 has the value SD(µ1−µ2|x) =
0.003.
This implies that the location does not change and the scale decreases

approximately to 1/1.6 times its value before the change. Notice that we
have not imposed the restriction that the means do not change although
the empirical evidence favours that assumption.

Example 5. (The Nile River Data)
The data appearing in Figure 12 are measurements of the annual

volume of discharge, 1010 m3, from the Nile River at Aswan for the
years 1871 to 1970.
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Figure 12. Annual volume (1871 to 1970).

This series was examined by Cobb (1978), Carlstein (1988), Dümbgen
(1991) and Balke (1993), and the plot of the data reveals a marked and
long-recognized decrease in annual volume after 1898. Some authors
have associated the drop to the presence of a dam that began operation
in 1902, but Cobb (1978) cited independent evidence on tropical rainfall
records to support the decline in volume. For the purpose of illustration,
we assume that the observations are independent and coming from a
normal distribution with a possible change point, as in Cobb (1978),
although we do not impose the homocedastic condition. Figure 13 shows

24



the values of the stopping rule Tn for several values of n.

5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 13. Values of the sequential stopping rule

For n ≤ 32 the values of Tn are smaller than one, and they increase
as n increases providing evidence of a change point in 1901. On the
other hand, a retrospective analysis shown in Figure 14 indicates that
the mode of the posterior distribution of r is attained at point r = 28,
which corresponds to the year 1898, and the posterior probability of the
mode is 0.736. Again, we find that the change point is detected by the
sequential procedure with some delay.
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Figure 14. Intrinsic posterior distribution of the changepoint

The posterior mean of the position of the change is E(r|x) = 28. The
posterior expectation of the change in location and scale are

E(µ1 − µ2|x) = 245.36, E(
σ1
σ2
|x) = 2.36,
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and the posterior standard deviation of µ1−µ2 is SD((µ1−µ2|x) = 31.2.
Hence, after the year 1898 the normal mean decreases 245.36 units and
the normal standard deviation decreases 2.36 times the value it had
before the change point.

7 Conclusions

For independent sampling and under the assumption that subjective
prior information on the sampling models parameters is not available,
Bayesian analyses for a sequential detection of a change point and for
estimating the position where a change occurs have been given. The
reference prior, which is the prior commonly used in the absence of prior
information, has to be ruled out either for the sequential detection of
a change point or for the estimation of the position of the change since
they are improper. Methods based on real training samples have been
proposed to overcome this difficulty. However, we have argued that such
a methods do not apply for the model selection problem involved in the
change point analysis. The reason is that real training samples might
not exist.
We have proposed the use of intrinsic prior distributions in the Bayesian

analyses that not only overcome the above difficulties but they are also
free of hyperparameters. This can be seen as a fully default (or objec-
tive) Bayesian procedure. The intrinsic priors are derived with the help
of the arithmetic intrinsic Bayes factor and an asymptotic argument, as
usual.
Closed form for the conditional intrinsic priors for the Poisson and

normal models have been obtained and the analysis of the change point
problem has been carried out with no numerical difficulties. In partic-
ular, numerical Monte Carlo approximations or Gibb sampling are not
required. For most of the illustrations considered the sequential stop-
ping rule seems to detect the change point with a certain delay. This
is suggested from the comparison of the stopping time value with that
of the retrospective estimation of the position of the change point, in
which the information provided for whole sample is processed.
We remark that the aim of the paper has been methodological, and

the theory has been developed for the simple case of independent sam-
pling. No attempt to considering the change point problem for more
complex situations of linear or dynamic models where covariates or some
form or conditioning are present has been undertaken. However, we feel
that the ideas presented here can be extended to cover these situations
but it is nowadays an open problem.
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Appendix

Appendix 1. Proof of Lemma 1.
For the models M0 : P(x1|θ) = θx1

x1!
exp{−θ}, and M1 : {P(x1|θ1)

P(x2|θ2), πD(θ1, θ2) = k θ
−1/2
1 θ

−1/2
2 }, where θ is an arbitrary but fixed

value, and k is an arbitrary positive constant. The minimal training
sample is a pair of independent random variablesX1,X2 such that under
model M1, Xi v P(xi|θi), and under M0, Xi v P(xi|θ), i = 0, 1. Then,
simple calculations give

BN
01(x1, x2) =

θx1+x2 exp{−2θ}
k Γ(x1 + 1/2)Γ(x2 + 1/2)

.

Furthermore,

EM1

x1,x2|θ1,θ2B
N
01(x1, x2) =

exp{−(θ1 + θ2 + 2θ)}
k

∞X
x1=0

(θ θ1)
x1

Γ(x1 + 1/2) x1!
×

∞X
x2=0

(θ θ2)
x2

Γ(x2 + 1/2) x2!
.

Using the equality
P∞

x=0
(θ θ1)x

Γ(x+1/2) x!
= F 1

0 (1/2, θ θ1)/Γ(1/2) and then
substitution in (12), Lemma 1 follows.
Appendix 2. Proof of Lemma 2.

Consider the model

M∗
0 : N(x|θ, τ 2),

and

M1 :

½
N(x|µ1, σ21)N(y|µ2, σ22), πN1 (µ,σ) =

c1
σ1σ2

¾
.

The minimal training sample is a random vector (X1,X2, Y1, Y2) with
independent components such that under model M1, Xi ∼ N(xi|µ1, σ21),
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Yi ∼ N(yi|µ2, σ22), and under M∗
0 , Xi, Yi ∼ N(x|θ, τ 2), i = 1, 2. We

recall that a minimal training sample is a random vector of minimal size
for which the marginal density is greater than zero and finite (except for
a null set with respect to the Lebergue measure). Then,

BN
01(x, y) =

1

m1(x,y)

2Y
i=1

N(xi|θ, τ 2)N(yi|θ, τ 2),

where
m1(x, y) = c1

1

22|x1 − x2| |y1 − y2| .

Therefore,

πI(µ,σ|θ, τ) = 1

4σ31σ
3
2τ
4

×
Z
|x1 − x2| exp

½
−d2x(τ−2 + σ−21 )−

(mx − θ)2

τ 2
− (mx − µ1)

2

σ21

¾
dx1dx2

×
Z
|y1 − y2| exp

½
−d2y(τ−2 + σ−22 )−

(my − θ)2

τ 2
− (my − µ2)

2

σ22

¾
dy1dy2,

where

d2x =
(x1 − x2)

2

4
, mx =

x1 + x2
2

,

d2y =
(y1 − y2)

2

4
, mx =

y1 + y2
2

.

Changing to the new variables

u1 = x1 − x2, v1 = x1 + x2,

u2 = y1 − y2, v2 = y1 + y2,

the result in Lemma 1 follows.
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