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Abstract—This correspondence considers the problem of detecting #)° =~ (Y — #)} is the probability density of the multivariate
abrupt changes in the mean of a multivariate Gaussian random signal. Gaussian distributionV'(¢, ). Moustakides [8] and Ritov [11]
A fixed sample sizex?-test is compared against the optimum sequential investigatednonasymptoticaspects of optimality for the CUSUM

tests (*-CUSUM and y*-GLR). scheme. Finally, recent optimality results are summarized in the
exhaustive survey of Lai [6].
I. INTRODUCTION The goal of the correspondence is to compare optimal sequential

Apd nonsequential, or fixed sample size (FSS), detection strategies for
model (1), (2) by using the criterion (3), (4). The starting point
his direction is the classical work of Wald [13]. It is known that
the sequential strategy is optimal for detection of abrupt changes,
but a practical motivation to use the nonsequential one is the fact
LV = {J\’:((JU,E), !f t<v 1 that this strategy uses observations ‘block-by-block’ that seriously
N(0:,Z), ift>wv simplify the transmission and processing of the input information. The

The change detection problem considered in this corresponde
arises from practical tasks when it is necessary to detect quickly agli}‘?
significant change at an unknown timein the mean vecto# of an ort
independent Gaussian multivarigte > 1) sequence

. . mplexity of r is proportional he mean number of th
taken from some process. Two main ways of extending the sc Or plexity of a detector is proportional to the mean number of the

. : : . IKelihood ratio (LR) computations at time In the case considered,
detection scheme are known in the literature [Plar andquadratic - .
.the sequential detector leads to the number of the LR computations,

The linear mu|t|var|ate scheme, when It Is necessary tq SPECYhich grows to infinity with¢. Unlike the sequential detector, the FSS
both a nominal valugd, (hypothesisH,) and an alternatived, . )
. . . ule involves only one LR computation at every stag&he results
(hypothesisH,), is an elementary extension of the scalar one [2], - - - -
- S . o f the comparison between optimal sequential and FSS strategies for
In this correspondence, we will discuss thaadratic multivariate . - .
scalar signals can be found in [12] for the Bayesian approach and
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Il. SEQUENTIAL STRATEGY o< 2 (1 + 0(1)) ash — oo for the y*-GLR test. Let us

To solve the problem of sequential detection for unknéwrwald deﬂne the modified SNR(x) = Gy and the following stopping

[13] proposed two possible solutions. The first one is to replace ttime T = inf{t > 1: Sl( ) > h} (Tb = oo if no sucht
LR by the weightedLR A} = [ - fol %f(e )dS, exists), whereSi(h) = — &= + b|xl| Taking into account the left-

i=k ©q
wheredS is the surface element of the ellips@td , and theweighting hand side of (8), we gePoo(E < o) < POO(T < ), where
function f(#) is concentrated on the surface f. The second T = inf{t > 1 : 8 > o?h + g}. From [2], it results that
solution consists of maximizing the LR[!_, :9%81 with respect  Eco(N;) > P, (T, < o0)~', whereN; is the stopping time of the
¢ 2 2 o a2h+p3
o _ ¢ vy m(Yi) . . x”-GLR test when the SNR equals Hence,E (V;) > e 7.
06 € O Af = supy o, [Ty ©80,2(¥1)’ which results INthe ot us choose the parameter~ L ash — oo. Sincea(h) — 1
generalized likelihood ratio (GLR) test. Therefore, th&CUSUM  4nq D"(h) ~ —=llog2h ash — oo, we getlog Eo(N;) >
is based on theveightedLR A}, and thex” GLR is based on the (h— 5 =l log 2;7)(1 + 0(1)) ash — oo. Taking into account that
GLR AL. The detailed proofs of the?-CUSUM and GLR tests are ; b(h) =

‘ —b_ b ast we get7(T) < “0“ 14 0(1)) as
given in [2, ch. 4, 7]. The stopping time of the-CUSUM test is - wm h = o0, we getr(T) (L+0(1))
expressed in the following form: T — oo. This yields the following conclusion.

Corollary 1: The asymptotic relation™ (T) ~ 225 asT — oo
Wit > 1: max G > h is also valid for they?-GLR test.
o B TS
5 2 2
g = (t—k+ 10" logG<£ b (xk) ) (6) lll. FSS AGAINST SEQUENTIAL
2 2 4 The FSS strategy is based on the following rule: Samples of fixed
(Xzf - (SZ,)TE’1§£ sizem > 1 are taken, and at the end of each sample, a decision
function is computed to test between the hypothéseandH, (2).
where S = >_, (Yi — 8y), G(d,z) = 1+ =+ .- + Sampling is stopped after the first samplef observations for which
m + ... is the generalized hypergeometric functionthe decisiond; is taken in favor oft{;. The solution to the optimal

andh > 0 is a threshold. Let us consider the model given by (1) arftypotheses testing problem is given by tigtest [2, ch. 4 and 5].

(2). The \2-CUSUM test is asymptotically optimal in the sense offherefore, the stopping tim& of the repeatedy*-testis

the min-max criterion (3), (4). The result is stated by the following im

theorem (see the proofs in [2] and [9]). _ N=inf{mj:d,=1}; d;= {1-, if |Aum Umﬂ\ > mh
Theorem 1: The ‘worst case’ mean detection delay for thé- izl 0, if |XZ]71)771+1\ < mh

CUSUM test (6) is given by the following asymptotic equation 9)

1*(T) ~n(T) ~ il = 28T asT — oo, wherep(61, 6o) =

where» > 0 is a threshold, and})? is given by (6). They?-
The stopping time of the GLR test is FSS test has two tuning parametetrs:and 2. Hence, the statistical
properties of this test depend enandh. Let us compute the ‘worst
N —inf {f >1: max §¢ > h} case’ mean detection delay (3) for the y*-FSS test as a function
Ikt @) of these parameters.
Lemma 1: The ‘worst case’ mean detection delay for theFSS
test (9) is given by the following function of. andh:

l\)‘c'

(t — k + 1)b?

+b|xt|

wherey}, is defined in (6), and: > 0 is a threshold. Let us show
now that they”-GLR test is asymptotically (a8 — oc) equivalent 7 (m, h) = maX{ 5 max {m —1+1

to the abovey?-CUSUM test. It follows from the properties of the -0 iz, .

generalized hypergeometric functidg®(d, z) [1, Ch. 13] that the " LP<‘<20 m?h? )}} (10)
function F : y — log G(d, 2) is convex and its derivative exists 1-5 —I+1

and is non-negative whepn > 0 andd > 1. It then can be shown ) R 9 .
that the inequalities whereg =P (7,2 < mh?), andx; , is distributed according to

e a noncentrah® law, with » degrees of freedom and noncentrality
alz)y + 8(z) < 10@G< ) <y 8) parametera.
4 Proof of Lemma 1:See Appendix A. It follows from [2] that the
) mean time before a false alarm for thé-FSS test is

where &(’L’) = r,y(logG(d, U Nly== and f(z) = —a(x)z +
log G(d, 5 ) hold for anyz, y > 0. The first inequality has a simple Eo(N)=m[l - P()gz‘o < m}ﬁ)]_l, (11)
geometnc interpretation. The linear functién y — a(z)y+05(x) is
tangent to the graph df(y) = log G(d, 2) at the point(z, F'(x)). To compare they*-FSS test against the optimum sequential can-
In this inequality,« plays the role of a tuning parameter. Takinglidates, we have to find the best possible values of the tuning
into account the equatiotv(d,z) = e VEM(d — 1.2d — 1;44/2), parametersn andh for the y2-FSS test. As it follows from (10) and
whereM ((a, ¢, z) is a confluent hypergeometric funct|on [1], we ge{11), the optimal choice of the tuning parametersindh reduces to
the following asymptotic equations for, 3: a(x) = 1 — O(55) the constrained minimization problem in (12), shown at the bottom of
and 3(x) *>!log 24 asx — oo. From [7], it follows that the the next page. Therefore, the optimal values of the tuning parameters
‘worst case’ mean detection del&y for the stopping timeV is less m* and h* are functions off". In the rest of this correspondence,
than or equal t&, {inf(t > » : S, > h)}. From (8), it follows we will consider the minimum ‘worst case’ mean detection delay
that B, {inf(t > v : S > 1)} < E{inf(t > v : S, > h)}. 7(T)=7"(m*(T),h*(T)) as a function ofl" for the *-FSS test.
According to [2] and [9],E, {inf(t > » : S! > h)} ~ i’; as An asymptotic upper bountbr the minimum “worst case” mean
h — oo. Combining these results, we get the asymptotic relatiafetection delay" is established in the following Theorem.
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logT
10°— 1 L , 10° : : :
0 2 4 6 o 2 M 5
10 10 10 10 10 10 10 10
Fig. 1. “Exact’ solution 7* (solid line), the asymptotic upper bound Fig 2. Z‘l‘Exlact” solution m} (solid line) and the asymptotic formula
7 = YT (dashed line), and the biag' — “1%6T (dashed-dot line) ™" = =5 (dashed line) as functions afg T

as funct|ons oflog T.

1.5
Theorem 2: The minimum “worst case” mean detection delay for
the x*-FSS test (9) is given by the following asymptotic inequality: 1.4}
= 410b |
7(T) < (14 0(1)) asT — oc. (13) 1.3
Proof of Theorem 2:See Appendix B. 1.2t

Corollary 2: Let us consider model (1), (2) and compare the
optimal quadratic sequential and FSS detection procedures. Asymp- 4 ¢1
totically, asT' goes to infinity, the properties of these procedures are
given by the following relations:

(28T for they®-CUSUM (GLR) test - . log T
(T)~ fio T as1 — oc. 0.9 o 2 2 5
<ZES for they’-FSS test 10 10 10 10

Fig. 3. “Exact” solution 2} (solid line) and the asymptotic formula
Remark 1: First, the asymptotic optimal choice of the tuning? = *"(legT) [see (14)] (dashed line) as a functionlof, T
parametersn, h is

of this fact lies in the feature of the functiof(%,T) (see the proof

m* o~ 2log T of Theorem 2). The rapidity of the convergence is defined by the
' b2 term1/+/2log T It follows from Theorem 2 that (T') — £228L <

) = s o(*12:T) Fig. 1 shows that the bias (T) — 1267 (dash-dot line)
B* ~ {1 + 24/ [log(y/21og T/2) — log 2V 27]/log T} ™/~ is increasing wherl’ — oo, but it is o( *25") asT — oo. Fig. 4
asT — ~o. (14) shows that the ratic” /(*2sT) tends to one a§’ — oo.! This

completely confirms the results of Theorem 2.

Second, let us compare trsymptoticupper bound7* = 12t

and (14) with the “exact” (nonasymptotic!) optimal solution for the APPENDIX A

\*-FSS whenr = 10 andb = 1. The “exact’ (with the subscript PROOF OF LEMMA 1

“e”) and asymptotic values of*, ;" and” as functions ofog T We assume without any loss of generality that= / in model
are presented in Figs. 1-3. For the “exact” solution, we dedugg), (2). Because the observatiohs,Ys,...,Y; are independant,

the optimal tuning parameters; and 7 by numeric constrained - I

inimization of the objective functior™ (m, ) (12) for a givertT. It To explain this fact, let us recall the definition of theand (1 + o(1))-
minimiza notations. We consider two functiong; ¢ : Ry — R, {f(z) ~ g(z) as
is worth noting that a very slow convergence of the “exact” functions _, ool & {F(z) = g(x)(1 + 0(1)) asz — oo} & {f(z) = Az)g(x),

*

7, my, andh? to the asymptotic ones & — oc. The explanation whereA(z) — 1 asz — oo}.

m,h - J 1< ,/3 m— 1 -+ 1
subjectto: T —m [1 - P(X%,o < mh? )] =0, m>1 and h>0.

, ' 2 ’h?
minimize 7 (m,h) = max { m max |:rn -I+1+ 1-3 T -P <X7~,o < ):| } (12)
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15 — . . We consider the asymptotic ca§é—_> oc. The idea of the proof
ﬁ/(“-’%l) consists of showing the fact thai*(T) — oo, andh*(T) ~ b as
1.4+¢ ] T — . Let_us denote: = mh?. First, we will show that the optimal
value isz*(T) — oo asT — oc. From (11) and (19), it results that
1.371
7 >TP (Xf‘o > mhz) [P (Xﬁ,me > mhz)]_
127 > TP ()(2‘0 > mhz) =TP (Xz,o > .r) (20)
1Ay It follows from (5) that the asymptotically best result i€ =
11 O(logT) asT — oo; hence, only the case*(I) — oo can
lead to this solution. Because of this fact, we will use the fol-
0.9} lowing tail probability of a centrah® law [3] P(x7, > =) ~
~'(2)27'e™% asz — o to compute the mean time before a
0.8} ] false alarm in the remainder of this proof. It follows from (11) that
logT logT = logm — log P(x}, > mh?*); hence
07 * -
0 2 4 6 7
10 10 10 10 T 1ow (Ve 2 (T o T 4o
logT logm—i—logf(Q)—i—2 (2 1)10b2—i—0(1)
Fig. 4. Ratior /(“”gT) (solid line) as a function diog T'. The horizontal asx = mh® — co. (21)

4100 T

dashed straight line shows the limit valgg/(*25+) — 1 aslog T — oo.

Second, let us show that*(T) — oo asT — oc. Let us suppose

that m* = const. Because* (1) — oo as1 — oc, we use the talil

probability of a noncentra{” law with A = mb* [3] P(x} ) > x) ~
T(5)G(5, 22)P(x2 > @) ase — . It follows from (21) that

the ‘worst case’ mean detection delay for th&-FSS (3) can be
rewritten as

7 =sup esssufs, (N —v+ 1| N > v, 377"

v W) ~ 4/ 2'“7” asT — oo. Combining this with the asymptotic
i Al—1 . -

= 112;2)( esssu (N —1+1 |11 ) (15) expansion [1, ch. 13F(5,y) ~ lr((T 1) 2f(4\/‘ =t g asy — oo
whereY = (¥1,...,Y3), andY" = (. If I = 1, then yields 7* > O(T (log )5 e ViesT) asT — cc. Therefore, the
esssUfE, (N YIO) —m(1-p)"" (16) conditianm (T) — o0 and_m (T) — oc asT — oc arenecessary

) - _ _ to obtain an optimal solution.

where is the probability of miss detection. If < I < m, then Now, let us show thab*(T) ~ A, where A is a positive constant,
esssuf (N -1 +1 |y11*1) asT — oo, and then find the optimal valug*(T). It results from

(19) and (21) withz = mh* — oo andm — oo asT — oo that

—x 2(log T — —logI'(5)—o(1)) T \ Y . .
T2 AT o(IP( 5 S mh?) asT — oo. Thus, it is quite obvious

Let us consider the conditional probabilB;(d, = 0 | ¥{~'). Itis
casy to see that the vectst” — Z;l(yi " o)+ (Y — 6o) that if A* (T) — 0 asT — o, then the denominator in thg right side

- S 77 of the last equation tends to 0 whéh— oo. Now, leth*(T) — oo
givenX = Z } — 6o ) follows a multivariate normal distribution asT — ~o. By using Chebyshev’s inequality 1@t (2 > mh?)
with (conditional) expectatiOIES(X) =(m—-I14+1)(01 —b)+ X oo BY 9 ys quanty Xpmpz = 10 ),
and variance-covariance matri - (m — 1+ 1)I. Hence, we we again have the denominator that tends to 0, and therefore, the
S - . ’

timal tel ™ (T t b T It then foll that
getPy(dy = 0 | YIU) = Py(|31"]l2 < mh | X) = P(L2, < op imal parametel ™ (T') must be~.A asT — oc. enfo ows a

m2h? -1 n*(T) ~ ZlZgT asT — oco. Let ®(2) = 7 exp{- }dt
X), where)\ = —1+1 —I4+1)(0,-46 X v2r z
pre )y (m =1+ 1) (m ~ 1+ 1)(61 — o) + X 2. Applying a normal approximation to the’ , distribution (see details

The distribution function of a noncentrgf law is given by [5, ch. 28] in [5, ch. 28]) with \ = mb>, we getP(yf e > mhz) -
A > A mh2—mb2—r>
P(x7a<y)=e 7Y S P(Xivnio <) (18) (=) O 7
=0 i mh?. Combining the last result with (19) amd” ~ 224~ we obtain
25;(1) foy;piflefidx. It 7 (h. T) < M(l + of )asT = o~ Wlth F(hT) =
)
results from (18) thaP(X?,,\ <y) < P(XZ,O < y) foranyy, A > 0. {% [q)( \/Zlogj ’i_*))‘i'()( -1}, Becausé* (T) ~

=m—1+1+m(l-73) "esssuPi(d =0[Y{"'). (17)

yas\ = mb®> — oo, uniformly inz =

where 0! = 1, andP(x?, < y) =

Therefore, we get . . | , V22' \/ﬁ )
esssufP;(di = 0|y{™") A, %UI'*’T) NLf(h Tg = {i= (T—i)_ ez [ 2;0(’%— ;f—a)])]_l}
_ _ . asT — oo. Let us denotey = ming>o f(h,T) and h™ =
=Pid=0] X =—(m+1-1)(01—6)] arg mingso f(h,T). It can be shown thatims__ ¢(T) = 2

_ 2 2.2, -1
=P[xro <m*hi(m—14+1)""]. and h* ~ b{1 + 2y/[log(\/21og T/2) — log 2v/2]/ log T} /2

Combining this with (15)-(17) yields (10). The proof of Lemma Jas T — . This implies (13), and the theorem is proved. Let

is complete. us add the following remark about a relation betweeriZ’) and
the asymptotic lower bouna(T) ~ 2°6L. Applying the same
APPENDIX B approach to the left side inequality of (19) we get an obvious result
PROOF OF THEOREM 2 2ol (14 0(1)) < 77(T) < 8L (14 0(1)) asT — .
We apply (10), (11) (wheréb.(N) = T), and (12) to compute
m™ and k™. Equation (10) implies ACKNOWLEDGMENT

P(x2,2 >mh?)] 7}
m [P (7 mp2 2 mh”)] The author is grateful to Reviewer 1 for his very helpful comments
<7 (m,h) <m—-1+m[P (Xf’,n,yz > 711112)] - (19) that improved the paper.



2538

(1]

(2]
(3]
(4]
(5]
(6]

(7]
(8]
(9]

(20]
[11]

[12]

(23]

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 9, SEPTEMBER 1999

REFERENCES The CFAR Adaptive Subspace
, _ Detector is a Scale-Invariant GLRT
M. Abramowitz and I. A. Stegun, Edskandbook of Mathematical
Functions with Formulas, Graphs, and Mathematical TaplgsS. Dept.
Commerce, Nat. Bureau Stand., Applied Math. Series 55, 1964.
M. Basseville and I. V. NikiforovDetection of Abrupt Changes. Theory
and Applications Englewood Cliffs, NJ: Prentice-Hall, 1993.

Shawn Kraut and Louis L. Scharf

R. Beran, “Tail probabilities of noncentral quadratic formayin. Stat, Abstract—The constant false alarm rate (CFAR) matched subspace
vol. 3, no. 4, pp. 969-974, 1975. detector (CFAR MSD) is the uniformly most-powerful-invariant test and
T. S. FergusonMathematical Statistics. A Decision Theoretic Approach,the generalized likelihood ratio test (GLRT) for detecting a target signal
New York: Academic, 1967. in noise whose covariance structure is known but whose level is unknown.
N. L. Johnson and S. KotzContinuous Univariate Distributions—2 Recently, the CFAR adaptive subspace detector (CFAR ASD), or adaptive
New York: Wiley, 1970. coherence estimator (ACE), was proposed for detecting a target signal in

T. L. Lai, “Sequential changepoint detection in quality control andl0ise whose covariance structure and level are both unknown and whose
dynamical systems,J. R. Stat. Soc. Bvol. 57, no. 4, pp. 613-658, covariance structure is estimated with a sample covariance matrix based

1995, on training data. We show here that the CFAR ASD is GLRT when the
G. Lorden, “Procedures for reacting to a change in distributidgmh. (€St measurement is not constrained to have the same noise level as the
Math. Stat, vol. 42, pp. 1897-1908, 1971. training data. As a consequence, this GLRT is invariant to a more general
G. Moustakides, “Optimal procedures for detecting changes in distrib§caling condition on the test and training data than the well-known GLRT
tions,” Ann. Stat, vol. 14, pp. 1379-1387, 1986. of Kelly.

I. V. Nikiforov, “On first order optimality of a change detection
algorithm in a vector caseAutomat. Remote Contrvol. 55, no. 1,
pp. 87-105, 1994.

___, “Two strategies in the problem of change detection and isolation,”
IEEE Trans. Inform. Theorwol. 43, pp. 770-776, Mar. 1997.

Y. Ritov, “Decision theoretic optimality of the CUSUM procedure,”

Index Terms—Adaptive arrays, matched filters, maximum likelihood
detection, multidimensional signal detection, radar detection.

I. INTRODUCTION

Ann. Stat. vol. 18, pp. 1464-1469, 1990. Recently, we have suggested the constant false alarm rate (CFAR)

A. N. Shiryaev, “The pr i i isturs ; ;

bance in g staytionaryprggilﬁgscgvfhl\aangStDLiﬁ).lﬂoéeé?cglpc{n%f;?dég,ura.d aptlve_ subspace detec_tor .(CFAR ASD) [3] for dete_ctm_g a. target

1961. signaly in a complex multivariate measuremenivhose distribution

A. Wald, Sequential Analysis New York: Wiley, 1947. is complex normaly ~ CN[ue’*+,s?R)]. The signal scaling:
determines the null hypothesi$,: x = 0 and alternate hypothesis
H,: p> 0. We factor out a noise scaling’ from the noise covariance
structureR: a step to be clarified in the subsequent discussion.

When the noise covariance structure and scafh@nd o2 are

both known, the appropriate noncoherent detection statistic is the

matched filter magnitude-squared or the matched subspace detector

(MSD). This uses the inner product of the whitened measurement
z =R~ /%y with the whitened signal template= R~"/*y

RSP P :
= L_r’;JfR_lﬂvoa = e ="n ( )

where P, = ¢(¢'¢)”'¢" is the projection onte. This statistic is
complex chi-squared (or gamma) distributed; the MSD compares it
with the threshold; to decide on hypothesif, or H;.

When the covariance matriR is known but the scaling? is
unknown, the MSD may be normalized by the magnitude squared
of the measurement weighted B *. This measures the direction-
cosine squared of the angle thaimakes withe:

[O'Ry* )
Cos” = —————————— =Z71.

(V'R™') (y'R™'y)
This statistic has a “beta” density undéf,; under H,, it is most
clearly described as a monotone function of a statistic with a scaled
noncentral “F” distribution

2 F 2Py

= i T )

[¥]
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