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A Simple Recursive Algorithm for Diagnosis of Abrupt  timet, and numbet are unknown (but non random). Let
Changes in Random Signals
Z(1,7) = log(pe,(X¢)/pe (X
Igor V. Nikiforov 1.3) = log(po, (X0)/po; (X0))
be the log LR between hypothesks: P = P, andH; : P = P;.

Abstract—We address the problem of detecting and isolating abrupt
changes in random signals. An asymptotic optimal solution to this problem, B. Criterion of Optimality

which has been proposed in previous works, involve the number of compu- _ . .
tations at time ¢ which grows to infinity with ¢. In this correspondence, we ~ 1N€ change detection/isolation algorithm has to compute a

propose another more realistic criterion, establish a new simple recursive pair (N,rv) based on the observations,, X»,..., where N is
change detection/isolation algorithm, and investigate its statistical proper- the alarm time at which av-type change is detected/isolated and
ties. v,v = 1,...,K — 1 is thefinal decision Let P/, be the distribution
Index Terms—Kullback-Leibler information, minimax detection, se-  of the observationX;, X»,..., X, X¢g41,... Whent, = 1,2,...
quential detection and isolation, sequential decision procedures, signal gnd X,, is the first observation with distributio;. In previous
detection. papers [5]-[7] we minimized the “worst case” mean delay for

detection/isolation

|. INTRODUCTION

_x { - .
: . . = sup esss N - N >to, X1, Xeg—1)-
This correspondence treats the probleralafupt change diagnosis "'~ 25 esssupEy (N = to + 1[N 2 to, X1, Xig-1)

(detection and isolation)n random signals. An optimal solution to

this problem was obtained in [5]-{7]. Theoveltyof this work with  Now we propose to measure the speed of detection/isolation with the

respect to the previous papers is sopnactical aspects of the pro- ajd of the maximum mean delay for detection/isolation
posed theory: a more realistic criterion of optimality and a simple re-

cursive solution. First, we minimize now the supremum of the mean _ _ = = { a7 -
L - o i 7= max 7, 7 =supE, (N—to+1|N >to). 2
delay for detection/isolation over the change titadnstead of min- 1<IKK—1 to>1
imizing this supremum over the past “trajector. ..., X;,—1 of
stochastic process arg together. Second, in the previous papers wih the case of change detection this performance index is discussed in
fixed a priori the change timé, = 1 in the definition of the proba- [8], [4]. We measure the levels of false alarms and false isolations by
bility of false isolation to simplify theoretical difficulties. In practice, using the following equation:
itis difficult to justify this assumption, for this reason we examine now

the supremum of the error probability over > 1. Next, the algo- ) o )

rithms developed in [5]-[7] involve the number of the likelihood ratio <mn Fo <,1I§1{N(’f) tv(k) = j }) =7

(LR) computations at timewhich grows to infinity witht. Now we de- max max  sup B, (j,1) = 8 3)
sign asimple recursivalgorithm which involves one LR computation L<UISK —11<G#I<K—1 0>, '

at every stage. The correspondence is organized as follows. First, we

state the problem in Section Il. Next, we discuss the design of the Wherej:, (j.1) = PILO(,, = j # 1| N > to) is the error probability,
cursive change diagnosis algorithm and its statistical properties in Secis the minimum of the mean times before a false alarm, jrisl
tion Ill. The main results are established in Theorems 1 and 2. Finalilfe maximum of the probability of a false isolation. In the above crite-
we compare in this section the theoretical formulas and the resultsrigh we suppose that there exists a sequefce), N (2),. .. of false

Monte Carlo simulations. alarms. The first false alarm of jatype is defined bynf, >, { N (k) :
v(k) = j}.X Inbrief, we require that the maximum mean detection/iso-
Il. PROBLEM STATEMENT lation delay given by (2) should kes small as possiblsubject to the

constraints given by (3). In this correspondence, we will discuss the

A. Model with Abrupt Changes . S -
asymptotic case when — oo, 3 — 0, such thatog v <~ log 37"

We consider a finite family of distributions

7 1. RECURSIVEALGORITHM AND ITS STATISTICAL PROPERTIES
P={P,1=0,....,K -1}

A. Recursive Algorithm

with densities{p;,1 =0,.... K —1}. Let(X}),>1 be anindependent We denote a paialarm time—final decisiorfor the recursive algo-
random sequence observeetjuentially N rithm by (., ), where
LX) = Py, if t<to 1) N, = min{NTl’ e, ]\",{{71}
VTR, i t>t ! o
v, = arg min{NT vee, N } . (4)

wherel = 1,..., K —1,and£( ) isthe probability law. The change
We define the stopping tim&’/ in the following recursive manner
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where the recursive decision functiong!/, 0) are defined by Theorem 1:Let (N,,v,) be the test (4)—(6). Suppose that<
o, = Ei(Z(l,j)) < coforall0 <1 # j < K —1 and the fol-
lowing regularity condition is fulfilled: the moment-generating func-
1,0) = (g:1=1(1,0) + Z,(1,0))*, 2% = max(0,z), _ : :
9:(1,0) = (i1 (L,0) + Z:(1,0)7, - = ma‘{F ) tion (M.g.f.)p(¢) = Ei(e¢7+"7)) < oo exists for all reat €] —7; ],
9(1,0)=0, I=12,....,K-1 (6) wheren > 0,andforalll </ < K—1land0 < j+#1< K—1.Let
hi ; be given by (7) and, > h;. Then

andg;(0,0) = 0. The thresholds:;,; are chosen by the following
formula: < ha h _ < hg h;
n~ymax| —, —/————— T~ max | —/, — (8)
pro MINGz0: Pl Pa P
ha, if I=1,...,K—-1 and j=0
hij = e s . - @

hi, if J,l = 1, PN K -1 and J # l ashl. — o0, where

whereh, is the detection threshold ad is the isolation threshold. pi= min pjo,pl = min min )

1<j<K—1 IKISK=11<GA<K—1p; 5

B. Discussion
Let us compare the design of the recursive rule (4)—(6) with the non-  Proof of Theorem 1:See Appendix .

recursive one. We start with the nonrecursive (Uig.. v ) [5], [6]. If Let us discuss now the probability of false isolation. From Theorem
for somek < ¢ the observations(y. . .., X, are such thall the LR 1 it follows that the delay for detection is mainly defined by the
betweer??; and’;,0 < j # ! < K — 1 are greater than or equal t0gtopping timeV! when the hypothesié; is true. The false isolation
the thresholdg., v, = j means that due to the noi8&/ < N7 = min, ., {N;} given
N, > to. Naturally, this is a rare event. Roughly speaking, to estimate
, t B, (4,1) we have to compute the conditional probability to stop the
Sk(1,0) =" Z:(1,0) > huo observation process by the “false” stopping tini¢ before then it will
i=k be stopped by the “true” stopping tin¥é’ given N, > t,. Therefore,
we prove now an asymptotic upper bound fap, -, 5, (j.{). The

t
t — ~
Sil.1) = ;Zl(l’ D)2 hiy,-.. result is stated in the following theorem.
t Theorem 2: Let (N, v,) be the test (4)—(6) and let the conditions
SilLK —1)= ZZi(I, K—1)>hix_1 of Theorem 1 be satisfied. Then
i=k
) ) o ] 3= max max  sup B¢, (j,1)
(i.e., the observations asgnificantfor accepting the hypothesis; ISISK=1I<GAISK =1 45>
with respect _to this set of alte_rnatives) then the nonl_recursivc_e _rule_stops S max max el
the observation process at timé N,, = ¢) and the final decision is I<ISK =L 1< AI<K—1
v, = l. In practice, this nonrecursive algorithm has two disadvan- ha hi
. . . B i X <max| —,—— | + hy
tages. First, sometimes (it depends on the mutual “geometry” of the pio Minjzo. pr,;
hypotheses) the probability of false isolation seriously increases when ho he
SeM dmax [ =2, =L ) 4 ash; — 9)

to — oo. It occurs due to an uncontrolled growth of some cumula- € lnax 05 ot Vi v 7 00
tive sumsS: (m, j) whenX1,..., X, ~ Fy.2 Second, the nonrecur- o
sive algorithm cannot be rewritten directly in a recursive manner and )
the number of the LR computations at timgrows to infinity with#. Proof of Theorem 2:See Appendix II.

Unlike this nonrecursive algorithm, the rulé! (5) is based on the re-  From Theorem 2 it results thatfif = 1, then the probability of false
cursive decision functiong (/,0). It is easy to see that the recursiveisolation is

algorithm (4)—(6) is nothing buk” — 1 parallel CUSUM tests (see the
decision functiong(1,0), ..., g(l,0)) plus a simple logical rule which
compareg: (I, 0)—g:(j,0) with the threshold$, ;. Before the change
timeto, the nonnegative functiongs (I, 0) are stochastically small (be-
causefy(Z,(1,0)) < 0)and, hence, only aninsignificant growth of theyg > h; andh; — so. Hence, at least upper bounds fér and
probability of false isolation takes place whien> 1. Let us note also 3 are close to each other. As a result, from [5] and (5), the mean time

thatSi, (1..j) = g:(1.0) — g:(j. 0) whent > to andEi(g:(j.0)) > 0. pefore a false alarm for algorithm (4)—(6) is given by
Therefore, both algorithms extract approximately the same information

from the observationX,, ..., X;. Nevertheless, i£;(g¢(j,0)) < 0 e . hy . :
then the recursive algorithm partly losses the information from thesgo(kg{l\r(k) tve(k) =g} 2 et forj=1,....K -1
observations. In order to fix this gap we solve the detection/isolation

problem under_ the constraift, > h; (see details in Theorems 1 andypeq analysis of Theorem 2 [5] and Theorem 4 [6] shows that the asymp-
2 and Appendix I). totic equation

. . ha h;
max max  B1(j,1) S e max <—d —)

T )
> . - * %
I<ISK—11<j£I<K—1 Py Pt

P11 =

C. Statistical Properties

3 log~ log ™"
Let us consider now the recursive detection/isolation algorithm n(y, ) ~ max oy 0 ot

(N, v) (4)—(6). We start with the mean detection/isolation delay

2The introduction of the “window-limited scheme” (see [4], [11]), where  for the infimums.(+, 3) of 7* still hold with the mean delay instead
n+1 < k < tandn is atuning parameter, only partially improves the situationof 7* and the new definition of the class of tests (3).
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Corollary 1: The recursive detection/isolation algoritiay,, v,) TABLE | .
(4)—(6) is asymptotically equivalent to the optimal (nonrecursive) test THE HYPOTHESES}: (i)
[5], [6] whent, = 1 i 1 2 3 4 5
B ) log~ log 31 .
7 ~n(y, #) ~ max o [ P21(2) |3 2121 (O -2.121 | -3
d i
asy — oo, 8 — 0, logy < log3~'. (10) 922(1) [ O 2121 |3 2121 |0

The above theoretical results have been obtained by ignoring the “ex-
cess” of the decision functiof (7, j) = ¢.(1,0) — g.(j,0) over the

’ proof of Theorem 2 that the proposed asymptotic upper bound (9) for
boundaryh,; ;, namely, the quantity

the probability of false isolatio cannot be fairly tight. The simula-

e = Gl 5) = |3 g) > huy). tiovn shows that the correcteq tern = g+||(7_’1 — 82|, Whereg+ ~

0.583 [9, Ch. X], suggested in (11), really improves this approxima-

It is well known that thiswald’s approximation is not very accuratetion of 3 in this case. The simulation confirms the results of The-
(see details in [1], [3], [9]). For this reason, we suggest to usedhe orem 2 forsup, -, 8:,(j; ). Let us analyze the growth of the prob-
rected termgroposed by Siegmund [9, Ch. X] for a possibly improve@bility of false isolation3;, whent, — oo for the recursive test. It
approximation of the mean time before a false alarm and the profi@llows from Theorem 2 that this growth should be more significant
bility of false isolation. The idea of this approximation is to replachenmax(ha/pi0, hi/ min;zo. pi ;) is smallin comparison with; .
the thresholdiy by iy + o4 andh, by h; + o;, wheregy ando, are It happens in the case of the change frofa to 7. (i) (see the fifth,
positive constants. Hence, we get the followmrectedasymptotic ~ Sixth, and seventh rows in Table I1).

equations
IV. CONCLUSION
Eo <i,1§f1{wr(k) sor(k) = JJL) > et A simple recursive algorithm for diagnosis of abrupt changes in
. h h. random signals was proposed and its statistical performance was
sup B, (j. 1) ~ e "7 {max <—-/ 7L> + hi} (11) investigated. An important feature of this algorithm is its ability to
tg>1 pro MING=£o:1 Pl,5

warrant an acceptable level of false isolation wher> 1. Another
attractive feature of this algorithm is the fact that it is basedion 1
D. Example parallel CUSUM rules. The CUSUM rules are well known in signal

The goal of this example is to compare the statistical properties %r]pcessing, automatic cqntro! .(fault d.e tection), aqd industrial quality
the recursive (4)—(6) and nonrecursive [5], [6] rules using Monte Car ontrol. Hence, this fact simplifies the implementation of the proposed

simulation and to compare the results of the simulation with (8) ar?(cfigomhm'

(9), (11). LetX € R® be a Gaussian vectof,(X) = N (4,1). We

consider the following hypotheses: APPENDIX |

PROOF OFTHEOREM 1

. _ T
Ho : {0 =(0.0)"} We suppose that the thresholds; are given by (7), wherk; > h;.

Hi: {6 = (1.0)"} Let0 < 6 < 1 and letn;, be the smallest integer
2(i) : {B2(i) = (Va1 (i), V22 (i) ;
Ha (i) 2 {02(7) = (P21(i), Va2 (i) " } > InaX{h—d7 . h; }(1 _.
P10 Miljzo:n p1,;

wherei = 1,5. The values ofiz (i) are given in Table I. The goal of
the first simulation is to detect/isolate the change ffdmto 1 when

‘H2(7) varies betweert{>(1) and’H2(5). The second simulation ex-
periment is devoted to the detection/isolation of the change tigrto Pia (N} —to+1>M|N, >ty)
‘H2 (i) whenH; (i) varies betweeft{, (1) and»(5). In this manner
we consider different combinations of the hypothe®&s 71, and
‘H-(¢) mutual geometry. The thresholds d@rg= h; = 5. The results

We assume thali; and h; are so chosen that, > 0. Let! = 1
(without any loss of generality) and we consider the probability

whereM = mnp, andm is a positive integer number. Taking into
account that

are given in Tables Il and IIl. Each point in these tables is basddion ) ! '
simulations. The detection of the change frats to 7 (see Tables 9:(j.0) = Jnax Z Zi(4,0)
II) shows that the statistical characteristics of both tests (recursive and T ik

nonrecursive) are comparable. Nevertheless, in the case of the Cha%gﬁ"z:v
from o to M2 (1) and fromH, to H2(2) (see the fifth and sixth rows Tk o
in Tables I11), the nonrecursive algorithm makes many false isolatiod&, (Nr —to +1> M| N, > to)

. = 0 whenn < k, we get from (5)

whent, = 10, due to an uncontrolled growth of the cumulative sum to—1+M
$1(1,2). < Pi, {ﬂ;i? ( >, Z(L0)
The first simulation (see Table IlI) shows a relatively good accu- ! =T =k
racy of the asymptotic mean detection/isolation detay8). In the fo LEM )
second case (see Table Ill) accuracy is lower because the true values ~ ~ ,_ 24ax > Zij,0) - hlu’) < O[Ny 2 tO} ~
of the mean detection/isolation delay are small, and, hence, the ap- o i=k+1
proximation cannot be considered as asymptotic. It follows from the (12)

Since the functiong;(j,0) (1 < j < K — 1) are Markov sequences,

bounds (11) is defined by several factors (not only by the “excess” errors), theﬁet-hen follows that the behavior of the functign(j,0) whent >

fore, only partial improvement of the accuracy of the corrected equations cA@PENAS 01, —1 (. 0) and the observationX,,, Xo+1 . ... To sim-
be expected. plify

3|t is worth noting that: i) this suggestion is heuristic; ii) the tightness of th
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TABLE I

THE CHANGE FROMHq TO H1 WHEN THE THIRD HYPOTHESISIS H (1), ¢

=1,

5

2743

Ha(2) mean delay 71 probability of false isolation 3(2,1)
(Np,vr) (Nn,vn) |Eq. (Nr,vr) (Nn,vn) Eq. Eq.
to to (8) to to 9 | ay
i 1 |10 [s0 | 10 1 | 10 | 50 1 | 10
1 129 12.1] 12 | 10.9] 9.9| 10| 6.7-10~% | 5.8.10"3 -10-3% | 8.103 2.1073 10— | 3.2-10°2
2 114 10.7| 106} 105 9.7] 10| 5.3-10°8 | 4.6.10-2 -1073% | 89-10-8% | 7.1073 10-1} 2.6-10"2
3 105] 98 | 9.7 | 104} 9.7| 10{[ 2.5.10°% | 2.3.1073 -10~% [ 6.4.-107% | 6.1-107% | 10~ | 1.7-1072
4 10497 |96 | 104} 9.7[ 10| 4.1-107% | 4.1.10"4 <104 | 57.-107% | 6.4-107% [ 1071 | 1.1-10"2
5 10.4] 97 |96 } 104] 9.7} 10ff 1.1-10% | 1.3.1074 <104 1 1.4-107% | 1.3.1074 | 1071} 9.7.1073
TABLE Il
THE CHANGE FROM H,TO H2(7),7 = 1,5, WHEN THE THIRD HYPOTHESISIS H
Ha(7) mean delay T3 probability of false isolation 8(1,2)
{Nrvr) (Nnwn) |Bq. (Nr,vr) (N, vn) Eq. Eq.
to (8) to to 9) (11
i 1 [10]s0]1 [0 1 | 10 | s0 1 | 10
1 33| 35| 35) 32| 27| 25| 1.7-10-4 {97-10-% | 1.1.10-% | 7.1.10-% | [ 5.10"2 1.6-1072
2 25| 26| 26| 24| 23| 1.7|| 6-10-5 5.7-10"% | 6.4-10-% | 2.4.10~% . 4.5-1072 [ 1.3.1072
3 1.8| 1.9( 1.8] 1.8] 1.8 1.1} 10-9 9.8-107% | 1.1-10~% | 2-10°° 1.9.1078 41072 8.3.1072
4 1.8] 1.8 1.7| 1.8 1.8| 1.1} 0 4.10-6 5.10-6 0 5.10"8 4.1072 5.6-10"3
5 1.8] 1.8 1.7] 1.8| 1.8| L.1]| 0 10-7 5.1077 0 10-7 4.1072 4.9-10"3

the notations, we put = 1 and start with the case ¢f,—1(j,0) = 0.

SinceP(lJ;,, 4;) < >, P(4;

, we get from (12)

Putting together the inequalities

nep1,;{1—6—m) < —(p1,;M6&/2) — (p1,;M6/2)

Pi Vl M) < ZPl max Z Z;(1,0) and L L L
# 0SkSM £ ’ Pi(z+y<a)<Pi(z<a/2)+ Pi(y<a/2)
J =k
M with (15), we get
— max Zi(7,0) < hy; M
ogkg,wi:;rl (4, 0) 1,]) p;(m)< P! (Zz(l Jy<— 1, 71\16)+P1 <Ew< o1, ,;Mh).
=1

<> P

i1

— max

(im

0)

M

2

0<k<M
i=

Z; (7, 0) < hq ]> . (13)

Let us assume thdt; (Z;(j,0)) > 0 andj > 2 (we will discuss the

case wher®:(Z;(j,0)) < 0 and/orj = 0 below). We consider the

(16)

The right side of (16) should be bounded above. Taking into account
the regularity conditions of Theorem 1, we get by Chernoff's bound
(see details in [10, Ch. IV] and ([3, Ch. 4])

M ;¢

<ZZ 1,j) < — leW[5> efz\lHZ (13)( o

=1
whereH.. (y) = sup,,o[yw —log E(e“*)] is the Cramér transform of
the distribution function of the random valueand H;_, ;( LF)
is positive. On the other hand, it is easy to see that

) 17

probability

M M
pj(m)=P; (ZZALO) = max 7 Zi(j.0) < hm’)
i=1 - T i=k+1
M
=P (Z Zi(1.j)+ € < hl,J) (14)

i=1

where

k
I = i Z:(7,0).
Em [ nin Zl (4,0)

It follows from the definition ofns, and (7) thath ; <nkp1,;(1-4).
Let Z;(1,j)= Zi(1,j)— p1,;, this yields

M
pi(m) < P} (Z Z(Lj) +&u < npp1,j(l—6— m)) . (15)

=1

k

iMb6 —p1,; M6
Pi <EM < _—Pl,J2 ) < Pi |:/T — <7f)15 ) < oo:|

where

7_(z)=inf{k >1: ZZL'(]',O) <z}

=1

r < 0 and it is assumed thaif ) = co. This last is the probability
that the barrier—p; jM§/2 is crossed by the cumulative sum
¥ | Zi(j,0) started at the origin whe®, (Z:(j,0)) > () LetQ
be the distribution function ofZ;(7,0) when £(X,;) =
situations are possible. First, the random vally&j,

. Two

0) is one- snded,

e., it takes only nonnegative values with positive probability. In
this case, the answer is triviaP} [7_(—pi ;M6/2) < o] =
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Second/Z;(j,0) is two-sided, i.e., it takes both positive and negativéf = is so chosen thdt < = < ”12*3'6 , then again the results of the case

values with positive probability. To compute an upper bound forwhenE;(Z;(j,0)) > 0 can be applied to (19). Finally, jf = 0, then
Pi[r—(=pi1;M5/2) < o], the function@) should be imbedded ¢:(0,0) = 0, we get

in an exponential family [9, Ch. VIII]. For this reason we assume M

that the m.g.f.o(Q) = Ei(e¢709) < oo exists (the integral po(m) < P; <Z Z(1,0) < nppro(l —6 — m))
Je"dQ(x) converges) in some neighborhood ®f¢ €] — 7; 7], i=1

wheren > 0 (the regularity condition of the theorem). It follows from Mo

the properties of m.g.f. that — »(¢) is twice differentiable in this < P <Z Zi(1,0) < —Pmﬂ“)

open intervall — u;5[. Because the distribution of;(j,0) is not
concentrated at zero, the second derivatiVé¢) = fi.zecde(l,) and apply directly Chernoff’s bound as in (17). Therefore, we have
is strictly positive in] — 5; [ and hence the functiog — ¢(¢) is Proved thatp;(m) < e~*/™"" holds for any sign off1 (Z;(;,0))
strictly convex (from below) in its interval of definitioh — 7;n[. and0 < j # 1 < K — 1. It follows from (13) that for any given
We next apply the “generalized” Wald's inequality [2], [3], [0]:© < ¢ < 13h1(8) > ho : Vh1; > hl(é)

Pi[r_(x) < 0] < e~¢" wherex < 0 and¢; < 0 is a negative root Pi(N! > mnp) < (K —2)e™ ™" < gm0

of the equationo(¢1) = 1(= (0)) (the existence of a negative root
¢1 is warranted because the random vatyg;, 0) is two-sided(¢)

is convex, and>' (0) = F+(Z;(j,0)) > 0). In our context this leads to

: —1 (a7l . _
P (€1 < —p1  M58/2) <P (—py ;M5/2) < o0] < e~ “ePrsis Eiy (ny (N, —to+1) | Ny > to,g1p—1 = 0)

wherea > 0 is a constant. By using the method proposed by Lai [4]
we get

whereag = |¢1/2|. If b1 ; — oc, thenn, — oo. This means that for — Z P}o (71;1 (er —to + 1) >m| Ny > to, grg—1 = 0)
any chose) < § < 1,3hg = ho(8) : Yhi,; > ho oy
pj(m) < T 4 e OEPL MmNy b < e M W|,u:',|,el(ﬂ0_1 — (9L0—1(270)7----/gLO—l(K _ 1,0))’ and then,
for any m > 0, wher_ea; = Hz 4 ;(—p1,;6/2) and the positive B/, (Nr] —to+ 1| N, > to, grg—1 = 0)
constanty; is conveniently chosen. s
Let us assume now thad; (Z;(j,0)) < 0 and;j > 2. It follows < max {—, 72} (1-8)""'1=e"")"" (20)
P10 MINGz0:1 P1,5

from (14) that

M Let us discuss now the case whep—1(j,0) = ¢; > 0. From (14) it
p;(m) = P! <Z Zi(1,0) + Cu < hw) follows that
=1 pi (m]gey-1(5.0) = ¢;)
where M M
M <ZZ(1 0) — Jnax Z Z:(4, 0)<111]|Q>
C = 1111<nw Z —Z;(3,0).
i=k+1 whereZ;(j.0) = Z;(j.0) wheni > 1andZ1(7 0) = Z1(4,0) + (.
Taking into account that, ; < ha < napio(l — &) andZ;(1,0) = Itis easy to see that
Z:(1,0) — p1,0 we get the analog of (16), namely, p; (m]ge,—1(7,0)=¢)
M _ P MS p) M M M
p;(m)< P} (ZZT.(L())<_%> +P <CM < 1,0; ) <P (ZZ (1,0) — [ ax Z Z:(j,0)<h1;+¢ |(J> . (21)
i=1 - - =1 z k+1
(18)  Let us suppose thal, 1 = maxs<j<rx—1 gt,-1(J,0). It follows
As a result of [9, Appendix 21, has the same distribution as from (21) that the following inequality is fulfilled for every : 2 <
k j <K -1
i —Z:(7,0). .
T2y 2~ il 0) Py (m | 911 (.0) =)
Since E1(—Z;(j,0)) > 0, the results of the previous case (when | M -l
E\(Zi(j,0)) > 0) can be applied to the right-hand side of (18), re- <P ZIZ (1,0)— max, Z Zi(3:0) <Pt Go=1 16

placingZ;(1,0), p1.0, andCas by Zi(1,5), p1.;, andé s, respectively.

LetEq1(Z;(j,0)) = 0,j > 2,and lett > 0 be a positive constant, then By applying the previously obtamed results (from (14)—(20)), we get

from (20), replacing:« andh; by hq + (io—1 andh; + (;,—1, respec-

M M
e L ) _ . (3 ~ . tively,
pi{m)< Py <ZZ’(1’O) Dg}@wz (Zz(170)+«)<h1,J>~ o
i—k+1 ELO (.N,. —to+1

Ny >to,gip—1)

Hence, by analogy with (16), we get .

M s < max { hd+<t0—1 , }.Lz+<,f0—1 } (1_6)—1 (1—(.’,_0"1" )—1 . (22)
p;(m) < Py ZZZ(IJ) < -0 P10 1N £0;1 P15

i=1 2 Taking into account thaEQO(Cf0_1 ) = Eq((+,—1) and in view of the

- M ropert
+P) <EM < —w + Ms) (1g) ProPery
where E(y|A) = Ex[E( Al
k of iterated conditional expectations [10], we get from (22)

= . ml<nw Z(Z,- (7,0) +2).

Ei (N} —to+1| N, >to)

ha+E 1) hi+Eo(Ceo— _ ey
4Taking into account thak: (Z;(j,0)) > 0, we get by Jensen’s inequality gmax{ tat EolGro 1), : + 0(Cro-1) }(1 0) ( “)
Ei(Z2(j.0)) = [a2dQ(x) > [f¢dQ(x)]2 = [E(Z:(j,0)]* > 0. pro TINj0:1 P15

Hence, the distribution af; (7, 0) is not concentrated at zero. (23)
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Note here thatV, = min, <, <x—1 {N/}. It follows from this fact, (2)
and (23) that

ha +sup, > Eo (Cto—1)
pP1,0 ’
hi + sup;, >, EO(Czo—i)}
min;-£o.1 p1,5
-8
From [9, Appendix 2] it follows that
Gi(x) = Py (9:(j.0) > &) = Py (my(2) < 1)
inf{k >1:3% Z:(5,0)

71 < max {

6—o<nh )—1

(24)

wherer (z) = > a2}, x> 0,and

Goo() = tlin;@ Po(g+(7,0) > x) = Po(my(2) < 0).

By applying Wald’s inequality to the LI{:f:1 Z;i(j,0) between hy-
pothese§{; andH, [2], [3], [9], we getGo () < e~ 7. Itis easy to
sup Eo(gi,—1(4,0)) = sup

see that
/ Gtofl(;v) dI
tg>1 to>1J0

/ G
K—1

sup Eo(Gro—1) < D sup Eo(ga-1(j.0) < K —2.
1

to21 j=2 toZ

x)dr < 1.

Hence

Combining this with (24) and taking into account ttais arbitrary,
a > 0andn, — oo ashg > h; — oc, we get (8).

APPENDIX Il
PROOF OFTHEOREM 2

Letxy,...,z, andyy,...,y. be two sets of real numbers. Since

max(0, 21 — y1, = Yn)

Z max(0,z1, ...,

‘T”) - Hl&X(O, Yiyeo vy yn)

it then follows that for any > ¢,

ZZ]I
t

> 7

i=k +1

Z Zz(lo) = g[(-jﬂo) - gl(lvo)
i=k+1

whereZ;(j,1) = Z:(j,1) wheni > to andZ,,(j,1) = Z,,(j,1) +
gto—1(4,0) andZ; (m,0) = Z;(m,0) wheni > to andZ, (m,0) =
Zsy (m,0) + gt5—1(m,0) with m = [ orm = j. Let us consider the
“artificial” stopping time V” which is activated at timé

max

gl(]v to—1<h<t

>

max
to—1<k<t

7i (7* 0)

max
to—1<k<t

(25)

NP =inf{t > to: gi(j.1) > hi}
90 (G 1) = (g1 (G 1) + Ze(G. D)) T
gt0—1(jal) = Jtq—1 (]70) (26)

From the definition of the ruléN,., v,.) it follows that{ N} = N7} =
0, j # 1. Taking into account this fact, (25), and (26), we obtain

Bio(j.1) = Py (v, = j| N, > o)
< Pia (Nr < NIIN: > o)

<P, (Nl < NN > 10) 27)

2745

whereN? = min,.; {N/"}. Let M = min{ W , N7}, Itis obvious
thatN” M+1T Njz>u}(N — M), wherel 4 is the indicator of

A. By computing the conditional expectation Nf -M underP,!0
given N, > to, we get

E!, (Nfol —~M|N, > to>

= E!, (Ng’o’ — M{N}' > M} N, >t })
. Pl (N;ﬁ > M|N, > 7‘,0). (28)
Combining (27) with (28) and

NI < NN > t0) < 1— P (N”’ > M|N, > z‘o>
we obtain
E{, (N}l = M|N, > to)

E!, (N{O’ — M{N{' > M} {N, > to })'

o (4, 1) < 1= (29)

Since the function, (j,1) is a Markov sequence, it then follows that the
random variableV;' —n givenN7! > n > t, depends 0., (j,!) and
XnH,XnH . Let us denotes; ( N7'] go(j.1) = =) as a function
of x by L(z) on [0 h;]. It follows from [1] that the average run length
L(x) of the stopping timeV?', when the decision function; (j,!)
starts fromxz > 0, is a decreasing function af. The maximum is
obtained forx = 0 and is given byL(0). Hence

E{, (N}l = M|{N{l > M} {N, > to}) < L(0).
After substitution of the last inequality into (29) and taking into account
that for all largeh. hi, Ef, (N7, — M | N, > t5) > 0, we obtain
infthl Eflﬂ (Af{é - to =+ 1 | AT\T,, 2 to)
L(0)
_i_supt021 Eéo (N, —to+ 1| N, > to)
L(0) '
Let Fi(z) = Py (9:(j,0) < x) for x > 0. In view of the Markov
property ofg:(j,1), and denoting the density of the distributién(x)
by f:(z), we get

Bl (Ng'(j —to+ 1| N, > to)

sup B¢, (7,01) <1 —
to>1

(30)

>

oh;
/ L(2) frgmr (@) da = L(0) = L(h)Gig1 ()
0

h
‘dL
o [
0 dx

It follows from [9] that

Giy—1(z) da. (31)

k
Po(9:(j,0) < ) = Po (JE?%ZZ:(J} 0) < r)

henceG:(z) < Ga(z) < -+- < Goo(z) for anyz > 0. Since the
functionz — L(x) is decreasing on the inten@l; %;], it results from
(31) that

oh;

e ol -4l -
inf B, (MO it +1|N, > 7‘,0) > / L(x

0

dx.

) foo () (32)

From [1] it follows that

L) = BT ()] + Pu(S1 < ) L(0) > 1(x)
=Y gye ) i)\ [
—p,]_( (hitw)e )+(1 ) L) (33)

wherew = sup,.. E](ZL(‘], Iy — r| Zi(5,1) > r > 0) is an upper
bound for the average “excess” over the boundarysee details in
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[11, [3], [9]), E:[T(x)] is the average sample number of the sequen- Validation of Nearest Neighbor Classifiers
tial testT(z) = inf{t > 1 : (S¢ > h, — x) U (S: < —=)} with _
Sy =3, Z.(j,1),andP;(Sr < —z) is the probability that the cu- Eric Bax Member, IEEE

mulative sumS; of the sequential tegt(«) reaches the lower threshold

—. By using the lower bouné{z) from (33) instead of () in (32) Abstract—This correspondence presents a method to bound the out-of-

and taking into account (31) we get sample error rate of a nearest neighbor classifiet. The bound is based only
. . 1 . on the examples that comprise the classifier. Thus all available examples
f1n>f1 E,;, (tho —to+ 1| Ny > fo) can be used in the classifier; no examples need to be withheld to compute
"0

N error bounds.
1 \ —hy —his " Goo () The estimate used in the bound is an extension of the holdout estimate.
2 _;(}“ +wle M+ (1—e )L0) + / Y dx The difference in error rates between the holdout classifier and the classi-
;7"] —he s 0 I fier consisting of all available examples is estimated using truncated inclu-
i w)e B B . h N
(it w)e™™ / " Goo(r) dz — ¢ ’“luL(O). (34) sion and exclusion.
Pl 0 Index Terms—Error bounds, machine learning, nearest neighbor classi-

Taking into account thal < G..(z) < e * andL(0) > e, we fier, statistics, validation.

obtain, after integration of the third and fourth terms in the right side
of (34), by combining (34) with (30), the following inequality: . FRAMEWORK

sup S, (4,1) Seh <sup EflO
to>1

(Nﬁ o+ 1[N, > to) n m) Consider the following machine learning framework. There is a
tg>1

joint input—output distribution. For example, the input distribution
could consist of typical satellite images of the North Atlantic Ocean,
%nd the output could be if the image contains a large iceberg ahd
otherwise.

i We have a set of in-sample data examples
{(h—’ S >+ h,} (35) P P

pro Winj=o, pr,j

ash; — oo. By using the results of Theorem 1 we get the followin
upper bound for the probability of false isolation:

0 e < —h;
sup S, (J,1) ~ e i max
to>1

S = {(.Tl, 91), ceey (mn,Hn)}
ash; — oo andhy > h;. Equation (9) follows immediately from (35).
The proof of Theorem 2 is finished. with each example drawn independent and identically distributed
(i.i.d.) from the joint input—output distribution. We will use a nearest
neighbor classifier, composed of the in-sample examples and a dis-
) B ] tance metric, to classify the inputs of test examples drawn i.i.d. from
[1] M. Basseville and I. NikiforovDetection of Abrupt Changes. Theory i innt_output distribution. For each test input, the classifier returns
and Applicationsser. Information and System Sciences. Englewoo . . .
Cliffs, NJ: Prentice-Hall, 1993, the output corresponding to the closest in-sample input. The test error
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