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Abstract

The problem of detecting changes in a stochastic system is addressed. When the model parameters after the change are
unknown the generalized likelihood ratio (GLR) scheme is usually used to solve the problem. This scheme is asymp-
totically optimal but it is also particularly time-consuming which makes questionable its real time implementation. The
window-limited GLR scheme, which takes into account only signi"cant (for the detection) previous observations, is less
demanding but often it is still time-consuming. In this paper we introduce an alternative approach to reduce the
computational burden of the GLR scheme. The idea of this solution is to decompose a given parameter space into several
subsets so chosen that in each subset the detection problem can be solved with loss of a small part of optimality by
a recursive change detection algorithm. ( 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The problem of abrupt change detection in systems
with random disturbances has received extensive
research attention in adaptive signal processing;
for fault detection in technological processes; for
industrial quality control; for prediction of natural
catastrophic events; for monitoring in biomedicine.
Let as assume that the discrete time stochastic
system

>
n
"F(X

n
,h)#m

n
, (1)

where >
n

is the output signal, X
n

is the measured
input, h is the model parameter and m

n
is zero-mean
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Gaussian noise, is observed sequentially, i.e. at the
time n we have at our disposal n pairs of observa-
tions : (>

1
, X

1
), (>

2
,X

2
),2, (>

n
,X

n
). Before the

unknown change time l, the model parameter h is
equal to h

0
3H-Rr, and after the change it is

equal to h
1
3H

1
LH, where h

0
NH

1
(see Fig. 1).

The domain X is an indi!erence (dead) zone which
separates the point h

0
and the subset H

1
. The

parameter h
0

and the domain H
1

are known but
h
1

and the nonrandom change time l are unknown.
Any change detection algorithm is de"ned by its
stopping time N which is the time when the algo-
rithm signals that the change has occurred. Our
goal is to design the stopping time N which detects
quickly any signi"cant change in the parameter
h with low false alarm rate. Because the parameter
h
1

is unknown, the generalized likelihood ratio
(GLR) scheme is usually used in this case. The "rst
who proposed to use the GLR test as a stopping
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Nomenclature

X observations, measured input
y(>) observations, measured output
e residual
DDXDD"S

n
+
i/1

x2
i norm of X

N alarm (stopping) time
N(h,R) normal law with mean vector h and covariance matrix R
E(>) expectation of the random value >
u(x) probability density
F distribution of observations
l change time
EM (N) mean time delay for detection (discrete time)
c mean time before a false alarm (discrete time)
S
n,k

(h
1
) log likelihood ratio between the hypotheses H

0
:h"h

0
and H

1
:h"h

1
o(h

1
) Kullback}Leibler information number

d signal-to-noise ratio
e coe$cient of nonoptimality

Subscripts
n, k, i current time instants (discrete time)

Fig. 1. The parameter space.

rule was Lorden [11,12] :

NK "infGn'm8 : max
1xkxn~m8

sup
h1|H1

S
n,k

(h
1
)*hH, (2)

where S
n,k

(h
1
)"+n

j/k
log(uh1 (>j

DX
j
)/uh0 (>j

DX
j
)) is

the log-likelihood ratio (LR) between the hypothe-
ses H

0
: h"h

0
and H

1
: h"h

1
, h is a threshold

and the parameter m8 is chosen to ensure that
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a maximum-likelihood estimate (MLE) of h
1

exists.
This MLE is based on n!k#1*m8 #1 last ob-
servations (>

n~k
,X

n~k
),2, (>

n
, X

n
). As pointed

out by Lorden [11,12], Lai [8,9] and Siegmund and
Venkatraman [25], this scheme is asymptotically
optimal, therefore it minimizes the mean time delay
for detection simultaneously for all h

1
3H

1
over

the class of stopping rules satisfying a given false
alarm rate. Nevertheless, the GLR scheme has an
obvious disadvantage. At every time n this scheme
involves n maximizations of the LR over h

1
3H

1
. It

is easy to see that the number of maximizations at
time n grows to in"nity with n. If we assume a given
mean time before a false alarm c as a typical period
of observation then the mean number of maximiza-
tion of the LR over h

1
3H

1
that should be per-

formed at every time n3[1,c] is c/2.
Several methods have been proposed to reduce

the computational cost of the GLR scheme (recent
results are summarized by Basseville and Nikiforov
[4] and Lai [8,9]). Willsky and Jones [28] intro-
duced the window-limited GLR (WL GLR) scheme :

NK
m,m8

"

infGn'm8 : max
.!9M0,n~mN`1xkxn~m8

sup
h1|H1

S
n,k

(h
1
)*hH,

0)m8 (m, (3)

which was theoretically investigated and justi"ed
by Lai [8,9]. The idea of Willsky}Jones}Lai is to
reduce the computational burden in scheme (2)
by carrying out only the m last observations
(>

n~m`1
, X

n~m`1
),2, (>

n
, X

n
) and rejecting the

observations (>
1
,X

1
),(>

2
,X

2
),2, (>

n~m
,X

n~m
)

which are not important for the detection. It is
known that the Kullback}Leibler information
number o(h

1
,h

0
) between two probability densities

uh1 and uh0 plays a crucially important role in
sequential detection (see details in [4]). Because
h
0

is a known and constant parameter, we will omit
h
0

in the rest of the paper. In our case the Kull-
back}Leibler information number o(h

1
) is de"ned

as follows (often this de"nition of the information
number o(h

1
) can be simpli"ed) :

Ekh1 A
1

n
S
k`n~1,k

(h
1
)BPo(h

1
)

as nPR uniformly in k*1 (4)

and Elh1 ( ) is the expectation associated with the
probability measure which &drives' the model (1)
after the change time l. Let us also de"ne the
minimum Kullback}Leibler information number
o
.*/

"infh1|H1
o(h

1
) which characterizes the &stat-

istical distance' between the domain H
1

and h
0
. In

other words, o
.*/

is the &distance' between the
&closest' alternative hI

1
"arginfh1|H1

o(h
1
) (see Fig.

1) and h
0
. It follows from [8,9] that this WL GLR

scheme holds asymptotic optimality if the size of
the moving window is O(log c/o

.*/
) as cPR. The

statistical interpretation of this result is very
simple : the optimum mean time delay to detect the
closest alternative hI

1
is asymptotically equal to

log c/o
.*/

, hence, to extract almost all useful in-
formation from the observations it is necessary to
carry out at least O(log c/o

.*/
) last observations.

Because m8 is usually small (see Section 3), the WL
GLR scheme involves O(log c/o

.*/
) LR maximiza-

tions at every time n. In some situations this fact
considerably reduces the computational burden
(and also memory requirements) of the GLR
scheme and makes this detection scheme manage-
able in real time implementations. Nevertheless, the
WL GLR scheme is still time-consuming if the
minimum Kullback}Leibler information number
o
.*/

is small and/or the mean time before a false
alarm c is large.

The GLR scheme is equivalent to a collection of
inxnite number of the parallel CUSUM tests each of
them is designed to detect a particular value h

1
.

The idea of our approach is to thin out this collec-
tion of the CUSUM tests such that this new ("nite)
collection of recursive tests will be almost optimal
with respect to the quickest detection criterion. We
propose to decompose a given parameter space
into several subsets so chosen that in each subset
the detection problem can be solved with loss of
a small part, e, of optimality by a recursive change
detection algorithm. A collection of such parallel
recursive algorithms establishes the e-optimal de-
tection scheme which reduces the computational
cost of the GLR scheme. By choosing an acceptable
value e of non optimality, the designer can easily "nd
a trade-o! between the complexity of this e-optimal
change detection algorithm and its e$ciency.
The remaining part of this paper is organized as
follows. The models and the criteria are presented
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1This is a general de"nition of the domain H
1
. Alterna-

tively, the domain H
1

can be de"ned as a subset of the
domain H : d2

0
)(h

1
!h

0
)TR~1(h

1
!h

0
))d2

1
such that : (i)

d2
0
/2"infh1|H1

o(h
1
); (ii) d2

1
/2"suph1|H1

o(h
1
) as it is shown in

Fig. 1. In this case, the rest HCH
1

is considered as a part of the
indi!erence zone X.

in Section 2. The outlines of our approach are
discussed in Section 3. We design the e-optimal
detection algorithm in Section 4. In Section 5, we
compare the e-optimal detection scheme with the
WL GLR one. Finally, some conclusions are given
in Section 6.

2. Models and criteria

2.1. Models

We limit our discussion by two particular cases
of the discrete time system given by Eq. (1).

2.1.1. (1) F(X
n
,h)"h

It is necessary to detect quickly any signi"cant
change at an unknown time l in the mean vector
h of an independent Gaussian multivariate (r'1)
sequence

L(>
n
)"G

N(h
0
,R) if n(l,

N(h
1
,R) if n*l,

(5)

taken from some process. The domain H
1

is given
by the following equation :

H
1
"Mh

1
: d2

0
)d2

"(h
1
!h

0
)TR~1(h

1
!h

0
))d2

1
N, (6)

where 0(d
0
(d

1
(R are given bounds for the

signal-to-noise ratio (SNR) d.1 In the case of model
(5) the Kullback}Leibler information number is
o(h

1
)"1

2
(h

1
!h

0
)TR~1(h

1
!h

0
) [4]. Hence, the

domain H
1

limits the part of the parameter space
where the Kullback}Leibler information number
o(h

1
) varies between d2

0
/2 and d2

1
/2 and de"nition

(6) can be expressed in term of o(h
1
)

H
1
"Mh

1
: d2

0
/2)o(h

1
))d2

1
/2N. (7)

The value d
0

can be extracted from technical
norms, standards, etc. and d

1
can be so chosen

that the mean time delay for detection is close to
one (at least one observation should be done in any
case !).

2.1.2. (2) F(X
n
,h)"XT

n
h

It is necessary to detect quickly any signi"cant
change at an unknown time l in the parameter
vector h of the regression model

y
n
"G

XT
n
h
0
#m

n
if n(l,

XT
n
h
1
#m

n
if n*l,

(8)

where y
n

is the scalar output, m
n

is an independent
scalar Gaussian sequence, L(m

n
)&N(0,1), X

n
is

the measured input, X3Rr. For the regression
model (8) the domain H

1
is given by the following

equation:

H
1
"Mh

1
: d2

0
)d2"(h

1
!h

0
)TR(h

1
!h

0
))d2

1
N,

(9)

where R3RrCr is a positive-de"nite matrix, if X
n

is
a stationary random sequence (X

n
and m

n
are inde-

pendent) then R is a covariance matrix, given by
ROE(X

n
XT

n
), if X

n
is a deterministic sequence then

we assume that [30]

1

n

k`n~1
+
i/k

X
i
XT

i
PR

as nPR uniformly in k*1. (10)

Let us compute the Kullback}Leibler information
number o(h

1
) by using Eq. (4). We assume that h

1
is

the true value of h, Eq. (10) is satis"ed and compute
the expectation of the logLR 1/n S

k`n~1,k
(h

1
) :

Ekh1 A
1

n
S
k`n~1,k

(h
1
)B

"

1

2n
(h

1
!h

0
)T

k`n~1
+
i/k

X
i
XT

i
(h

1
!h

0
). (11)

By putting Eqs. (10) and (11) together and by
taking the limit of the result as nPR, we
get the Kullback}Leibler information number
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o(h
1
)"1

2
(h

1
!h

0
)TR(h

1
!h

0
). Therefore, analog-

ously to the previous case, the domain H
1

(9) can
be expressed in term of o(h

1
) by (7).

2.1.3. Remark
The model F(X

n
,h)"h plays an important

role in the theory of change detection because
frequently the detection of additive changes in
state-space, regression, and ARMA models,
subspace-based detection can be reduced (some-
times asymptotically) to the above basic model by
using a residual generation mechanism (see exam-
ples in Section 2.2 and more extensive discussions
in [4,8,3]). The model F(X

n
,h)"XT

n
h is widely

used in control applications and also in statistical
signal processing (trajectography, adaptive arrays,
adaptive "lters, etc.). In the second case the signal-
processing algorithms often carry out narrow-band
signals. The complex "eld is the natural domain for
handling such signals which contain information in
the carrier phase and the amplitude. Hence, the
scalar y3C and the vectors X,h3Cr are complex in
this case. In the present paper the case of complex
signals will not be developed, we note only that the
extension of the proposed change detection scheme
to the case of complex signal can be easily done
by using the technique of a complex gradient
operator [7].

2.2. Examples and motivations

The goal of this subsection is to brie#y discuss
a practical application : the navigation systems in-
tegrity monitoring. This discussion gives a physical
insight into the problem under consideration and
introduces the formal de"nition of criteria and the
concept of e-optimality given in Section 2.3.

2.2.1. Navigation systems integrity monitoring
For many safety-critical applications, a major

problem of the existing navigation systems consists
in its lack of integrity. Integrity monitoring concept
de"ned by the International Civil Aviation Organ-
ization (ICAO) requires that a navigation system
detects faults and removes them from the navi-
gation solution before they su$ciently contaminate
the output. We use here the model F(X

n
,h)"h.

For this reason our discussion is limited by two
types of navigation systems : the strapdown inertial
reference unit (SIRU) and the global positioning
system (GPS).

2.2.2. The model of SIRU with a degradation
Conventional SIRU incorporates s*4 single

degree-of-freedom sensors (laser giros or acceler-
ometers) [26]. We assume that n skewed axis
inertial sensors are equally spaced on a cone
with half-angle a"54.7363. In this case the
measurement model of SIRU is de"ned by the
following static regression model with redundancy
[13] :

>
n
"HA

n
#m

n
#B(n,l), (12)

where A
n
3R3 is a nonrandom unknown state

vector (say, acceleration), >
n
3Rs is a vector of

measurements, m
n
3Rs is a Gaussian white noise

with zero mean and covariance R"p2I
s
, p2'0,

H"(h
ij
) is a matrix of size s]3, h

i1
"cos b

i
,

h
i2
"sin b

i
sin a, h

i3
"!cos a, b

i
"(3603/s)(i!

1), i"1,2, s and B(n,l) is a fault occurring at time
l, namely :

B(n,l)"G
0 if n(l,

B if n*l.
(13)

2.2.3. The model of GPS with a degradation
The GPS navigation solution is based upon ac-

curate measuring the distance (range) from s visible
satellites with known locations X

i
"(x

i
, y

i
, z

i
)T,

i"1,2, s, to a user (vehicle) at X
u
"(x

u
, y

u
, z

u
)T.

The distance from the ith satellite to the user is
de"ned as d

i
"DDX

i
!X

u
DD. The pseudo-range (i.e.

measure of the distance) r
i

from the ith satellite
to the user can be written as r

i
"d

i
#cb#m

i
,

i"1,2, s, where b3R is a user clock bias,
cK2.9979]108 m/s is the speed of light and m

i
is

an additive pseudo-range error at the user's posi-
tion. Let us introduce the following vectors :
R"(r

1
,2, r

s
)T and X"(XT

u
, b)T. By linearizing

the pseudo-range equation with respect to the state
vector X around the working point X

0
, we get the

measurement equation

>"R!R
0
KHx#m, x"X!X

0
,
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where R
0
"(r

10
,2, r

s0
)T, r

i0
"DDX

i
!X

u0
DD#cb

0
,

m"(m
1
,2,m

n
)T, H"LR/LXD

X/X0
is the Jacobian

matrix of size s]4 and m3Rs is a Gaussian white
noise with zero mean and covariance R"p2I

s
,

p2'0. The degradation of GPS channels is
represented by an additional biases in the pseudo-
ranges [18] :

>
n
"Hx

n
#m

n
#B(n,l). (14)

Let us assume that at least "ve satellites are
visible (s*5). As it follows from Eqs. (12) and (14),
the optimal estimate of the vehicle's acceleration
A

n
or the user's "x x is given by the least-squares

(LS) algorithm

AK
n
"(HTH)~1HT>

n
or x(

n
"(HTH)~1HT>

n
.

(15)

As it follows from Eqs. (12), (14) and (15), a fault B,
a!ecting the sensors (or channels), implies an addi-
tional error E(AK

n
!A

n
)"(HTH)~1HTB in the

vector AK
n
(or x(

n
) which contaminates the output of

the navigation system [18]. The key tool for detect-
ing additive changes B(n,l) in the static regression
models with redundancy (12) and (14) consists of
the transformation of the measurement vector
>

n
into the residual (or parity) vector of the analyti-

cal redundancy approach (see details in [4,13,18]).
Let us consider the model of SIRU given by

Eq. (12). The transformation is given by [13]

e
n
"¹T>

n
"¹T(HA

n
#m

n
#B(n,l)), (16)

where ¹TH"0, ¹T¹"I
s~3

, ¹"(t
1
,2, t

s~3
)

is a matrix of size s](s!3), and t
1
,2, t

r~s
are

the eigenvectors of the projection matrix
P"I!H(HTH)~1HT corresponding to unit eig-
envalues of the matrix P. In fact, the parity vector
e
n

is the transformation of the measurements
>

n
into a set of s!3 linearly independent variables

by projection onto the left null space of the
matrix H :

L(e
n
)"G

N(0,p2I
s~3

) if n(l,

N(¹TB,p2I
s~3

) if n*l.
(17)

Therefore, the change detection problems for
the above models (12) and (14) are reduced to
the change detection problem for the model
F(X

n
,h)"h given by (5).

2.2.4. Intuitive formulation of the detection criteria
Let us deduce the desirable detection criteria

from the above examples. First of all, the change
time l, when the fault arrives, and the new value of
the parameter vector h

1
are not simply unknown

but can be intentionally chosen to maximize their
negative impacts on the considered system. The
requirements of ICAO usually demand the
min}max fault detection and removing with respect
to its onset time l and the new value of h

1
. Second,

it is intuitively obvious that the criterion which
must be used should favor fast detection with few
false alarms. In other words the detection delay
N!l#1 (which is measured by the number of
faulty observations taken before the alarm has been
declared), given that the fault has been detected
after its onset time l, should be stochastically small
and the time before a false alarm should be stochas-
tically large. We denote the conditional detection
delay by N!l#1DN*l, where the condition
N*l means that the fault has been declared after
its onset time, and the time before a false alarm by
N given that l"R, where the event l"R

means that the navigation system works good.
Fast detection is necessary because, between
the fault onset time l and the alarm time N,
abnormal measurements are taken in the navi-
gation systems, which is clearly very undesirable.
On the other hand, false alarms result in lower
accuracy of the estimates because some correct
information is not used. The optimal solution in-
volves a tradeo! between these two contradictory
requirements.

2.3. Formal dexnition of the detection criteria

We assume the nonBayesian approach, i.e. the
change time l is an unknown but nonrandom in-
teger value. The statistical performance of non-
Bayesian change detection algorithms is usually
measured with the aid of two criteria.

2.3.1. ARL function.
The "rst criterion is based on the average run

length (ARL) function [4] :

ARL(h)OE1h (N), (18)

154 I.V. Nikiforov / Signal Processing 81 (2001) 149}172



Fig. 2. Typical ARL surface and level lines for the quadratic change detection algorithm.

where E1h (N) is the average number of observations
required for the algorithm to signal that h has
changed given the change time is l"1. In other
words the ARL function provides us with a cri-
terion for assessing the performance of the change
detection scheme under some standard conditions.
The main feature of quadratic algorithms is that the
ARL function depends only on the SNR d (or, on
the Kullback}Leibler information number o(h

1
)).

A typical ARL surface ARL(h), where h"(0
1
,0

2
),

for the GLR scheme and corresponding level lines
ARL(0

1
,0

2
)"const are shown in Fig. 2. This "g-

ure shows that the quadratic change detection
scheme (GLR or CUSUM) is able to detect any
changes h

1
: (h

1
!h

0
)TR~1(h

1
!h

0
)"d2 from the

nominal value h
0

with the same mean time delay
for detection ARL(d'0). The level lines of
ARL(0

1
,0

2
) are the ellipses (h

1
!h

0
)TR~1(h

1
!h

0
)

"d2 (see Fig. 2, right). Naturally, it is desirable to
have an algorithm with the minimum mean time
delay for detection ARL(d'0) under a given mean
time before a false alarm ARL(0). A drawback of
this criterion is the assumption l"1, hence, as it
follows from Section 2.2, this criterion plays an
auxiliary role in this paper.

2.3.2. The min}max criterion
We look for a change detection scheme (stopping

time N) which is &independent' of l. Let Fl l*1

be the distribution of the observations
(>

1
, X

1
),2, (>l~1

, Xl~1
), (>l ,Xl ),2 when

(>l , Xl) is the "rst pair of observations distributed
according to the measure which &drives' the
stochastic system after the change. The associated
expectation is denoted by El. The notation F= cor-
responds to the case when all observations are
distributed according to the measure which &drives'
the stochastic system before the change (l"R). It
is necessary to minimize the &worst case' (with re-
spect to l) mean time delay for detection

EM (N; d)Osup
lw1

Elh1 > 2o(h1 )/d
2 (N!l#1DN*l) (19)

for a given mean time before a false alarm

cOE=(N). (20)

This criterion was introduced by Pollak and Sieg-
mund [23] and studied by Pollak [22], Lai [8] and
Yakir [29]. To simplify our presentation, we omit
the words &worst case' when we discuss the mean
time delay for detection EM (N; d) in the rest of the
paper.

2.3.3. The concept of e-optimality
Let us pursue our discussion of the e-optimality

concept. First of all, we introduce the lower bound
of the mean time delay for detection. Because the
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Fig. 3. The concept of e-optimality.

fast detection and few false alarms are contradic-
tory requirements, the traditional solution is to
bound the mean time before a false alarm E=(N)
from below by a positive constant c and to de"ne
the smallest possible mean time delay for detection
n(c) under this constraint. Therefore, we de"ne the
class Kc of all tests N for which the mean time
before a false alarm is bounded from below by c,
namely : Kc"MN :E=(N)*cN. We next de"ne the
lower bound n(c) of the mean time delay for detec-
tion EM (N) as the in"mum of EM (N) in the class Kc :
n(c)OinfMEM (N) : N3KcN. Because the SNR d and
the mean time before a false alarm c can vary,
it is convenient for us to consider the mean time
delay for detection EM (N) and its lower bound n as
functions of d and c :

(d, c)CEM (N; d, c) and (d, c)C n(d, c).

The algorithm which attains the lower bound is
called optimal. If an algorithm attains the lower
bound for all values of d, then it is called uniformly
optimal. It can happen that the uniformly optimal
algorithm does not exist or it is very time-consum-
ing (as the GLR scheme), in spite of this fact, the
lower bound plays a crucially important role in the

e-optimality concept because it represents a kind of
invariant to adequately appreciate the quality of
a change detection algorithm. As it follows from
[8], this lower bound is given by

n(d,c)&
2 log c

d2
as cPR, (21)

where d2"2o(h
1
). To explain the above asymp-

totic formula, let us recall the de"nition of
the symbol &. We consider two functions :
f, g :R

`
PR, f (x)&g(x) as xPR means that

f (x)"j(x)g(x), where j(x)P1 as xPR.
The e-optimality concept is shown in Fig. 3. Let

us assume that N is a test from the class Kc0 , i.e.
E=(N)*c

0
. Let us de"ne the loss of optimality

e(N; d,c)"1!(n(d,c)/EM (N; d,c)) of N. For given
values of d and c, the quantity e(N; d,c) shows the
relative e$ciency of N with respect to the lower
bound n(d,c). The closer the coe$cient e to zero, the
better is the test N. If e"0, then the test N is
optimal. Typical graphs of the functions dC n(d,c

0
)

and dCEM (N; d,c
0
) are shown in Fig. 3, where the

function dC n(d,c
0
) is shown by a solid line and

the function dC EM (N; d,c
0
) is shown by a dash}dot

line. It is easy to get an optimal test N for a given
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Fig. 4. The zone of responsibility.

value of the SNR, say d
2

(see Fig. 3), hence
e(N; d

2
,c
0
)"0, i.e. no loss of optimality. But for

another value of the SNR, say d
3
Od

2
, the test N is

not optimal and this leads to e(N; d
3
,c
0
)'0, i.e.

e } loss of optimality (see Fig. 3).
Let us "x the maximum acceptable loss of opti-

mality (coe$cient of nonoptimality) e6 and de"ne
the following function f : dC f (d,c)"n(d,c)/(1!e6 ).
It is easy to see that the region between the graphs
of dC n(d,c

0
) and dC f (d,c

0
) represents the zone

where the loss of optimality is bounded by e6 :
e(N; d,c

0
))e6 . This region is shown by a shaded

area in Fig. 3. To characterize the loss of optimality
e(N) for the test N as d ranges over the interval
[d

0
; d

1
] we propose the following. Because all the

theoretical results on the optimal detection have an
asymptotic sense, we, "rst, compute the limit e(N; d)
of the function e(N; d,c) as cPR for a given d and,
next, compute the supremum of e(N; d) as d ranges
over [d

0
; d

1
]. Hence, we get

e(N)O sup
d|*d0 _ d1 +

e(N; d);

e(N; d)O lim
c?=

A1!
n(d,c)

EM (N; d,c)B. (22)

Let 0(e6(1 be a given constant (coe$cient of
nonoptimality). We say that the test N is e6 } opti-
mal if e(N)"e6 . The de"nition of e6 } optimality may
be illustrated geometrically as in Fig. 3. Let us
analyze two change detection tests : N and
M which are shown by dash}dot and dotted lines,
respectively. Our goal is to check their e6 } optimal-
ity. The shaded area consists of all points for which
the loss of optimality is bounded by e6 . The de"ni-
tion of e6 } optimality asserts that the entire graph of
dCEM (N; d,c

0
) (or the entire graph of dCEM (M; d,c

0
))

above the interval [d
0
; d

1
] lies within this area. As

it follows from Fig. 3, the de"nition is satis"ed for
the test M, i.e. the test M is e6 -optimal, and it is not
satis"ed for N (see Fig. 3).

3. Outlines of the proposed approach

The Kullback}Leibler information number o(h
1
)

will be used to solve the problem of e-optimal

change detection in the rest of the paper. To reduce
the computational cost of the GLR scheme, the
following plan is proposed :
(1) The "rst step is to cover a given domain H

1
by

a collection of ¸ subsets (zones of responsibil-
ity) HI

11
,2,HI

1L
as shown in Figs. 1 and 4.

These subsets are de"ned as follows:

HI
1l
"Mh

1
: d

l~1
)o(h

1
))d

l
N,

l"1,2,¸, (23)

where d
0
"infh1|H1

o(h
1
)"d2

0
/2 and d

L
"

suph1|H1
o(h

1
)"d2

1
/2. Let us de"ne now a

subdivision p"Mf
1
,2,f

L
N of the closed

interval [d2
0
/2; d2

1
/2], where the values f

l
are

so chosen that d
0
"d2

0
/2(f

1
(d

1
,2,d

L~1
(f

L
(d

L
"d2

1
/2. The idea of our approach is

to design ¸ parallel recursive tests, each of
them is asymptotically optimal for h

1
3S

1
(f

l
),

where S
1
(f

l
) is a surface de"ned as a set of

points satisfying the equation o(h
1
)"f

l
,

l"1,2,¸ (see Figs. 1 and 4).
(2) The next step is to design the asymptotically

optimal recursive tests for detection of changes
from h

0
to h

1
: o(h

1
)"f

l
. Moreover, these re-

cursive schemes should hold their mean time
delays for detection stably (with e variations)
against small changes in the Kullback}Leibler
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information number. Therefore, if ¸ zones
of responsibility (23) and ¸ tuning values
f
1
,2,f

L
are so chosen that the variation of the

actual value fI
l

of the Kullback}Leibler in-
formation number o(h

1
), where h

1
3HI

1l
,

around the tuning value f
l
is limited for each

zone then we can expect that the collection of
such recursive tests will be e-optimal.

To simplify the notation, from now on, we
consider an lth zone of responsibility and we
omit the index l. To design an asymptotically
optimal test, two di!erent approaches can be used
[4,27] : the GLR test and the weighted LR (WLR)
test.

3.1. GLR test

This solution consists in maximizing the
logLR S

n,k
(h

1
) when h

1
is restricted to lie in the

subset S
1
(f) :

SK
n,k

" sup
h1 > o(h1 )/f

S
n,k

(h
1
), (24)

which results in the constrained GLR test. A direct
approach to this problem is the method of
Lagrange's multipliers

LS
n,k

(h
1
)

Lh
1

#j
Lo(h

1
)

Lh
1

"0, o(h
1
)"f. (25)

The above system of equations is to be solved (if
possible) for r#1 unknowns 0

1,1
,2,0

1,r
and j.

Let us pursue our discussion of the parameter
m8 . The log LR S

n,k
(h

1
) in (25) is based on

n!k#1*m8 #1 last observations. Hence, the
choice of the parameter m8 de"nes the minimum
number of samples to compute the log LR S

n,k
(h

1
).

The parameter m8 follows from the statistical struc-
ture of the model considered in (1) [6]. For the "rst
model >

n
"h#m

n
, m

n
&N(0,R), the parameter is

m8 "0, hence, the smallest number of samples is
equal to 1 and this log LR S

n,n
(h

1
) is based on the

unique observation >
n
. For the second model

y
n
"XT

n
h#m

n
, m

n
&N(0,1), the parameter is

m8 "r, hence, the smallest number of samples is
equal to r#1 and this log LR S

n,n~r
(h

1
) is based on

the observations (y
n~r

, X
n~r

),2, (y
n
, X

n
).

3.2. WLR test

The second solution is to use the weighted LR
(WLR)

SI
n,k

" P2P
h1 > o(h1 )/f

eSn,k (h1 )f (h
1
) dS, (26)

where dS is the element of the surface S
1
(f) and

f (h
1
)*0 may be interpreted as the weighting func-

tion : :2:h1 > o(h1 )/f f (h
1
) dS"1. The main di$-

culty here is to choose the weighting function f (h
1
).

Often this choice can be done by using the invariant
properties of a given family of distributions.

3.3. Recursive scheme

The decision functions SK
n,k

and SI
n,k

have nega-
tive drifts before the change and asymptotically
the same positive drifts f after the change
1/(n!k#1)SK

n,k
and 1/(n!k#1)SI

n,k
converge

with probability 1 to f as n!kPR and k*l
under the distribution which &drives' the model (1)
after the change (see [4,15,18,20] for details). Be-
cause of this asymptotic property of the decision
functions SK

n,k
and SI

n,k
, a recursive decision rule can

be designed for each subset S
1
(f). It is known [4]

that the CUSUM-type change detection algorithm
can be represented as a repeated sequential prob-
ability ratio test (SPRT) in the case of two simple
hypothesis (H

0
: h"h

0
vs H

1
: h"h

1
). Let us

consider this repeated SPRT (N
j
,D

j
) :

N
j
"infMn'N

j~1
: (S

n,Nj~1`1
(h

1
)*h)

X(S
n,Nj~1`1

(h
1
))0)N, (27)

D
j
"G

1 if S
Nj ,Nj~1`1

(h
1
)*h,

0 if S
Nj ,Nj~1`1

(h
1
))0,

where N
j
is the exit time, D

j
is the decision rule (if

D
j
"i then H

i
is accepted, i"0,1) and h is an

upper threshold such that 0(h(R. We de"ne
the following sequence of exit times N

0
"0(N

1
(2(N

j
(2. Hence, the observation is stop-

ped after the "rst sample of size N
j
!N

j~1
for
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2Naturally, the a priori knowledge of o(h
1
) is important : the

precisely the value of o(h
1
) is known, the less is the loss of

optimality. Therefore, the smaller admissible value e, the bigger
the number ¸ of parallel tests.

which the decision rule D
j

is 1 (H
1

is accepted).
The stopping time N

c
"N

j
of this recursive

CUSUM scheme (repeated SPRT) (27) can be re-
written as

N
c
"infMn*1 : S

n
*hN,

S
n
"ASn~1

#log
uh1 (>n

DX
n
)

uh0 (>n
DX

n
)B

`
,

(28)

where S
0
"0, x`"max(0, x). Generally speaking,

this idea can be applied to the case of the decision
functions SK

n,k
and SI

n,k
. Let us replace the log LR S

n
with the GLR SK

n,k
in Eq. (28) :

NK
r
"infMn*1 : SK

n
*hN;

SK
n
"G

0 if n
n
(m8 #1,

SK
n,n~nn`1

if n
n
*m8 #1,

(29)

where SK
0
"0, n

0
"m8 #1, n

n
"

1M(nn~1:m8 `1)X(SK n~1;0)N
n
n~1

#1 is the counter of the
observations in the current cycle of the repeated
SPRT (with the GLR), 1MAN is the indicator of the
event A : 1MA *4 &!-4%N

"0; 1MA *4 536%N
"1, m8 *0 is

chosen to ensure that a MLE of h
1

exists. When
a new repeated SPRT cycle is started, we "rst have
to check if the number of observations n

n
is su$-

cient to ensure the existence of the MLE of h
1
. If the

number of observations n
n

is less than m8 #1, then
we put SK

n
"0. This means that the current cycle of

the repeated SPRT is too short and it should be
continued at least until n

n
becomes equal to m8 #1.

The indicator function 1M(nn~1:m8 `1)X(SK n~1;0)N
serves,

"rst, to preserve the minimum number m8 #1 of
observations in the current cycle of the SPRT and,
second, to "nish the current cycle if SK

n~1
)0 and

n
n~1

*m8 #1 (and, by this way, to restart the fol-
lowing one).

The behavior of the decision function SK
n

and the
counter n

n
are shown in Fig. 5. Here, the parameter

m8 is equal to 0. Before the change time l"100 the
expectation of the decision function is negative,
hence, the counter n

n
is stochastically small.

This means that practically at every time n the
detection scheme (29) restarts the SPRT between
two hypothesis (H

0
: h"h

0
vs H

1
: h

1
: o(h

1
)"f)

from scratch. After the change, the expectation of

the decision function is positive and the counter
n
n

grows with n (see Fig. 5). This means that the
detection scheme (29) has &memorized' that at the
time n!n

n
#1 the change occurred and it carries

out the observations (>
n~nn`1

, X
n~nn`1

),2,
(>

n
, X

n
). It is obvious that the change detection

algorithm (29) is fully recursive, i.e. at every time n it
involves only one maximization of the LR over
h
1

:o(h
1
)"f. If we replace the GLR statistic SK

n,k
in

Eq. (29) with the WLR statistic SI
n,k

, we get the
other recursive stopping rule, namely, NI

r
.

3.4. e-optimal scheme

Under certain assumptions both rules are
asymptotically optimal (see [15,16,20] for details)
and hold some stability when the actual value
of the Kullback}Leibler information number
fI
l
"o(h

1
), where h

1
3HI

1l
di!ers from the assumed

one f
l
. By choosing a desirable level e of nonop-

timality and by using the sensitivity function of the
test, we get the maximum admissible di!erence
between the actual value of the Kullback}Leibler
information and the assumed one DfI

l
!f

l
D which

leads to the de"nition of the zone HI
1l

(23). Typi-
cally, the maximum of nonoptimality is reached
on the surfaces o(h

1
)"d

l~1
and o(h

1
)"d

l
which limit the subset HI

1l
(see Fig. 4).2 Therefore,

we have to choose the number ¸ of parallel
recursive tests and the optimal subdivision
p"Mf

1
(f

2
(2(f

L
N of the interval [d2

0
/2;

d2
1
/2] as functions of the constants d

0
, d

1
and

coe$cient of nonoptimality e :

¸"¸(d
0
, d

1
, e), p"p(d

0
, d

1
,e).

This problem will be solved in Section 4. Finally,
we consider a collection of ¸ recursive stopping
rules

Ner"minMN
r
(f

1
),2,N

r
(f

L
)N, (30)

where N
r
(f

l
) is the stopping time (29) of the lth

recursive rule (with the GLR or WLR statistics)
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Fig. 5. The decision function SK
n

and the counter n
n

of the repeated SPRT (with the GLR statistic). The change time is l"100.

designed to detect any change such that h
1
3HI

1l
with loss of a small part, e, of optimality. Therefore,
Eq. (30) establishes the stopping rule of the e-opti-
mal detection scheme.

4. Practical design of the e-optimal algorithm

As it follows from Sections 2 and 3, the design
of the detection algorithms can be done either
in term of the Kullback}Leibler information
number o(h

1
) or in term of the SNR d"

J(h
1
!h

0
)TR~1(h

1
!h

0
) for the "rst model (or

d"J(h
1
!h

0
)TR(h

1
!h

0
) for the second one). In

practice, it is simpler to use directly the SNR,
for this reason in the rest of the paper we will
consider the interval [d

0
; d

1
] and its subdivision

p"Ma
1
(a

2
(2(a

L
N. We "rst discuss in brief

two asymptotically optimal tests to detect a change

with a given SNR d (see details in [4,14}16,20]). We
next design the e-optimal scheme.

4.1. Model : F(X
n
,h)"h

4.1.1. The recursive s2-GLR test
We consider the constrained GLR (24). The

direct application of the method of Lagrange's
multipliers (25) and the stopping rule (29) leads to
the recursive s2-GLR test. This test is summarized
in Table 1. A detection rule which is analogous to
the recursive s2-GLR test was also introduced in
[21].

4.1.2. The recursive s2-CUSUM test
This detection rule was introduced in [14].

Its de"nition is analogous to the s2-GLR rule.
This test is summarized in Table 2, where the
generalized hypergeometric function is given
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Table 1
Recursive s2-GLR test

Step Action Meaning

1. Initialize : n"0, SK
0
"0, R, d, h Fix initial values

2. Iterate : n :"n#1 Take the next
observation X

n
n
n
"1MSI n~1;0Nnn~1

#1, Counter
<

n
"1MSI n~1;0N<n~1

#(X
n
!h

0
), Cumulative sum

s2
n
"<T

n
R~1<

n
Quadratic form
(s2-statistic)

SK
n
"!n

n

d2

2
#dDs

n
D Decision function

3. Check: if SK
n
*h then declare

alarm :
Decision rule (h is
a threshold)

NK
r
(d)"n

if SK
n
(h then repeat step 2.

Table 2
Recursive s2-CUSUM test

Step Action Meaning

1. Initialize : n"0, SI
0
"0, R, d, h Fix initial values

2. Iterate : n :"n#1 Take the next
observation X

n
n
n
"1MSI n~1;0Nnn~1

#1, Counter
<

n
"1MSI n~1;0N<n~1

#(X
n
!h

0
), Cumulative sum

s2
n
"<T

n
R~1<

n
, Quadratic form

(s2-statistic)

SI
n
"!n

n

d2

2
#logGA

r

2
,
d2s2

n
4 B Decision function

3. Check : if SI
n
*h then declare

alarm :
Decision rule (h is
a threshold)

NI
r
(d)"n

if SI
n
(h then repeat step 2.

by [1] : G(g,x)"1#x/g#2#xn/(g(g#1)2
(g#n!1)n!)#2. In practice, the function
zC logG(r/2, z2/4) can be easily computed by
applying a polynomial interpolation or, when z
is large, by using the following asymptotic

approximation [1] :

logGA
r

2
,
z2

4 B"z!(r!1)log z#log
C(r!1)

C(r/2!1/2)

#A
r

2
!

1

2Blog 4#logA1#OA
1

zBB.

4.2. Model : F(X
n
,h)"XT

n
h

We consider the constrained GLR test (24). The
direct application of the method of Lagrange's
multipliers (25) and the stopping rule (29) leads to
the recursive constrained GLR test. The proof is
given in Appendix A. This test is summarized in
Table 3.

4.3. e-optimal rule

We consider the collection (30) of ¸ parallel re-
cursive GLR (or CUSUM) tests given in Tables
1}3. We assume the SNR d ranges over [d

0
;d

1
].

This rule is summarized in Table 4 and the detailed
explanations are given in Appendix B. The stop-
ping time of the e-optimal scheme is expressed as

Ner"minMN
r
(a

1
),N

r
(a

2
),2,N

r
(a

L
)N, (31)

where N
r
(a

l
) is the stopping time of the recur-

sive test designed to detect a change with the
SNR a

l
(see Tables 1 (or 2, 3)) and p"

Ma
1
(a

2
(2(a

L
N is the optimal subdivision of

the interval [d
0
; d

1
] (B.2). As before, NK er (NI er)

means that the e-optimal rule is designed by
using the GLR (CUSUM) tests. The geometric
interpretations of the constrained GLR, WL
GLR and e-optimal detection scheme are given in
Appendix C.

4.4. Complexity of two solutions

Let us compare the complexity of the proposed
recursive e-optimal test (Ner ) and the WL GLR test
(NK

m,m8
). As pointed out by Lai [8], the WL GLR

scheme involves O(2 log c/d2
0
) LR maximizations at

every time n. Hence the complexity of the WL GLR
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Table 3
Recursive constrained GLR test

Step Action Meaning

1. Initialize : n"0, r, n
0
"r#1, Fix initial values

SK
0
"0, R~1, d, h

2. Iterate : n :"n#1 Take the next y
n
,X

n
e
n
"y

n
!XT

n
h
0
, Residual

n
n
"1M(nn~1:r`1)X(SK n~1;0)N

n
n~1

#1, Counter
<

n
"1M(nn~1:r`1)X(SK n~1;0)N

<
n~1

#X
n
e
n
, Cumulative sum

if n
n
"1 then P

n~1
"R~1, Re-initialization of

the inverse matrix

P
n
"AI!P

n~1

XnX
¹

n

1#X¹

n Pn~1XnBPn~1
,

Inverse matrix

SK
n
"G0 if n

n
(r#1

!n
n

d2

2
#dJ<T

n
n
n
P

n
<

n
if n

n
*r#1

Decision function

3. Check : if SK
n
*h then declare alarm : Decision rule (h is a threshold)

NK
r
(d)"n

if SK
n
(h then repeat step 2.

Table 4
Recursive e-optimal scheme

Step Action Meaning

1. Initialize : e6 , d
0
, d

1
, h Tuning parameters

¸isthesmallestinteger*log
d1

d0Alog
1#Je6

1!Je6 B
~1 Number of parallel tests

for l"1,2,¸ compute a
l
"d

0
Je6

(1#Je6 )l

(1!Je6 )l~1
,

Optimal subdivision of [d
0
; d

1
]

initialize ¸ parallel tests See Table 1 (or 2,3)

2. Iterate : n :"n#1 Take the next observation
for l"1,2,¸ compute SK

n
(a

l
) (or SI

n
(a

l
)) ¸ parallel tests,

See Table 1 (or 2,3)

3. Check : if maxMSK
n
(a

1
),2, SK

n
(a

L
)N*h Decision rule (h is a threshold)

then declare alarm : NK er"n (or NI er"n)
if maxMSK

n
(a

1
),2, SK

n
(a

L
)N(h

then repeat step 2.

scheme is O(2 log c/d2
0
). The proposed e-optimal

test involves ¸ LR maximizations at every time n,
therefore, its complexity is ¸. The comparison
of the e$ciency versus complexity for the
e-optimal scheme and the WL GLR test is

summarized in Table 5. Let us compute the
following ratio :

Complexity of NK
m,m8

Complexity of Ner
"

2 log c
¸d2

0

,
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Table 5
Comparison of the e$ciency versus complexity for the e-optimal
and WL GLR tests as cPR

Test Loss of
optimality

Complexity (number of LR
maximizations)

e-optimal e The smallest integer

*log
d
1

d
0
Alog

1#Je

1!JeB
~1

WL GLR (optimal) 0 OA
2 log c

d2
0
B

Fig. 6. Comparison of the e$ciency versus complexity for the e-optimal and WL GLR tests.

as a function of the mean time before a false alarm
c for d

0
"0.3, d

1
"10, and e6"0.05; 0.1; 0.2; 0.4.

These results are shown in Fig. 6.

5. Comparison against the WL GLR scheme:
simulation results

5.1. Simulation model

The goal of this section is twofold. First,
we compare the statistical performances and the

computational complexity of the recursive e-opti-
mal and WL GLR tests for the problem of detect-
ing changes in the regression model y

n
"XT

n
h#m

n
by using the Monte-Carlo simulation. Second, we
use the simulation results to con"rm the theoretical
performances of the e-optimal test. A simulation
comparison of the e-optimal scheme with the WL
GLR scheme for the additive model (5) has been
discussed earlier [20]. We assume now that the
inputs X

n
are zero mean gaussian random vectors

with covariance matrix R. The parameters have
been chosen in the following manner: r"5,
hT
0
"(0,2,0), m

n
&N(0,1),

R
5
"A

1 0.8 0.2 0.1 !0.2

0.8 1 !0.2 0.1 0.1

0.2 !0.2 1 0.5 0.1

0.1 0.1 0.5 1 0.3

!0.2 0.1 0.1 0.3 1 B ,

detR
5
"0.062.

We assume that the parameter h
1

is given by the
equation hT

1
R

5
h
1
"d2, where the SNR d varies
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Fig. 7. The subdivision p"Ma
1
(a

2
(a

3
N of the interval [d

0
; d

1
] and three zones of responsibility.

Table 6
WL GLR test

Step Action Meaning

1. Initialize : n"0, r, m :m'r, R~1, h Fix initial values
2. Iterate : n :"n#1 Take the next y

n
,X

n
e
n
"y

n
!XT

n
h
0
, Residual

if n)r then repeat step 2, Wait for the next observation
if n'r that execute step 2.1 First start of the inside cycle

2.1 Initialize <
n`1

"0, P
n,n`1

"R~1, New time window [l; n]
l"maxM0, n!mN#1,

2.2 Inside cycle for iterations Iterations in the backward direction
k"n, n!1,2, l

P
n,k

"AI!P
n,k`1

X
n
XT

n
1#XT

n
P

n,k`1
X

n
BPn,k`1

,
Inverse matrix

<
k
"<

k`1
#X

k
e
k
, Cumulative sum

if k)n!r then SK
n,k

"1
2
<T

k
P
n,k
<

k
Decision function

3. Check : if maxMSK
n,n~r

,2,SK
n,l

N*h Decision rule
then declare alarm : NK

m,r
"n (h is a threshold)

if maxMSK
n,n~r

,2,SK
n,l

N(h
then repeat step 2.

between d
0
"0.3 and d

1
"10. We "x the coe$c-

ient of nonoptimality as e6"0.3 and the mean time
before a false alarm as c"104. It follows from Eq.
(B.2) that it is enough to run three parallel s2-GLR
tests to get the level e6"0.3 of nonoptimality and
that the assumed values of the SNR are a

1
"0.464,

a
2
"1.589 and a

3
"5.437. The zones of responsib-

ility [0.3, 1.027], [1.027, 3.513] and [3.513, 12.022]
are shown by shaded regions in Fig. 7.

5.2. Statistical performances

The Monte-Carlo simulation was organized in
the following manner. The e-optimal recursive al-
gorithms NK er summarized in Tables 3 and 4 have
been compared against the WL GLR test given in

Tables 6. The threshold value h in the e-optimal
algorithm (31), (A.1), (A.2) or in the WL GLR
algorithm (A.3) was so chosen that E=(NK er)"
E=(NK

m,r
)"104. To evaluate h we have used an

iterative scheme. Let us de"ne the following func-
tion f : RPR, f (h)"E=(N; h)!c, where c"104.
The secant method for the solution of equation
f (h)"0 was used :

h
n`1

"h
n
!f (h

n
)

h
n
!h

n~1
f (h

n
)!f (h

n~1
)
,

h
0
"log c#k, h

~1
"log c, with k"1.

At each iteration n, 103 independent repetitions of
the Monte-Carlo simulation were performed to es-
timate f (h

n
). The iterative process was stopped
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Fig. 8. The mean time detection delays of the WLGLR and e-optimal tests.

when the estimated value of E=(NK er ) (or E=(NK
m,r

))
di!ers from 104 by no more than 50 (0.5% of 104).
In this manner the threshold h was set to be
h"10.98 for the e-optimal algorithm and was set
to be h"13.3 for the WL GLR algorithm. The
parameter m in the WL GLR algorithm (see Table
6) was set to be m"400 (see explanations below).
Until the change time l the parameter h is equal to
h
0
, hence, the observations y

1
, y

2
,2, yl~1

were
generated by the gaussian distribution N(0,1).
Beginning from the change time l the observations
yl , yl`1

,2 were generated by the equation
y
n
"XT

n
h
1
#m

n
. To evaluate EM (NK

0.3r
; d,104) and

EM (NK
400,5

; d,104), 103 repetitions of the detection
procedures were performed for each value of
l"1,2,3,2,100 and d3[0.3;10]. The simulation
shows that the variation of the estimate mean time
delay for detection is negligible (with respect its
standard deviation) when l'100. Hence, we esti-
mate the mean time delay for detection by replacing
the value EM (N)"suplw1

El
d
(N!l#1DN*l) by its

Monte-Carlo estimate

sup
lw1

El
d
(N!l#1DN*l)

K max
1xlx100

G
1

n
d

103

+
i/1

(NK
i
!l#1)1MNiwlNH,

where NK
i
is the time of detection in the ith statist-

ical experiment and n
d
"+103

i/1
1MNiwlN . Fig. 8 re-

ports the results of a simulation study of the
statistical performances of the above e-optimal and
WL GLR tests. Both, the simulated and theoretic
EM (N; d,104) as functions of the SNR d for these tests
are presented here. Because the WL GLR test is
asymptotically optimal, we use (21) as a theoretic
expression for the mean time delay for detection, on
the other hand we use (B.4) as a theoretic mean time
delay for the e-optimal test. The results of a simula-
tion study (see Fig. 8) completely con"rm the theor-
etical performances of the e-optimal test, it even
performs better than it can be expected from (B.4).

5.3. Computational complexity

The complexity of the 0.3-optimal test is three
LR maximizations at every time. It is di$cult to use
directly the asymptotic equation m"O((2 log c/d2

0
))

for the WL GLR test because the adequate choice
of the parameter m implicitly involves the higher
moments of the stopping time NK

m,r
. We have "rst

chosen m"(2 log 104/0.32)K206. The simulation
showed that this choice leads to an underestimate
of the statistical properties of the WL GLR test.
To be sure that the comparison is correct, we have
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next repeated the simulation with the m"

400'(2 log 104/0.32). Therefore, the comparative
computational complexity of the e-optimal test
NK

0.3r
and the WL GLR test NK

400,5
is presented by

the following ratio :

Complexity of NK
400,5

Complexity of NK
0.3r

"

395

3
K132.

6. Conclusions

The detection of abrupt changes in the model
>

n
"F(X

n
,h)#m

n
is discussed. Two particular

cases have been considered: (1) F(X
n
,h)"h; (2)

F(X
n
,h)"XT

n
h. The parameter h is assumed to be

unknown after the change. A simple e-optimal re-
cursive scheme is proposed to solve the problem.
A method for tuning the parameters of this e-opti-
mal detection scheme is given (see Eqs. (B.1)}(B.4)).
By using this method, the designer can easily "nd
a trade-o! between the complexity of the proposed
change detection algorithm and its e$ciency. The
proposed scheme has been compared with the
asymptotically optimal WL GLR scheme which is
usually used to solve such a problem.

Appendix A. Proof of the GLR tests

A.1. Recursive constrained GLR test

We consider the constrained GLR test (24) and
the regression model (8). To simplify the notations
we apply the transformation e

n
"y

n
!XT

n
h
0

to the
output y

n
. This leads the following representation

of model (8) :

e
n
"G

m
n

if n(l,

XT
n
b#m

n
if n*l,

where b"h
1
!h

0
. It follows from Eq. (24) that

SK
n,k

" max
b > 2o(b)/d

2 G
n
+
i/k

bTX
i
e
i
!

1

2
bT

n
+
i/k

X
i
XT

i
bH,

where 2o(b)"bT1/(n!k#1)+n
i/k

X
i
XT

i
b. The ap-

plication of the method of Lagrange's multipliers

(25) leads to the following results :

LS
n,k

(b)

Lb
#2j

Lo(b)

Lb

"

n
+
i/k

X
i
e
i
!A1!

2j
n!k#1B

n
+
i/k

X
i
XT

i
b"0,

2o(b)"bT
1

n!k#1

n
+
i/k

X
i
XT

i
b"d2.

If the matrix +n
i/k

X
i
XT

i
is nonsingular, then there is

a unique solution for the above system. It leads to
the following expression of the GLR :

SK
n,k

"!(n!k#1)
d2

2
#dDs

n,k
D,

s2
n,k

"

n
+
i/k

XT
i
e
iA

1

n!k#1

n
+
i/k

X
i
XT

i B
~1 n

+
i/k

X
i
e
i
.

Taking into account the recursive method of
computing the inverse of +n

i/k
X

i
XT

i
knowing

+n~1
i/k

X
i
XT

i
and the fact that m8 "r, we get the

recursive GLR test :

NK
r
(d)"infMn*1 :SK

n
*hN, (A.1)

SK
n
"G

0 if n
n
(r#1,

!n
n

d2

2
#dJ<T

n
n
n
P
n
<

n
if n

n
*r#1,

P
n
"AI!P

n~1

X
n
XT

n
1#XT

n
P
n~1

X
n
BPn~1

with P
n~1

"P
0

if n
n
"1, (A.2)

where P
n
O(+n

i/n~nn`1
X

i
XT

i
)~1, <

n
"

1M(nn~1:r`1)X(SI n~1;0)N
<

n~1
#X

n
e
n

and n
n
"

1M(nn~1:r`1)X(SI n~1;0)N
n
n~1

#1. The initial condi-
tions are SK

0
"0, n

0
"r#1 and P

0
"R~1. In

practice, the matrix P
0

can be also chosen as uI,
where u"102}105.

A.2. WL GLR test

Let us brie#y derive the WL GLR test for the
model F(X

n
,h)"XT

n
h. The details can be found in

[10]. It follows from Eq. (3) that the stopping time
of the WL GLR test is given by

NK
m,r

"infGn'r : max
.!9M0,n~mN`1xkxn~r

1

2

n
+
i/k

XT
i
e
i

)A
n
+
i/k

X
i
XT

i B
~1 n

+
i/k

X
i
e
i
*hH, (A.3)
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where 1)r(m, e
n
"y

n
!XT

n
h
0

and the inverse
matrix P

n,k
O(+n

i/k
X

i
XT

i
)~1 is calculated by using

the recursive method (A.2) applied in the backward
direction (k"n, n!1, n!2,2) :

P
n,k

"AI!P
n,k`1

X
n
XT

n
1#XT

n
P

n,k`1
X

n
BPn,k`1

with P
n,n`1

"R~1 if k"n.

Appendix B. Properties of the proposed tests

B.1. Model : F(X
n
,h)"h

It follows from [15,20] that the asymptotic rela-
tion between the mean time delay for detection and
the mean time before a false alarm for the e-optimal
rule is given by

EM (Ner ; d,c)[
2 log c

d2!(d!a
l0
)2

as cPR, (B.1)

where d3[d
0
; d

1
], l

0
"argminMDd!a

l
D D l"

1,2,¸N and p"Ma
1
(a

2
(2(a

L
N is a subdi-

vision of the interval [d
0
; d

1
] such that

d
0
)a

1
(2d

0
and a

L
)d

1
. Let us discuss Eq.

(B.1). The e-optimal rule (31) is a collection of
¸ parallel recursive tests. The stopping (alarm) time
is set at the "rst instant Ner for which at least one
decision function reaches the threshold h. The
bound between two neighboring zones of respons-
ibility (say, the zones l and l#1) is the center of the
interval [a

l
, a

l`1
]. The zones of responsibility are

shown by shaded regions and the bounds between
neighboring zones are shown by vertical lines in
Fig. 7. Let us assume that the actual value d of the
SNR belongs to the l

0
th zone. It is easy to show

that the smallest mean time delay for detection
corresponds to the l

0
th recursive test. This smallest

mean time delay for detection is an upper bound for
the mean time delay EM (Ner ; d,c) of the e-optimal rule.
This fact explains Eq. (B.1) and the de"nition of the
number l

0
. Let us "x some acceptable value e6 of the

coe$cient of nonoptimality (see Eq. (22)), the num-
ber ¸ and the subdivision p should be chosen in the

following manner :

¸ is the smallest integer *log
d
1

d
0
Alog

1#Je6

1!Je6 B
~1

(B.2)

and

a
l
"d

0
Je6

(1#Je6 )l

(1!Je6 )l~1
, l"1,2,2,¸.

Because Eq. (B.1) has an asymptotic character, it is
not very accurate for large values of SNR. Obvious-
ly the detection delay is greater than or equal to
m8 #1. In the case of model F(X

n
,h)"h the para-

meter m8 is equal to 0. This leads to the following
heuristic modi"cation of Eq. (B.1) :

EM (Ner ; d,c)[maxG1,
2 log c

d2!(d!a
l0
)2H. (B.3)

This equation can be used to estimate the ARL
function. It follows from Eq. (18) that ARL(0)"
E1h0 (N)"E=(N), hence ARL(0)"c. On the other
hand ARL(d)"EM (Ner ; d,c).

B.2. Model : F(X
n
,h)"XT

n
h

The optimal detection of abrupt changes in this
model by using Lorden's criterion [11] and/or Eqs.
(19)}(20) has been discussed by Bansal and Papan-
toni-Kazakos [2], Yao [30] and recently by Lai
[8,9]. It has been shown that the lower bound
n(d,c)OinfMEM (N; d,c): N3KcN&(2 log c/d2) is also
valid for the regression model as cPR. The goal
of this paper is to discuss the methodological and
practical aspects of the e-optimal scheme, for this
reason we omit mathematical details. We assume
that the mean time delay for detection given by
Eq. (B.3) is valid also for the regression model
F(X

n
,h)"XT

n
h :

EM (Ner ; d,c)[maxGr#1,
2 log c

d2!(d!a
l0
)2H. (B.4)

To "nd the number ¸ and the subdivision p we
apply again Eq. (B.2). The results of Monte-Carlo
simulation show that this approach can be used at
least as an asymptotic approximation.

I.V. Nikiforov / Signal Processing 81 (2001) 149}172 167



B.3. Dynamic proxle after change

Let us assume now that the parameter h changes
not abruptly (see Eqs. (5) and (8)) but smoothly,
namely h

1
"h

1
(n!l#1), n*l, is a function of

time. We assume that the dynamic pro"le
h
1
(n!l#1) is unknown a priori and, hence, it

cannot be directly included in the log LR
S
n,k

(h
1
)"+n

j/k
log (uh1(n~k`1)

(>
j
DX

j
))/(uh0 (>j

DX
j
))

as it is proposed in [5], where the problem of
time-varying change detection is considered for the
scalar case. We consider here that the unknown
dynamic pro"le h

1
(n!l#1) is a nuisance para-

meter. We brie#y discuss now its impact on the
performance index (mean time delay for detection
EM (N,c)) of the considered detection algorithms.
It is worth noting that to our knowledge no result
in a mathematically precise sense exists in the
literature, for this reason our discussion is
heuristic. There are two di!erent aspects of this
problem: (i) the impact of the dynamic pro"le
h
1
"h

1
(n!l#1) on EM (N,c) via the MLE estimate

of h
1
; (ii) the impact of the dynamic pro"le

h
1
"h

1
(n!l#1) via the actual value of the Kull-

back}Leibler information number fI"o(h
1
). The

impact via the MLE estimate of h
1

is important
only for the model F(X

n
,h)"XT

n
h, because for

the model F(X
n
,h)"h the MLE is instan-

taneous (based on one observation) and, hence,
only the second aspect is important. For the
model F(X

n
,h)"XT

n
h, the dynamic pro"le

h
1
"h

1
(n!l#1) produces a negative e!ect on

the MLE estimate of h
1
. This e!ect is very di$cult

to estimate mathematically and the Monte-Carlo
simulation method can be recommended in this
case. For the model F(X

n
,h)"h, the situation is

a bit simpler. It will a!ect the mean time delay for
detection EM (N,c), but the following heuristic role
can be proposed in such a case : (i) to compute the
dynamic pro"le of the Kullback}Leibler informa-
tion number fI"fI (n!l#1); (ii) to solve (numer-
ically) the following asymptotic equation [17]
+n/q

n/1
fI (n)"log c, where qKEM (N,c).

B.4. Some alternative solutions

Let us brie#y discuss some alternative solutions
to the problem of detecting changes in the models

F(X
n
,h)"h and F(X

n
,h)"XT

n
h. For the model

F(X
n
,h)"h with a known value of the SNR

d"J(h
1
!h

0
)T&~1(h

1
!h

0
), a "xed sample size

(FSS) test with nonoverlapping blocks of m obser-
vations is compared against the optimum sequen-
tial tests NK (d) and NI (d) (s2-GLR or CUSUM, see
Tables 1 and 2) in [19]. The stopping time of
this FSS test is given by NM (d)"inf

jw1
Mmj :

Dsjm
(j~1)m`1

D*mhN, where (sn
k
)2"(<M n

k
)TR~1<M n

k
and <M n

k
"+n

i/k
(X

i
!h

0
). A more conservative

performance criterion of Lorden [11] EM H(N)"
suplw1

esssupEl (N!l#1DN*l, X
1
,2, Xl~1

)
has been used for this comparison. It is shown
that

EM H(NK ; d,c)&EM H(NI ; d,c)&
2 log c

d2

[EM H(NM ; d,c)[
4 log c

d2
as cPR

and (by numerical method) that the true value of
EM H(NM ; c) is very close to its upper bound, hence, the
s2-CUSUM (or GLR) test is asymptotically twice
as good as the FSS test. Moreover, it is shown that
the optimal sample size is m&2 log c/d2 and,
hence, if the SNR d is unknown then an additional
loss of performance can be expected in the case of
the FSS test. For the model F(X

n
,h)"XT

n
h, the

above results are applicable as approximation. The
`moving windowa FSS, nonoverlapping FSS
tests and the window-limited CUSUM test are
compared against the WL GLR test NK

m,m8
(3) by

Monte Carlo simulations in [9,10]. The state
space model with an additive change is used for
this comparison. The conclusion is the following :
if the parameter m is so chosen that m'log c/o

.*/
with o

.*/
"infh1|H1

o(h
1
), then the WLGLR

test realizes the best results (even for a non-
asymptotic value cK103). If m is misspeci"ed
(m(log c/o

.*/
), then there are the values of

h
1

when the alternative tests perform better.
This fact emphasizes the importance of a correct
choice of the parameter m. Therefore, the WL GLR
test with a conveniently chosen parameter m is
a good benchmark, for this reason the proposed
e-optimal test is compared with the WL GLR test
in Section 5.
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Fig. 9. Geometric interpretation of the GLR stopping bounds.

Appendix C. Geometric interpretations

Let us discuss now the geometric interpretations
of the GLR, WL GLR and e-optimal detection
schemes. These interpretations are especially
simple in the case of the model F(X

n
,h)"h (see

Eq. (5)), where h3R2 and covariance matrix is scal-
ar R"p2I, i.e. for the bivariate detection scheme.
By substitution of the log LR

S
n,k

(h
1
)"

n
+
j/k

log
uh1 (>j

)

uh0 (>j
)

"

n!k#1

2p2
(!DD>M

n,k
!h

1
DD2#DD>M

n,k
!h

0
DD2)

with >M
n,k

"1/(n!k#1)+n
j/k
>

j
in Eq. (2) we get

the stopping time of the GLR scheme :

NK "infGn*1 : max
1xkxn

suph1|R2S
n,k

(h
1
)*hH

with

sup
h1|R2

S
n,k

(h
1
)"

1

2p2(n!k#1) KK
n
+
i/k

(>
i
!h

0
)KK

2
.

The graphical solution of the GLR test consists
in plotting the bivariate cumulative sum
Z

n
"(z1

n
, z2

n
)T"+n

i/1
(>

i
!h

0
) versus n and plac-

ing the vertex of the stopping surface of revolution
(this is a paraboloid of revolution) on the latest
point M with coordinates (z1

n
, n, z2

n
) (see Fig. 9, up-

per row). Fig. 9, upper row, shows the GLR stop-
ping surface when the variance p2 is equal to 1 and
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Fig. 10. Geometric interpretation of the WL GLR and e-optimal stopping bounds.

the threshold h is equal to 23. The decision rule
NK consists in stopping at the "rst time n such that
a previously plotted point of the bivariate cumulat-
ive sum +n

i/k
(>

i
!h

0
) crosses the stopping surface

of revolution with the generatrix r
l
"J2p2lh,

where l"0, 1, 2,2, n. This situation is shown in
Fig. 9, low row, by projecting the paraboloid on the
z2}n plane, see shaded parabolic regions. The
graphical solution of the WL GLR test consists in
the same manipulations but the stopping surface
now is a truncated paraboloid of revolution with

the generatrix r
l
"J2p2lh, where l"0, 1, 2,2,m.

This solution is shown in Fig. 10, upper row, when
the parameter m is equal to 30, by projecting the
truncated paraboloid on the z2}n plane. The above
graphical rule `stop if a previously plotted point
lies on the opposite side of the stopping surfacea is

also valid in the case of the e-optimal test. It follows
from [15,20] that the recursive s2-GLR (or s2-
CUSUM) tests designed to detect a change with the
SNR d and given by Tables 1 and 2 are asymp-
totically equivalent to the following nonrecursive
constrained GLR test :

N(d)"infGn*1 : max
1xkxn

sup
h1 > @@h1~h0 @@/dp

S
n,k

(h
1
)*hH.

(C.1)

As it follows from Eqs. (24) and (25), the con-
strained GLR is given by

sup
h1 > @@h1~h0 @@/dp

S
n,k

(h
1
)

"!

n!k#1

2
d2#

d

p KK
n
+
i/k

(>
i
!h

0
)KK.
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Therefore, now the stopping bound is a conical
surface with the generatrix r(

l
"hp/d#dpl/2,

where l"1,2,2, n. Let us establish the relation
between the generatrix r

l
of the GLR test and the

generatrix r(
l

of the constrained GLR test. To
do this, we replace the integer index l by the con-

tinuous variable x, hence, r(x)"J2p2hx and
r( (x)"hp/d#dpx/2. It follows from [15,20] that
the asymptotic mean time delay for the constrained
GLR is given by 2h/d2. Let us consider x

0
"2h/d2.

It is easy to show that the graph of the linear
function xC r( (x) is a tangent line to the curve given

by the equation r(x)"J2p2hx at the point
(x

0
, r(x

0
)). The e-optimal test with the stopping

time Ner (31) is a collection of ¸ parallel recursive
s2-GLR (or s2-CUSUM) tests with specially
chosen values a

1
,2, a

L
. This test is asymptotically

equivalent to the collection Ne"MN(a
1
),2,

N(a
L
)N of the nonrecursive stopping rules (C.1). It

follows from the de"nition of the stopping time
Ne that the generatrix of the corresponding stop-
ping surface is a piecewise linear function (see
Fig. 10, lower row). These pieces given by the
equations r(

i
(x)"hp/a

i
#a

i
px/2, i"1,2,¸ are

tangent lines to the generatrix of the GLR stopping

surface given by the equation r(x)"J2p2hx at the
points (x

i
, r(x

i
)), where x

i
"2h/a2

i
. Therefore, the

graphical solution of the e-optimal test looks like
a piecewise conical approximation from outside
for the stopping surface (paraboloid) of the
GLR test (see the projection of these stopping sur-
faces on the z2}n plane in Fig. 10, lower row). The
portion r(

i
(x)"hp/a

i
#a

i
px/2 of this piecewise

conical approximation corresponds to the zone of
responsibility of the test NK (a

i
) (see Fig. 4). Fig. 10,

low row, shows the approximation of the GLR
scheme by three parallel tests when the assumed
values of the SNR are a

1
"0.464, a

2
"1.589 and

a
3
"5.437. Here, the shaded parabolic regions

represent the projections of the GLR test stopping
surface and the piecewise linear bounds represent
the projections of the e-optimal test stopping surface.

For further reading

The following reference is also of interest to the
reader: [24].
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