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ABSTRACT. Various methods, such as biproportional adjustment and econometric
estimating have been used to generate time series for input-output tables. In this paper,
temporal changes of input-output coefficients are examined in order to analyze their
behavior. Within the Chicago Region Econometric Input-Output Model, a set of input-
output relationships has been extracted analytically for the period 1980-1997. Using the
empirical evidence for Chicago, this paper conducts econometric time series analysis to
determine whether or not certain coefficients or sets of coefficients exhibit tendencies
toward stability or predictable change or whether others require more extensive economet-
ric estimation.

1. INTRODUCTION

Since its introduction in the Programme for Growth series (Cambridge
University, Department of Applied Economics, 1963), the RAS or biproportional
adjustment technique has become one of the most popular methods for adjusting
input-output, social accounting, and demographic matrices. In the input-output
literature, the technique has been used for two primary purposes: (1) the initial
application, namely, the adjustment of a matrix observed at one time period to
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a new matrix for a subsequent time period, in which only row and column totals
for intermediate demand and output are known; and (2) the adjustment of
national input-output tables to represent regional tables in the regional input-
output literature. The technique has been reviewed extensively; and even though
critics have claimed that it is nothing more than a mechanical adjustment
process, both Stone (1961, 1962) and Leontief (1941), among others, attempted
to provide some theoretical basis to justify its application.

This paper’s interest in the technique stems from entirely different prem-
ises. A series of input-output tables over time is available from the Chicago
Region Econometric Input-Output Model (CREIM), so the issue is not focused
on the need to update tables. Rather, the interest lies in whether or not any
biproportional properties exist in this time series. Because the input-output
tables were generated within a general equilibrium model (CREIM), a further
issue centers on the degree to which the additional information attached by the
non—-input-output components produces tables that are not merely simple
extrapolations of the earlier one. Hence, the analysis is not directed to a
comparison of two sets of tables where one set is observed and the other
estimated—here both sets of tables are derived. In part, the initial stimulus for
this approach was a paper of Lecomber (1969) in which he explored RAS
projections when two or more matrices were known. In fact, the Chicago
input-output tables were adjusted in the spirit that Lecomber proposed for cases
where a large number of matrices were known.

In the next section, the RAS technique is presented and reviewed, as well
as Lecomber’s formulation and some extensions. Section 3 analyzes the esti-
mates from the RAS procedure, focusing on its ability to capture structural
changes. Section 4 introduces some experiments using Lecomber’s and other
formulations conducted on the tables. Some evaluation and concluding com-
ments complete this paper.

2. THE RAS OR BIPROPORTIONAL TECHNIQUE

One of the problems associated with input-output analysis is based on an
assumption of constant production relationships (coefficients) over time, espe-
cially when this time horizon stretches over a period of more than a decade. At
the regional level, the issues are further complicated by the potential for change
in trading relationships and problems that may arise if input-output compo-
nents are nested, linked, or integrated with other models, such as computable
general equilibrium models and demo-economic models (Israilevich et al., 1997).
The costs of constructing survey-based regional input-output tables over time
are prohibitive; as a result, the development of regional input-output tables has
relied on two alternatives, nonsurvey and partial survey techniques. In the
following subsections, one of the partial survey techniques, the RAS or bipro-
portional adjustment technique, is presented and reviewed.
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Overview of the Technique

The RAS or biproportional technique was developed by Stone (1961), Stone
and Brown (1962), and Cambridge University, Department of Applied Economics
(1963), and was summarized by Bacharach (1970). These studies approached
the problem of finding the most efficient way to update the UK. input-output
tables by adopting the following procedure

(1) A(t+l) = f'A(t)é

where A(t) = [afj] ,and A( (1) = [afj”]; r and § can be considered to be multipliers
that implicitly transform Ay to A . 1). Equation (1) can be transformed to the
following general expression shown as Equation (2)

(2) Ag 1) = fTAw, e+ 1), Ve + 1), X + 1)

where ug . 1) is the vector of total intermediate outputs at time ¢ + 1, v, , 1) is the
vector of total intermediate inputs at ¢ + 1, and x;,1 is the vector of total outputs
att + 1. Given these three sets of data at £+1 and the input coefficient matrix at
t,Ay, r,and § can be estimated as follows.

First, an estimated vector of intermediate outputs is obtained using A and
known x4 1)

(3) w = ApX¢ 1)

This estimate u; is adjusted to conform to the observed value u . 1) through
adjustment of the matrix A). A new matrix A; will be produced

4) A1 =11Ap
where r; =u,, +1)ﬁ11, and @, ; and @, are the diagonal matrices of ¢ . 1) and

uj, respectively. This new matrix A; is now used to obtain the estimate of
intermediate input vector vi and the matrix A; is further adjusted to a new
matrix Ay to ensure equality with observed intermediate inputs v . 1)

(5) Vl = &(t+l)A{i

(6) Ap =AS,

where s; = G(t +1)\711, and AT is the transposed matrix of A; and i is a vector

with all elements equal to unity. Then, the process returns to Equation (3), where
ug is now estimated as follows in Equation (7)

(7 U = AoXg 4 1)

and so on through Equation (6). Equations (3) through (6) represent one
complete iteration. Empirical evidence suggests that the process converges
rapidly, usually within ten iterations (Hewings, 1985). After achieving the
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conversions of r;, and s; at the kth iteration, the estimated r and s would be
derived as follows

(8) r=r,..ryr;S=s;5,...5,

Because the adjustment process shown in Equation (8) operates on the A
matrices, the adjustment process is conservative, making only the minimally
necessary adjustments to ensure agreement with the vectors u; , 1) and v 4 1).

Bacharach (1970), responding to the information theoretic approach for
updating matrices by Uribe, de Leeuw, and Theil (1965), showed that this RAS
method achieves “closeness” and is equivalent to the following minimization
problem

t+1
9) Min Za”l log

lJ

subject to
A pXg+ D =U¢41)
T .
(t+1)A(t+1) = V()

The solution is the biproportional estimates, r and s. Reviewing several methods
to achieve closeness between two matrices with row- and column-sum con-
straints, Hewings and Janson (1980) concluded that, in applications to input-
output matrices, the degree to which A , 1) can be claimed to be within A ys
neighborhood can be only with the empirical observation of Ay , 1).

The economic interpretation of ¥ and § has proven to be contentious: Stone
(1962) offered the interpretation that r; is a measure of “substitution effects”™—
the extent to which the input i has substituted for other inputs or has been
replaced by them during the time interval and that s;is a measure of “fabrication
effects” in the production of j—the extent to which the industry j has decreased
(increased) its consumption of intermediate inputs per unit of gross output.
Leontief (1941) also suggested this biproportional property in input-output
tables. His interpretation differs slightly from Stone’s: r; is defined as a measure
of the increased productivity of i in all uses, and s; is regarded as a measure of
the joint effect of increased productivity in industry j and of a decrease in its
rate of investment.

In contrast to these economic interpretations of ¥ and §, many researchers
discount this ‘oversimplified’ view of the RAS procedure in which such change
is distributed throughout an economy (Miller and Blair, 1985). The critics view
the RAS technique as a purely computational procedure that emerges as the
solution to a constrained optimization problem subject to the row and column
sums, as seen in Equation (9).
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Modifications of the RAS Technique

The original RAS procedure uses only one complete matrix Ay with some
future data u¢ ;4 1), V¢ + 1), , and X 4 1), in order to estimate the future matrix.
When more data—especially two or more input coefficient matrices—are avail-
able, Lecomber (1969, 1975) and Johansen (1968) proposed modifications of the
RAS method to use this additional data in the most efficient way.

Johansen’s problem was to estimate Ay based on given values for
A(o) = [a?j], and A(1) = [ai}] .He argued that individual coefficients contain more
information than the row and column sums and that this information should be
taken into account. In other words, the biproportional hypothesis is not only an
imperfect representation of the underlying movement of coefficients over time,
but also the coefficients for any year would be subject to disturbances and errors
in measurement. Thus, the RAS method can be transformed as the error
minimization problem revealed in Equation (10)

(10) Min 285 = Z(aé - a?jrisj)2
i,J

Furthermore, the assumption that both Ay and A;) are subject to disturbances
would appear to be more plausible. Consider the model

t _ t.t t
(11) a; =0y Ss; +&;

where o;; is the true (disturbance-free) coefficient for the (i, ) th pair and ¢, is

the error term for (i, j) at time ¢. Moreover, the following initial condition, for ¢ =
0 (base year) is set

From the model of Equation (11) oy, 7;, and s; can be estimated by minimizing
283- . Further, this minimization procedure can be simplified by assuming a
i,J

multiplicative error term; consequently, (11) can be transformed to the log-linear

form

(12) log aj; =log o;; +log r{ +log s’ +log €,
t t . e e ¢ 2
Then log 0y, log r;’, and log s can be estimated by minimizing 2(10g eij) .
i,J
Given data A(o) = [aioj] and A(l) = [ai}] ,the model of Equation (12) can be further

transformed by eliminating oy;
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1
£

(13) log a; —log a;) =log r;' +log s} +log [—g}
€jj

Similarly to the model (12), log ril, and log sjl- in the model (13) can be estimated

using ordinary least-squares regression with dummy variables for each r; and
s;. Unlike the original RAS technique in which only the row and column sums
are known, r; and s; can be estimated by the minimization of the squared error
term for each (i, j). Since this Johansen-Lecomber formulation uses dummy
variables for each r; and s;, it necessitates dropping one variable from each r;
and s; set in order to avoid the singularity problem. In other words, one of r; and
one of s; are set equal to unity—with no change over the period.

In order to improve accuracy, additional modified versions of the RAS
technique have been proposed. Allen and Lecomber (1975) introduced the
generalized version of RAS in which some of the elements in the forecast matrix
A 1) are estimated from exogenous information and the remaining part of the
matrix is adjusted by the RAS procedure. Barker (1975) and Snower (1990) have
extended the RAS method to incorporate price information. Although each
improves the accuracy of the estimation, these modifications substantially
increase the data requirement.

Similar to the use of the two-stage least squares approach to the estimation
of input coefficients by Gerking (1976a, 1976b, and 1979), Toh (1998) interpreted
r; and s; as iterative instrumental variable estimates and thus was able to derive
the asymptotic standard errors. Toh’s main idea is to consider the given row and
column sum of the intermediate vectors, u; , 1) and v . 1), as the instrumental
variables for r; and s;. Toh further proposed RAS as an iterative sectoral
optimization model; however, he concluded that the RAS technique is not useful
for projection but for the study of structural change, especially when the economy
experiences rapid structural change. However, no test of the accuracy of projec-
tions using his method has been conducted.

Biproportionality in an input-output system has been explored and ex-
tended to investigate different aspects of temporal changes. De Mesnard (1997)
analyzed interindustry dynamics (1990) and coefficient variation between origi-
nal Leontief demand-driven system and Ghosh’s (1997) supply-driven system
employing biproportional filter in French cases. Although, methodologically,
de Mesnard’s methods are only an extension of the RAS technique, his results
are informative: for any sector, both row and column coefficients are found to
change simultaneously.

The RAS Technique and the Field of Influence

The concept of a field of influence was developed and described by Sonis and
Hewings (1989) to provide a formal and general procedure for the measurement
of the analytical impact of changes in the direct coefficients’ matrix of an
input-output table on the associated Leontief inverse matrix. The procedure
involves the calculation of the ratio of two polynomial functions of changes, in
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contrast to the usual approach using the infinite Taylor-series expansion of the
Leontief inverse. Moreover, it is more general in that it can handle a complete
range of changes—single element, all elements in a row or column, or all
elements in the matrix. In addition, the field of influence is able to define the
rank-size hierarchy of inverse important coefficients which are the direct input
coefficients whose changes would create the largest volume of change in the
input-output system (Hewings, 1984).

Sonis and Hewings (1992) presented the relationship between the RAS
procedure and the field of influence concept. The RAS procedure is usually in
the following form
(14) all =rals

i [aat Tl

Let
ri=1+3i;si=1+n;
With the relative change, Equation (14) can be transformed to

where

Hence, the RAS procedure can be seen as a special case of error analysis, which
places it within a broader view of coefficient change. Furthermore, if relative
changes in §; and 1; are small, the products §m; can be ignored

ey =af(8; +n;)

In this case, the coefficient change elt-j is defined to bear a linear relationship to
a previous value. Obviously, the choice of the elements with the largest field of
influence will depend in part on the choice of sfj in Equation (15); however, for
ranges of efj observed in survey-based input-output tables, there is a significant
degree of stability in the rank-orderings of the fields of influence.

3. BIPROPORTIONALITY OF CHANGES

As indicated earlier, the Chicago input-output tables are extracted from the
Chicago Region Econometric Input-Output Model (CREIM), which consists of
36 industrial sectors (see Appendix). This system of 250 equations includes both
exogenous and endogenous variables. Endogenous coefficient change serves as
the mechanism to clear markets in the quantity-adjustment process (see
Israilevich et al., 1997, for more details). The input-output coefficient matrix is
not observed directly; however, it is possible to derive analytically a Leontief
inverse matrix and, through inversion, the estimated direct coefficient matrix.

© Blackwell Publishing, Inc. 2002.
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Thus, the interest lies in the way these exogenous changes are manifested in
the input-output coefficients and the degree to which these input-output coeffi-
cients are predictable under the usual conditions associated with the RAS
technique. Using the Chicago region input-output tables derived from the
CREIM during the period of 1980-1997, the r and § vectors can be estimated
by the repeated iteration procedure described in Equations (3) through (6). An
important assumption here is that the error terms in derived input-output
coefficients from the CREIM are normally distributed, and are independent and
identically distributed; thus, the coefficients cannot be “real” observations but
are treated as such.

General Observations

Figures 1 and 2 reveal the trends in values of r; and s; from Equation (1),
ranked by the volume of output in 1980, with largest at the left and smallest at
the right. By and large, smaller output sectors (those with lower rank) tend to
exhibit greater variance over time whereas the larger sectors tend to have more
r; values that are less than unity in the case with the values of s;. Overall, a
greater volatility in the values r; than in the entries s; can be observed. This
looks to coincide with the ‘hollowing-out’ process in the Chicago economy
reported by Hewings et al. (1998), in which the level of dependence on local
purchases and sales is declining; the tendency of the sectors with larger output
to have r; < 1 may be the evidence of substitution, not across sectors, but in the
location of purchase; the smaller volatility in the s; entries indicates that the
fabrication effect (technological change) is relatively insignificant.! Casual
inspection would suggest few pronounced trends in either of these entries.
However, these interpretations should wait for the careful investigation of
empirical evidence, since they are based on the simulated results.

Figures 3 through 5 provide the sample trends in individual coefficients (a;;,
byj, i, sj), where b;; is the element of Leontief inverse; these trends vary among
various (i, j) combinations. For example, the interaction between Sectors 18
(Fabricated Metals) and 19 (Industrial Machinery and Equipment) reveals that
the trends in the direct and inverse coefficients are mainly associated with
changes in s; (in this case, Sector 19). The variations in the direct and inverse
coefficients can be seen to mirror the changes in s;. For the interaction between
Sectors 10 (Paper and Allied Products) and 11 (Printing and Publishing), on the
other hand, the r; has a greater contribution to the changes in the coefficients,
whereas s; has lesser variations over time. For self-influenced changes (Sector 5,
Food and Kindred Products), the row and column effects offset each other,
producing little change in the coefficients. Among the inverse-important coeffi-
cients, the trends in 17 of the top 25 field of influence coefficients are mainly

A referee pointed out that the RAS technique produces a solution that is parametrically
determined (see Bacharach, 1970 and Van der Linden, 1999) and depends on whether the row or
columns are adjusted first. In the present analysis, consistent application (columns-first) of the RAS
procedure was conducted to ensure consistency across time.
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r; and s;) i = 18: Fabricated Metals;j = 19: Industrial Machinery and
Equipment.

0.14 1
0.12 1
0.1 +
T 0.85
0.08 0.8
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
year
I—au — _bl_' —_—— e ] - - - sj _risj |
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r; and s;) i = 10: Paper and Allied Products;j = 11: Printing and Publishing.
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FIGURE 5: Trends in a;, b, r;, and s;s; (Left Axis for a;; and b;; Right Axis for
r;and s;) i = 5;j = 5: Food and Kindred Products.

associated with the row effects of r;, whereas 2 and 6 of them are generated by
the changes in s; and the combined effects of r; and sj, respectively.? This result
also confirms the observations in Figure 1 and 2.

Analysis of Estimation Error

As mentioned in the previous section, the RAS procedure does not claim to
minimize the sum of squared errors, only to find a matrix that is as close as
possible to the prior one, subject to the row and column constraints. Thus, the
analyses of estimation error were conducted in order to investigate how well the
RAS procedure can capture the changes in the direct input matrices over time.
Paelinck and Waelbroeck (1963) identify the errors in the RAS technique as
derived from the following three possibilities: (1) aggregation error in the
industrial classification that arises in all input-output analysis; (2) error
derived from variations in substitution effects over utilizing industries, in
violation of the assumed uniformity of these effects; and (3) a false estimate of
any one cell, which would force offsetting errors in other elements of its row and
column—such errors would spread over a wide area of the matrix. In conjunction
with the field of influence concept, the last notion of Paelinck and Waelbroeck
(1963) indicates the system-wide impact of changes in each coefficient.

2The top 25 field of influence coefficients are used as the inverse-important coefficients,
because the value of the field of influence becomes very small and stable after the top 25 coefficients
are considered.
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The error terms are derived as follows

¢t ot t-1 ¢
(16) e =a;—r;a; s;

Using Jensen’s (1980) definition, this sﬁj can be considered as partitive accuracy,

which measures the cell-by-cell accuracy of the estimation. On the other hand,
holistic accuracy emphasizes a ‘mathematical portrait’ interpretation of the
estimation, relying on the accuracy of the estimated table as a whole. For this
holistic accuracy, at first, the estimation errors of each coefficient in the esti-
mated Leontief inverse are employed

~t _ gt It

where

[B:]= By = (T-Fy Ay 8]

Table 1 shows the estimation performance of the RAS technique on an
annual basis, as indicated in Equation (16), using mean absolute deviation
(MAD) and mean absolute percentage error (MAPE). For partitive accuracy,
some small fluctuations over the years can be observed (except the 85-86
estimation); however, in general the estimation errors are rather small (less than
5 percent). The estimation performances for holistic accuracy are notably im-
proved—Iless than 1 percent. However, in practice updating an input-output
table annually is quite rare, and tables are usually updated over a five or ten
year period. The results of the estimation performance over five and ten years
reveal that, as the estimation period becomes longer, both the partitive accuracy
and holistic accuracy deteriorate.? Although the partitive accuracy decreases
relatively rapidly, the holistic accuracy remains large (with errors only of two
percent over ten years). This tendency of increasing errors for longer estimation
periods does not result from the exponential nature of RAS projection; rather,
as Toh (1998) noted, the RAS technique is not appropriate for estimation for
longer time periods and hence exhibiting large structural changes, because the
RAS technique tries to derive the estimated matrix as close as possible to the
base-year matrix.

Table 2 shows a similar analysis of the estimation errors but only for the
coefficients with the top 25 direct fields of influence—the most important
coefficients. The results reveal the same tendencies with all the coefficients, in
which the estimation error increases as the estimation time becomes longer.
However, overall, both the partitive and holistic accuracy are considerably better
than the results for all coefficients. These results indicate that the inverse-
important coefficients are stable over time.

3Detailed tables describing these findings are available from the authors upon request.
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TABLE 1: Estimation Accuracy of the RAS Procedure (Annual Estimation)

Partitive Accuracy (a;) Holistic Accuracy (b;)
Years MAD MAPE MAD MAPE
Base Target Percent Percent
80 81 0.00017 4.03 0.00022 041
81 82 0.00015 2.57 0.00019 0.36
82 83 0.00012 2.07 0.00016 0.29
83 84 0.00015 2.88 0.00019 0.36
84 85 0.00012 441 0.00016 0.39
85 86 0.00016 20.37 0.00019 0.47
86 87 0.00015 3.27 0.00018 0.37
87 88 0.00016 3.27 0.00020 0.45
88 89 0.00017 3.44 0.00020 0.43
89 90 0.00013 2.33 0.00015 0.32
90 91 0.00015 3.60 0.00019 0.46
91 92 0.00011 4.44 0.00013 0.32
92 93 0.00014 2.95 0.00016 0.34
93 94 0.00011 3.83 0.00013 0.29
94 95 0.00012 2.33 0.00015 0.34
95 96 0.00011 2.36 0.00013 0.27
96 97 0.00009 1.46 0.00011 0.21

Note: The 1986 table (A matrix) contains a very small coefficient at the intersection of sectors
33 and 36; although the absolute deviation between the actual value in 1986 and the estimated value
using the 1985 matrix is small the percentage error is large, contributing to a very large MAPE for
that year.

TABLE 2: Estimation Accuracy of the RAS Procedure (Annual Estimation)
Top 25 Fields of Influence

Partitive Accuracy (a;) Holistic Accuracy (b;)
Years MAD MAPE MAD MAPE
Base Target Percent Percent
80 81 0.00013 0.61 0.00065 0.19
81 82 0.00012 0.49 0.00046 0.16
82 83 0.00008 0.44 0.00040 0.13
83 84 0.00006 0.32 0.00047 0.16
84 85 0.00005 0.35 0.00047 0.18
85 86 0.00008 0.69 0.00052 0.16
86 87 0.00007 0.39 0.00058 0.18
87 88 0.00008 0.50 0.00050 0.19
88 89 0.00008 0.50 0.00066 0.23
89 90 0.00011 0.71 0.00113 0.33
90 91 0.00007 0.37 0.00027 0.09
91 92 0.00009 0.71 0.00036 0.12
92 93 0.00010 0.57 0.00055 0.18
93 94 0.00007 0.54 0.00070 0.20
94 95 0.00009 0.47 0.00063 0.16
95 96 0.00009 0.42 0.00042 0.11
96 97 0.00005 0.21 0.00029 0.07
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Although the findings in this subsection are consistent with the previous
studies (Szyrmer, 1989; Miller and Blair, 1985, among others), the results here
would raise an interesting question: If the trends of r; and s; are relatively easily
determined over time using some econometric method, can the RAS technique
replace more complex models for the estimation of input-output coefficients? In
the following subsection, the trends of r; and s; are investigated.

Tests for the Trends of i and s;j

As presented in the previous section, the RAS technique can trace the
changesin direct input coefficients a;; relatively well, especially for a short period
of time and in terms of holistic accuracy. The question arises whether r and §
themselves are predictable so that the future input coefficient matrices can be
estimated solely by the predicted + and §. The following tests investigate the
behaviors of r; and s; over time.

Table 3 provides a summary of a runs test that was applied to the time series
of r; and s; in order to test the randomness of the trends. For the majority of
sectors, r; and s; indicate random trends (no apparent monotonic or cyclical
trends). An interesting observation is that the sectors with non-random trends
vary between r; and s;; this also confirms the different trends in r; and s; shown
in the Figures 1 and 2. By and large, the trends of r; and s; are random. Since
the run test is for nonparametric analysis, more extensive tests were adopted
to explore the statistical properties of r; and s, assuming that r; and s; can be
considered random variables.

If r; and s; can be considered as a univariate time-series, in which depend-
ence is based only on the past (autoregressive) trends, the models applied to
these data need to be examined in terms of their integration (nonstationary)
process in order to specify the models. Investigation focused on models of 1(1),
integrated of order one, referred to as a unit root process. The importance of the
tests is that if the process is a random walk,

Ye=Yt-1+ &

the current observation is the simple sum of random disturbance terms, which
possibly can be explained by exogenous variables. Furthermore, if a variable is
truly I(1), then shocks to it will have permanent effects. Augmented Dicky-Fuller
(ADF) tests, with lagged differences for auto-regressive specification were
employed to test the processes of r; and s; with the following three model
specifications, because no a priori specification is known

am ¥yt = ¥i-1 + & (random walk model)
Yyt =W + ¥y 1 + & (random walk with drift)

(18) yt =MW+ B + y:_1 + & (random walk with drift and trend)
where y; is either r; and s; at time ¢, and ¢ = 1981,...,1997.
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TABLE 3: Summary of Run Test for r; and s;

Sector ri Sj
1 12 10
2 6 9
3 8 13
4 8 8
5 9 6
6 10 7
7 6 8
8 6 6
9 8 7
10 8 8
11 6 11
12 9 5
13 9 11
14 11 9
15 4 10
16 4 9
17 10 7
18 9 8
19 10 11
20 10 7
21 10 6
22 8 7
23 9 10
24 6 8
25 8 7
26 6 10
27 9 8
28 6 10
29 4 7
30 7 7
31 6 10
32 7 7
33 8 12
34 8 10
35 6 9
36 8 8

Note: reject null hypothesis of randomness if either r or s is either <5 or >13 (o0 = 0.063)

Allowing maximum lags up to -5, in a pure random walk specification (17)
for all r; and s; all except Sector 3 (Mining), the null hypothesis of a unit root is
not rejected at 5 percent level. In a random walk with drift specification, the
results were more varied: Sectors 1, 3, and 31 for r; and Sectors 4, 5, 13, 19, 20,
and 22 for s; reject the null hypothesis. Model (18), the random walk with drift
and trend model, resulted in most sectors not rejecting the null hypothesis; the
exceptions were Sectors 1, 25, 28, 31, and 33 for r; and Sectors 1, 3, 4, 5, 16, 17,
and 34 for s;. In either model, the majority of sectors did not reject the null
hypothesis of unit root.
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The entire sample consists of only 17 observations (1980 to 1997), and ADF
tests with lagged differences consume observations, so that with five lagged
differences the sample size was decreased to only 11 observations. In order to
address this problem and to analyze the sensitivity of the lagged differences,
ADF tests with lesser lags (maximum of three) were conducted, and the results
are shown in Table 4. In the majority of cases, no changes occurred in the
behavior of a sector in terms of whether the null hypothesis was accepted or
rejected. However, there were some variations: with a maximum lag of three, a
smaller number of sectors rejected the null hypothesis across the models.
Overall, one can claim that the majority of the sectors do not reject the null,
indicating unit root behavior, and hence nonstationary process. The results
suggest the option of constructing autoregressive integrated moving average
[ARIMA(p,d,q) 1 models for each r; and sj; however, the ARIMA model requires
larger sample sizes (Harvey, 1989, 1990). Furthermore, because r; and s; can
capture the sudden changes of economic structure and technological advance-
ment, the model for these using constant coefficients might perform poorly,
either for forecasting or for analyzing the effect of policy change (Maddala and
Kim, 1998). Likewise, if there is a break (sudden trend shift) in the deterministic
trend, then unit root tests will lead to a misleading conclusion (Perron, 1989).
Again, given the size of samples, the results here need to be considered carefully.

4. EXPERIMENTS

Inorder to investigate the biproportional properties of input-output systems
further, the following experiments were implemented and analyzed. First, using
the Johansen-Lecomber formulation, r; and s; are estimated by regression
models for each year. Second, systems of equations approaches are examined,
and the vector autoregression (VAR) model is employed to analyze the estimates
of the RAS technique.

Lecomber Revisited

As presented above, the Johansen-Lecomber formulation of the RAS model
is based on the regression model, Equation (13). While it preserves the bipro-
portional structure of the estimation procedure, this formulation has the advan-
tage of minimizing the error terms. The comparison of the estimation error
between the RAS technique and the Johansen-Lecomber formulation can eluci-
date the properties of the estimation procedures. In order to estimate the
Lecomber model, ; and s; for Sector 6 (Tobacco Products) are set to unity (zero
in the model) in order to avoid the singularity problem in regression estimation
as noted in Section 2. Sector 6 was chosen because the tobacco industry in
Chicago hardly exists and its outputs are negligible throughout the period of
1980-1997; therefore, no changes in r; and s; can be assumed.

Table 5 displays the partitive and holistic accuracy of annual estimation
using the Johansen-Lecomber estimation, corresponding to Table 1 for the RAS
procedure. Generally, the MAPESs for partitive accuracy in the Lecomber model
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TABLE 4: Summary of Augmented Dickey-Fuller Test on r; and s;
(Maximum Lag = 3)

ri sj
RW with Drift RW with Drift

Sector Random Walk RW with Drift and Trend Random Walk RW with Drift and Trend
1 -0.39 -4.15 -3.99 1.53 0.21 -2.74
2 0.19 -2.25 -2.14 -0.18 -1.91 -1.88
3 -0.16 -2.01 -2.13 -0.14 -4.46 -7.10
4 0.48 -2.34 -4.17 -0.39 -1.78 -1.67
5 0.12 -1.52 -1.35 0.45 -1.81 -2.46
6 0.56 -1.61 -1.22 0.30 -1.87 -2.35
7 1.07 -1.50 -2.54 0.38 -0.98 -1.79
8 0.12 -2.39 —2.68 -0.29 -1.80 -1.25
9 1.05 -1.24 -1.81 -0.13 -1.49 -1.89
10 -0.51 —2.65 -1.19 0.18 -1.63 -1.18
11 0.10 -0.64 -1.41 -0.13 -1.60 -1.60
12 0.07 -2.75 -2.82 -0.03 -1.71 -1.94
13 -0.29 —2.82 -3.00 0.37 -3.31 -3.37
14 0.04 -2.39 —2.34 —0.34 -1.98 -1.18
15 0.46 —2.75 -2.40 -0.14 -1.73 -1.80
16 0.79 -1.37 -1.58 -0.26 -1.33 -0.93
17 0.08 -2.89 —2.79 -0.37 -2.53 -2.34
18 0.94 -0.62 -1.25 -0.38 -2.08 -2.00
19 0.61 -1.98 -2.33 -0.34 -1.18 -0.95
20 2.96 -0.69 -1.71 -0.75 -2.71 -2.55
21 0.27 -2.04 —2.86 -0.45 -2.14 -2.05
22 0.41 -1.57 -2.01 -0.50 -1.63 -2.37
23 0.03 -2.41 -2.31 -0.03 -2.58 -2.55
24 0.39 -1.89 -2.20 0.31 -1.79 -1.70
25 -0.30 -2.73 -3.21 0.39 -2.07 -2.10
26 —0.29 -2.03 —2.52 0.23 —-2.23 -2.10
27 0.42 -2.24 -3.54 0.32 -2.19 -1.31
28 -0.01 -2.76 -2.79 -0.40 -1.89 -2.17
29 —0.34 -2.96 —-2.43 0.09 —2.98 -2.83
30 0.34 -2.29 -1.17 -0.05 -2.08 -2.19
31 0.76 -1.72 -1.84 -0.55 -1.56 -3.37
32 0.79 -1.53 -1.87 -1.12 -1.31 -1.59
33 0.50 -1.05 -3.76 -0.24 -1.90 -1.79
34 -0.03 -1.39 -1.43 0.24 -4.10 -4.92
35 -0.21 -1.80 -2.01 -0.27 -0.95 -1.04
36 -0.59 -2.02 -2.61 -0.77 -2.29 -3.21

Critical Values (o0 = 0.05): Random Walk = —1.95; Random Walk with Drift = —3.00; Random
Walk with Drift and Trend = —3.60.

are comparable to the ones in the RAS procedure; however, for holistic accuracy,
the Lecomber model exhibits larger errors throughout the estimates. Further-
more, these larger MAPEs fluctuate across the estimates in a wider range than
for the RAS estimates. The Johansen-Lecomber formulation is basically a
regression model, so the estimation procedure provides statistical outputs, such
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TABLE 5: Estimation Accuracy of Lecomber Model (Annual Estimation)

Partitive Accuracy (a;j) Holistic Accuracy (b;))
Years MAD MAPE MAD MAPE
Base Target Percent Percent
80 81 0.00043 4.63 0.00140 3.30
81 82 0.00030 3.36 0.00102 2.45
82 83 0.00022 2.65 0.00085 191
83 84 0.00033 4.13 0.00115 2.96
84 85 0.00044 5.80 0.00129 3.34
85 86 0.00068 16.84 0.00206 5.38
86 87 0.00047 4.75 0.00145 3.44
87 88 0.00037 3.71 0.00112 2.87
88 89 0.00030 3.71 0.00089 2.13
89 90 0.00024 2.80 0.00066 1.58
90 91 0.00038 4.20 0.00112 2.85
91 92 0.00031 5.06 0.00094 3.53
92 93 0.00032 3.89 0.00123 3.59
93 94 0.00026 4.47 0.00101 2.88
94 95 0.00037 3.79 0.00129 3.12
95 96 0.00020 2.75 0.00068 1.47
96 97 0.00019 2.06 0.00060 1.55

See note for Table 1.

as significance of the coefficients. The results from the Lecomber model without
insignificant coefficients—set to unity (Lecomber model is in log-linear form:
B = 1 when log B = 0) for corresponding r; and s,—indicate that both partitive
and holistic accuracy are less than in Table 5; omitting insignificant coefficients
has a relatively small (one to two percent increase in MAPE), effect on the
estimation. As seen in the results from the standard RAS procedure, the
estimation accuracy deteriorates as the estimation span becomes longer, for both
partitive and holistic accuracy. Although the partitive accuracy for the Lecomber
model is comparable to the RAS results (better in several cases) again, the
holistic accuracy is less accurate than the RAS counterparts.

Estimation errors were further investigated for the inverse-important
coefficients, that is, the top 25 coefficients with the largest direct fields of
influence. Table 6 presents the results. As in the RAS results the estimation
accuracy—for both partitive and holistic—improves for the annual estimation.
However, the MAPEs for partitive and holistic accuracy are much larger than
in the RAS results, and partitive and holistic accuracy have similar values,
unlike in the RAS procedure where the MAPEs for holistic accuracy are smaller
than the ones for partitive accuracy. The increase of the MAPEs with longer
periods is smaller than that in the RAS results, but the estimation accuracy for
partitive and especially for holistic accuracy is lower than when using the RAS
technique.

Although the Lecomber estimates vary by setting r; and s; to unity in a
different sector, the findings illustrate that the estimation by the RAS technique
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TABLE 6: Estimation Accuracy of Lecomber Model (Annual Estimation) Top
25 Fields of Influence

Partitive Accuracy (a;) Holistic Accuracy (b;)
Years MAD MAPE MAD MAPE
Base Target Percent Percent
80 81 0.00042 1.57 0.00528 1.85
81 82 0.00014 1.63 0.00368 1.32
82 83 0.00015 1.38 0.00297 1.04
83 84 0.00013 1.26 0.00253 0.86
84 85 0.00036 3.10 0.00446 1.65
85 86 0.00026 3.00 0.01277 4.25
86 87 0.00019 2.46 0.01256 3.93
87 88 0.00031 141 0.00292 1.11
88 89 0.00014 0.61 0.00310 1.15
89 90 0.00020 0.95 0.00253 0.83
90 91 0.00044 2.27 0.00447 1.54
91 92 0.00022 3.29 0.00304 1.02
92 93 0.00015 1.96 0.00313 1.10
93 94 0.00012 1.20 0.00433 1.38
94 95 0.00039 1.39 0.00628 2.00
95 96 0.00022 1.04 0.00437 1.35
96 97 0.00012 0.96 0.00288 0.85

is quite accurate compared to the Lecomber regression model, especially in
terms of holistic accuracy. This implies that, although both models possess a
similar biproportional structure (taking into account row and column effects),
adjusting coefficients by row and column sums will provide better estimation
than the estimation by each coefficient—in this case less information means
better results. This can be considered contradictory to received theory; however,
after all, regression allows error terms (while minimizing them), whereas the
RAS procedure adjusts a matrix with a pair of constraints (row and column
sums) to derive the closest matrix to the base matrix. These row and column
constraints provide better results, especially for the inverted matrix, indicating
the existence of row and column structures in the matrices. One aspect of the
Lecomber model may contribute to this difference in estimation capability.
Because the regression model of Equation (13) minimizes Z[log (eé / eg-)], the

i,
2 2
estimated r; and s; do not minimize 2(82) , nor 2 (sllj) . In other words, this
i,J L,J
formulation does not guarantee that the estimated result has the least-square-
error property; thus, the derived r; and s; have poor estimation capability.
Systems of Equations Approaches

The Johansen-Lecomber formulation can be considered as a regression
model of biproportional estimates for a pair of time periods, as in the RAS
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procedure. However, if a time-series model can be formed over the observation
period it can use more information on the structural changes of input-output
tables than the Lecomber model. There are at least two candidates to formulate
such a model: the seemingly unrelated regression (SUR) model and the vector
autoregression (VAR) model.

An input-output table can be considered as a system with biproportional
influence row- and column-wise, therefore, the univariate time-series model for
each coefficient may be improved upon by generating the estimates jointly. The
SUR model can be employed to form such a system of equations. However,
because there are no exogenous variables on the right-hand side and each
equation can only be a univariate time-series model, the SUR model in this case
is equivalent to a vector autoregression model.

A VAR model can be used to estimate the future vector (or, vectorized matrix)
using the past trend of the vector. Typically, the VAR model can be formulated
as follows

(19) y: :u+l"1yt_1+...+1“pyt_p+st

where y; and ¢ are n x 1 vectors, | is the n x 1 mean vector, and I'y, ..., I, are
n x n parameter matrices. The elements of I';, ..., I, can be estimated by
multivariate least-squares, which is exactly the same as applying ordinary
least-squares to each equation. If input-output tables reflect this kind of autore-
gressive process over time, then this type of VAR model can be applied to forecast
the future vectors (and hence matrices), and can be employed to analyze the
autoregressive properties of input-output tables.
Consider the following VAR model

log a;; log aitj_l log afj’p
(20) logr/ ™ |=Ty|logr{ |+...+4T,|logr/"*! | +e,
log s;ﬂ log 3; log sj.‘f’”

This formulation is equivalent to

t 1 t-1 1 t 1 t
logaij=(pulogaij + @19 logr; +(p1310gsj+...
t+1

log r;
t_+1
J

p t-p p
+¢f; log a; "’ + o7, log r;

=9y logail+ 55 logr +@z3log s + ...
log s’ = (Pél log afj_l + (péz log rit + (p§3 log 35. + ...

21 t-p+1

t—-p+1
J
t-p+1
J
t—-p+1
J

+ol3log s +e}

t—p+1

P t— t
+ @5, log a;; P 1+ @by logr +¢bslogs +e5

+ o4 log al? + @8, log rf Pt + oBy log 8P +ef
The first equationin (21)is analogous to the autoregressive form of the Lecomber
model. The model for each element (i, j pair) is estimated using the value of a;j,

and the estimated values of r; and s; from the RAS procedure. The Schwarz

© Blackwell Publishing, Inc. 2002.



OKUYAMA ET AL.: AN ECONOMETRIC ANALYSIS OF BIPROPORTIONAL PROPERTIES 381

(Bayesian) information criterion (SIC or BIC) can be employed to determine the
number of lags (maximum lag set at three) for each model of Equation (20).

Table 7 presents the results for the selected elements with the top ten
largest fields of influence; the table shows only the results for the first equation
in (21).4 Overall, all top ten elements have a high coefficient of determination
R2. These results imply that r; and s; have statistically significant explanatory
power on a;;. For the autoregressive structure, only the sixth (34, 4) and the ninth
(28, 30) pairs exhibit longer lags (in this case 3); however, the coefficients for the
second and third lags are insignificant. Otherwise, the lag structures for other
elements are only a single lag. In the third, fourth, eighth, and tenth elements,
the coefficient for s; is insignificant, indicating a smaller influence on a;;. In
general, the results reinforce the Lecomber’s formulation for the most important
coefficients.

Two things must be noted: first, because the estimated values of r; and s; by
the RAS procedure are used as data, the coefficients for r; and s; indicate the
accuracy of the estimates; if r; and s; can perfectly estimate a;;based on its lagged
value, the coefficients for them should be unity. Second, most of the coefficients
for a;; are very close to unity, implying possible unit root behavior of a;;. The
results from the augmented Dicky-Fuller tests for each a;; suggest that only
22 percent, 10 percent, and 15 percent of a;; are stationary processes (random
walk, random walk and drift, and random walk with drift and trend models,
respectively). Given the results of the unit root tests for r; and s; in Section 3,
the results from the VAR models above must be viewed with caution. It may be
possible that some models with nonstationary variables can generate spurious
regression results. However, given the simplicity of the RAS procedure, further
investigation of the VAR specifications are infeasible and beyond the scope of
this study.

Additionally, serious drawbacks may prevent the further investigation of
the VAR formulation. First, as formulated in Equation (19), this type of VAR
model requires a large number of observations for the adequate degree of
freedom and the lagged variables. Second, the essential condition for the VAR
estimators is that the series in y; should be jointly stationary. This is rarely true
for time-series data, and attempting to tackle the problem by taking differences
is rarely satisfactory (Harvey, 1990).

5. EVALUATION AND SUMMARY

In this section, the major findings in this paper are evaluated as an
adjustment procedure and as a tool for structural analysis. Further extensions
and concluding comments are also provided.

“Due to the computational limitation, only the elements with the ten largest fields of influence
were used for the experiment.
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TABLE 7: Summary of VAR Estimation (for a;; Equation: Top 10 Fields of

Influence)
Coefficients
Fofl Sector ) Granger Text (Standard Error)
Rank i J Lag R? sIct F-statistic aijj ri sj
1 28 27 0.9993 -32.76 390.2%
1 0.999* 0.887*  0.904*
(0.0001) (0.033) (0.094)
2 28 4 0.9964 -30.31 77.87*
1 0.999%* 0.840*  1.306*
(0.0004) (0.090) (0.202)
3 2 27 0.9969 -29.35 67.27%
1 0.999* 0.939*%  0.695
(0.0003) (0.083) (0.327)
4 2 4 0.9957 —28.69 45.11%
1 0.999* 0.920*  0.678
(0.0004) (0.114) (0.354)
5 34 27 0.9952 -32.26 238.56*
1 0.999%* 0.942*%  1.641%
(0.0002) (0.043) (0.148)
6 34 4 0.9925 -30.37 38.37*
1 1.193%* 0.909*%  2.046*
(0.471) (0.090) (0.335)
2 -0.605 -0.114 -0.458
(0.643) (0.399) (1.064)
3 0.412 0.510 0.586
(0.381) (0.396) (0.703)
7 36 27 0.9995 -31.60 1396.20%*
1 0.999* 1.012*  0.476*
(0.0001) (0.021) (0.129)
8 36 4 0.9950 -28.35 135.81%
1 1.000* 0.912*%  0.369
(0.0002) (0.056) (0.269)
9 28 30 0.9997 -29.21 68.28%*
1 0.907* 1.058*  0.902%*
(0.408) (0.076) (0.065)
2 0.104 —-0.053 0.149
(0.508) (0.454) (0.377)
3 -0.011 0.032 -0.033
(0.342) (0.454) (0.327)
10 35 27 0.9996 —29.74  3845.27%
1 0.999* 1.006*  0.311
(0.0001) (0.012) (0.156)

$SIC: Schwarz Information Criterion
* indicates rejecting the null hypothesis (no Granger causality; or insignificant coefficient) at 5

percent level.

© Blackwell Publishing, Inc. 2002.



OKUYAMA ET AL.: AN ECONOMETRIC ANALYSIS OF BIPROPORTIONAL PROPERTIES 383

Evaluation

Overall, the results indicate that the evidence of different types of contri-
bution by r; and s; to the changes in direct and inverse coefficients exist; however,
the trends of r; and s; can be mostly considered as random movements. This
might be caused by either the structure of the CREIM, especially the quantity-
adjustment mechanism, or the fluctuation of the exogenous variables in the
CREIM. In this regard, further analysis of empirical evidence and the model
structure is necessary to develop firm conclusions. The use of disturbance term
suggested by Lecomber (1969) and Johansen (1968) has some advantage to
introduce a stochastic process in the trends of coefficients. Although this formu-
lation does not provide the estimation accuracy of the RAS procedure and
requires the sacrifice of one sector for the estimation, further investigation using
more sophisticated techniques, for example the ARIMA model, could make this
procedure more accurate in estimation but requires longer time-series data.

Barker (1985) made a strong case for the use of other macro variables in
any adjustment process; in fact, Van der Linden and Dietzenbacher (1995)
suggested that—although the productivity and intensity change alone are not
sufficient to explain all the changes, this does not imply the economic interpre-
tations of r; and s; is unjustified. In this regard, Lecomber’s (1969) suggestion
that even if other variables are introduced there are still advantages in assum-
ing that such effects act uniformly across rows and down columns seems
unnecessarily restrictive. However, from a more practical perspective the RAS
procedure provides minimum data requirement for updating an input-output
table over a relatively short time interval.

As Lecomber (1975) and Allen and Lecomber (1975) suggested, the gener-
alized RAS approach—in which key elements are estimated by exogenous
variables, say the top 25 fields of influence, and the remaining elements by the
RAS procedure—will improve the estimation accuracy without creating the need
for a large estimation model.5 Nevertheless, the RAS procedure can only provide
evidence of structural changes, not the mechanisms and interpretation of these
changes.

6. CONCLUSIONS

There are several issues that need to be explored further. First, can a
taxonomy of tables be developed in a way that enables the analyst to classify
the tables themselves or the changes in terms of certain tendencies? If this were
the case, analysis could move in the direction suggested by Jensen et al. (1988);
certain coefficients or sets of coefficients may exhibit tendencies toward stability
or predictable change whereas others may require more extensive econometric
estimation. Second, new approaches can be employed for evaluating sets of

*Further discussion on the improvement of estimation accuracy with extra information can
be found in Oosterhaven, Piek, and Stelder (1986), responding to the critique by Miller and Blair
(1985).
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tables. The work of de Mesnard (1990, 1997, 2000) promotes the perspective of
a broader set of biproportional and bicausative matrices;in all these approaches,
greater creativity needs to be employed in endowing the methods with richer
economic meanings and interpretations. Another alternative would be to adopt
a nonlinear redistributive dynamic approach. The following models can be used
to trace the movement of coefficients over time

ye=ay-1(1—y;—1) + &

yi=ayi-1(1—-y;_2) + &

These logistic forms, with different lag functions, provide an alternative way to
handle annual changes with a greater focus on changes over a longer time period.
Some initial explorations within this paradigm have been reported in Sonis,
Dridi, and Hewings (2001) with promising results, although extensions beyond
simple 3 x 3 matrices will require greater sophistication in estimation tech-
niques. A third alternative would be to exploit the input-output time series
drawing on Markov properties

(22) A 1=RiA,
(23) A: i 1=ASg

The statistical evaluation of the matrix multipliers R;, and Sy requires the
estimation of a linear system of equations; this formulation differs from the VAR
model with vectorized matrices, because the unknown variables are
36 x 36 = 1,296. Equations (22) and (23) provide for two alternatives, based on
row and column properties; however, the respective R, S matrices are derived
from the time series of interactions between matrices over each of the two time
periods. However, unlike the more traditional biproportional technique, the
adoption of Markov adjustments would exploit a full matrix adjustment process
as opposed to the diagonalized matrix adjustment procedures portrayed in
Equation (1). This type of analysis using Markov matrices is similar to the
causative matrices of Jackson et al. (1990). All of these approaches share similar
perspectives with the notion of temporal changes in input-output systems
introduced in Sonis and Hewings (1998) but the formal linkages between these
methodologies remain to be developed.

Since the publication of Lecomber’s (1969) paper, nonlinear regression and
the application of maximum-likelihood estimators offer new opportunities to
explore the nature of change in the time series of input-output matrices.
However, we should recall the findings of Feldman, McClain, and Palmer (1987)
and Sonis, Hewings, and Guo (1996) that in an evaluation of sources of structural
change, changes in final demand rather than in input-output coefficients were
frequently more important components of change in output in a time-series
evaluation of U.S. input-output tables.
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APPENDIX
Sectoring Scheme in the CREIM Model

Sector Title SIC
1 Livestock, Livestock Products, and Agricultural

Products 01,02
2 Agriculture, Forestry, and Fisheries 07,08, 09
3 Mining 10,12,13,14
4 Construction 15,16, 17
5 Food and Kindred Products 20
6 Tobacco 21
7 Apparel and Textile Products 22,23
8 Lumber and Wood Products 24
9 Furniture and Fixtures 25
10 Paper and Allied Products 26
11 Printing and Publishing 27
12 Chemicals and Allied Products 28
13 Petroleum and Coal Products 29
14 Rubber and Misc. Plastics Products 30
15 Leather and Leather Products 31
16 Stone, Clay, and Glass Products 32
17 Primary Metals Industries 33
18 Fabricated Metal Products 34
19 Industrial Machinery and Equipment 35
20 Electronic and Electric Equipment 36
21 Transportation Equipment 37
22 Instruments and Related Products 38
23 Miscellaneous Manufacturing Industries 39
24 Railroad Transportation and Transportation Services 40-47
25 Communications 48
26 Electric, Gas, and Sanitary Services 49
27 Wholesale and Retail Trade 50-57, 59
28 Finance and Insurance 60-64, 66, 67
29 Real Estate 65
30 Lodging, Business, Engineering, Management,

and Legal Services 70, 73,81, 87, 89
31 Eating and Drinking Places 58
32 Auto Repair, Services, and Parking 75
33 Motion Pictures, and Amusement and Recreation Services 78,79
34 Other Services (Health, Education, Social, etc.)
35 Federal Government Enterprises
36 State and Local Government Enterprises
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