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Abstract 
 

Despite the recent considerable advances in structural health monitoring (SHM) of civil 

infrastructure, converting large amount of data from SHM systems into usable information 

and knowledge remains a great challenge. This paper addresses the problem through analysis 

of time histories of static strain data recorded by an SHM system installed in a major bridge 

structure and operating continuously for a long time. The reported study formulates a vector 

seasonal autoregressive integrated moving average (ARIMA) model for the recorded strain 

signals. The coefficients of the ARIMA model are allowed to vary with time and are 

identified using an adaptive Kalman filter. The proposed method has been used for analysis of 

the signals recorded during construction and service life of the bridge. By observing various 

changes in the ARIMA model coefficients, unusual events as well as structural change or 

damage sustained by the structure can be revealed. 
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1 INTRODUCTION 

The traditional assessment of the state of in-service civil infrastructure using periodic visual 

inspections and simple localized testing, such as the tap test, tends to produce subjective and 

inaccurate evaluations of structural safety and reliability (Phares et al., 2001). This is caused 

by the various shortcomings of visual inspection, such as high manpower demand, often 

insufficient frequency, inaccessibility of critical parts of the structure, and lack of information 

on actual loading. The resulting shortage of appropriate information pertaining to the 

structural health may result in incorrect decisions regarding infrastructure asset management, 

including maintenance, retrofitting, or replacement. For example, as a result of poor quality of 

structural health evaluation some structures may be retrofitted or replaced, while in fact they 

are still sound, or, on the other hand, existing damages in other structures may not be 

identified until they become expensive to repair or dangerous for structural integrity. 

Motivated by the shortcomings of traditional inspection techniques on the one hand, 

and availability of affordable hardware and advances in analytical signal processing 

techniques on the other, engineers and researchers turned their attention to instrumented 

structural health monitoring (SHM) systems to complement and enhance visual inspection. 

Aktan et al. (2002) define SHM as a process involving tracking any aspect of structural 

performance or health by measuring data and interpreting them in conjunction with 

application specific knowledge so that structural condition and reliability can be quantified 

objectively. Nevertheless, despite vigorous research and considerable advances in SHM of 

civil infrastructure, notably bridges, common, efficient and reliable enhancement, let alone 

replacement, of visual inspection by instrumented monitoring systems is still some way into 

the future. In fact, it has become obvious that the current understanding of the complexity of 

materials, structures and their behaviour in actual environmental and operational conditions 
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are far from being satisfactory from the point of view of efficient usage and understanding of 

measurements obtained via SHM. 

One of the major challenges is to make sense of large amounts of data that 

continuously operating SHM systems produce. For the success of SHM, these data need to be 

reduced into manageable volumes and forms, and then information needs to be extracted and 

knowledge about structural condition created. There are likely to be major differences 

between the relatively basic expectations and requirements of infrastructure managers and the 

ambitions of systems designers, the latter usually originally academic. For example, bridge 

managers first of all wish to know if the structure is safe for continued operation, e.g. after 

and onerous event such as an earthquake or typhoon. So far, the greatest beneficiary from 

SHM has been the academic community who gained insight into behavior and performance of 

various exotic structures, such as long span bridges and high-rise buildings. Lower-profile but 

ultimately equally important and useful developments in SHM have been in optimal 

monitoring approaches for medium and short span bridges. There is a long history of research 

in full-scale testing for highway bridge assessment (Salane et al., 1981; Bakht and Jaeger, 

1990). For smaller bridges, global response is more sensitive to defects, visual inspection is 

less frequent and SHM systems can make a real contribution (Alampalli and Fu, 1994; 

Heywood et al., 2000). 

The possibility of a SHM system being able to detect reliably damage that is not 

visually obvious has apparently not been achieved yet, and substantially more research is 

required. It is interesting to note that the majority of studies try to identify damage from 

dynamic modal characteristics, such as natural frequencies or mode shapes. While vibration 

data remain valuable, they need to be integrated with quasi-static response data as well as 

data from dynamic and quasi-static loading. Also, only a limited number of papers take into 

account the variability of SHM-identified dynamic parameters due to environmental and 
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operational conditions, such as temperature, moisture, wind and others (Cornwell et al., 1999; 

Kullaa, 2002; Mahmoud et al., 2001; Wood, 1992). It was demonstrated (Farrar et al., 2000; 

Sohn et al., 1999) that if this variability is neglected, drawing reliable conclusions about the 

structural condition is very difficult. This is because changes in modal parameters due to 

environmental and operational factors may well exceed those caused by an even severe 

damage. 

A novel, interesting approach for damage detection, which does not use the modal 

characteristics, was presented in Sohn et al. (2000) and Sohn et al. (2001). They modeled 

dynamic signals recorded on two different mechanical systems (a bridge pier and a patrol 

boat) at various damage states using autoregressive (AR) time series models. By statistically 

examining changes in AR model coefficients, they were able to classify signals as coming 

from either undamaged or damaged systems. It seems, however, that their original approach is 

more suitable for periodic or post-event monitoring, where a structure is respectively 

examined either at preset time intervals or after major onerous events such as an earthquake 

or typhoon, and measurement are compared to a baseline data set. In the case of continuous 

monitoring, it will be worthwhile to trace the system behavior permanently and detect 

changes as soon as possible after new data are available. The present study uses this approach 

and is devoted to modeling of time histories of static, hourly sampled strains recorded by an 

SHM system installed in a major bridge structure and operating continuously for a long time 

period. A vector seasonal autoregressive integrated moving average (ARIMA) model is 

established for the recorded strains. The coefficients of the ARIMA model are allowed to 

vary with time and are identified on-line using an adaptive Kalman filter. By observing 

various changes in the model coefficients, unusual events as well as structural change or 

damage sustained by the structure can be revealed. Such events or structural changes may 

result, among other causes, from a sudden settlement of foundation, ground movement, 
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excessive traffic load or failure of post-tensioning cables. The proposed method has been 

applied to the strains recorded under normal operational and environmental conditions during 

construction of the structure and also when the bridge was in normal service. 

 

2. MONITORING OF THE BRIDGE 

The subject of the reported monitoring was the Singapore-Malaysia Second Link, also 

referred to as the Tuas Link (Fig. 1). This section of the paper is intended to give only the 

basic outline of the structure and the monitoring program, while more details can be found in 

Moyo and Brownjohn (2002a) and Omenzetter et al. (2004). The structure serves as a road 

crossing between the Island of Singapore and Malaysian Peninsula. The bridge, opened in 

1997, is about 1.9 km long and comprises 27 spans. The main span of the Singapore’s side is 

92 m long. The bridge was cast in-situ using the balanced cantilever method, to enable the 

navigation channel to be kept free throughout the construction, and post-tensioned. The cross-

section of the post-tensioned, continuous box girder varies in depth from 2.6 m to 6.5 m along 

the bridge length. 

 The instrumentation used for short-term and long-term monitoring of performance 

under environmental and traffic loads consists of four data loggers, twelve vibrating wire 

strain gauges, twelve pressure cells, forty four thermocouples and one tri-axial accelerometer. 

The sensors are distributed in three segments of the main span, namely Segment 23 (the 

middle of the span), Segment 27 (approximately one third of the span length), and Segment 

31 (approximately one quarter of the span length). The locations of strain gauges in the cross 

section of the girder are shown in Figure 2. Three data loggers are responsible for static 

measurements, that is strains, stresses and temperature, and one data logger is responsible for 

dynamic measurements. All the data loggers are connected to a host computer, resident in the 

bridge, and remotely accessible via a modem. The monitoring program was divided into two 
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components, namely static and dynamic monitoring. Static monitoring, which is the focus of 

this paper, involved the acquisition of stress, strain and temperature data from embedded 

sensors at hourly intervals. 

 

3. THEORY 

Continuously operating SHM systems generally produce various “raw” signals, such as 

displacements, accelerations, strains, stresses, temperatures, wind velocities, or signals 

resulting from some form of analytical processing of the raw data, e.g. natural frequencies or 

power spectra. Because of the character of signals recorded by SHM systems, i.e. time series 

sampled over long periods of time and at regular intervals, such data naturally lend 

themselves to examination using the extensive and proven tools offered by the time series 

analysis and statistical process control. The concepts of the time series analysis have 

successfully been applied to numerous problems, notably in the field of econometrics, where 

they have been used, for example, to investigate stock prices, production and prices of various 

commodities, and interests rates (Wei, 1993). Little has been reported, with the exception of 

the aforementioned study by Sohn et al. (2000), about application of time series analysis in 

the area of SHM of civil infrastructure. Another publication is that of Moyo and Brownjohn 

(2002b) who used intervention analysis for assessing the impact of various events during 

construction of a bridge on the recorded time series of strains. The present study uses several 

existing procedures of the time series analysis to understand and extract information from the 

strain data recorded on a bridge structure. The main objective is to identify abrupt events 

sustained by the bridge and possible structural change or damage. The procedure consists of 

the following steps and uses the following methods: 

• The coefficients of a vector seasonal ARIMA model of the recorded strain signals are 

identified using an adaptive Kalman filter. 
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• The coefficients of the ARIMA model are statistically examined using an outlier 

detection technique in order to find unduly large variations in their values. 

• The effect of unusual variations of ARIMA coefficient values is classified as 

temporary or permanent and quantified using the intervention analysis. 

 

3.1. Vector seasonal ARIMA model for strains 

 Observations of systems outputs recorded at certain time intervals are related to 

external inputs and often also to their past values. This correlation may extend over just a few 

proceeding observations, but can as well continue over long time periods. For example, 

measurements of air temperature at a given location will usually show significant correlation 

between temperatures recorded at daily and yearly intervals. To account for the various 

correlations between measurements, ARIMA models are often used. 

Consider the following general form of a vector seasonal ARIMA model (Wei, 1993): 

 ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) t
S

ttt
S

tt
S BBBBBB eΘΘxΦΦDD =  (1) 

where {xt} (t=1,2,…,N) is the p-dimensional vector of analyzed signal’s time series, and {et} 

is a zero mean multivariate Gaussian white noise. B denotes the backshift operator which can 

be defined through its action on an arbitrary time series {vt} in the following way: 

 1−= ttB vv  (2) 

( )BtΦ , ( )( )BS
tΦ , ( )BtΘ , and ( )( )BS

tΘ  are all matrix polynomials in the backshift operator: 
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where it ,A , ( )S
it ,A , it ,C , and ( )S

it ,C  are p×p matrices, and I  denotes a p×p unit matrix. Variables 

r, R, m and M, are the orders or the respective polynomials. Polynomials Φt(B) and Θt(B) 

respectively describe the so called regular AR and moving average (MA) factors, whereas 

( )( )BS
tΦ  and ( )( )BS

tΘ  correspond to stochastic seasonal or periodic factors, where the period 

is denoted by S. Finally, D(B) and D(S)(B) are diagonal matrix operators of size p×p that 

indicate regular and seasonal differencing: 

 ( ) ( ) ( ) ( )[ ]pddd BBBdiagB −−−= 111 21 KD  (7) 

 ( )( ) ( ) ( ) ( )[ ]pDSDSDSS BBBdiagB −−−= 111 21 KD  (8) 

where d1, d2, …, dp, and D1, D2, …, Dp are respectively the orders of regular and seasonal 

differencing. Such regular and seasonal differencing is usually required for nonstationary or 

seasonal time series, respectively (Wei, 1993). It should be noted that the required order of 

differencing can generally be different in different channels. An important feature of the 

proposed vector ARIMA model is that the coefficients of polynomials ( )BtΦ , ( )( )BS
tΦ , 

( )BtΘ , and ( )( )BS
tΘ  are not assumed to be constant but are rather allowed to vary with time, 

which is highlighted by the subscript “t”. 

 

3.2. Extended Kalman filter 

In this study, the coefficients of the vector seasonal ARIMA model are identified and 

unusual variations in their values are tracked as possible indicators of structural changes in 

the analyzed mechanical system. For the purpose of parameter identification we use the 

Kalman filter - a tool widely used for recursive identification. Due to the presence of the MA 

components in the considered model, a nonlinear state space realization arises, as 
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demonstrated later, and the so called extended Kalman filter method is adopted. The 

derivation of the extended Kalman filter that follows is adopted after Harvey (1989). 

Consider the following nonlinear state space model: 

 ( )t t t t= +y z α ε  (9) 

 ( )1t t t t−= +α t α η  (10) 

Equation (9) is referred to as the measurement equation, and Equation (10) as the transition 

equation, respectively, where yt is the vector of outputs and αt is the vector of states. The 

elements of zt(αt) and tt(αt-1) are not necessarily linear functions of elements of the state 

vector. Vectors εt and ηt represent multivariate zero mean Gaussian disturbances with 

covariance matrices Ht and Qt, respectively. These disturbances can also be 

contemporaneously correlated, such that 

 ( )
,

,
t

t s

t s
E

t s
=⎧′ = ⎨ ≠⎩

G
η ε

0
 (11) 

where E denotes the expected value operator, and apostrophe denotes transposition. 

The nonlinear functions zt(αt) and tt(αt-1) can be linearized through expansion in the 

Taylor series around conditional means of the state vector . The linearization yields: 

 ( ) ( ) ( ) ( )| 1| 1 | 1t t t

t t
t t t t t t t t

t
−− = −

∂
= + −

′∂ α a

z α
z α z a α a

α
 (12) 

 ( ) ( ) ( ) ( )
1 1

1
1 1 1 1

1
t t

t t
t t t t t t

t
− −

−
− − = − −

−

∂
= + −

′∂ α a

t α
t α t a α a

α
 (13) 

where vectors at|t-1 and at-1 are respectively the optimal estimator of the state vector αt 

conditional on the information available at time t-1, and the optimal estimator of the state 

vector αt-1 conditional on the information available at time t-1. 

 Introducing the following notation: 
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| 1t t t

t t
t
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−=

∂
=

′∂ α a

z α
Z

α
 (14) 

 ( )
1 1

1

1
t t

t t
t

t
− −

−
=

−

∂
=

′∂ α a

t α
T

α
 (15) 

the optimal estimation, at, of the state vector αt conditional on the information available at 

time t can be obtained through recursive application of the following prediction equations: 

 ( )| 1 1t t t t− −=a t a  (16) 

 | 1 1t t t t t t− − ′= +P T P T Q  (17) 

and updating equations: 

 ( ) ( )1
| 1 | 1 | 1t t t t t t t t t t t t

−
− − −⎡ ⎤′= + + −⎣ ⎦a a P Z G F y z a  (18) 

 ( ) ( )1
| 1 | 1 | 1t t t t t t t t t t t t

−
− − −′ ′ ′= − + +P P P Z G F Z P G  (19) 

with 

 | 1t t t t t t t t t t− ′ ′ ′= + + +F Z P Z Z G G Z H  (20) 

Matrix Pt is the covariance matrix of the estimation error: 

 ( )( )1 | 1 1 | 1t t t t t t tE − − − −
⎡ ⎤′= − −⎢ ⎥⎣ ⎦

P α a α a  (21) 

Taken together, Equations (16)-(20) form the Kalman filter. 

For the purpose of identification of coefficients of the vector ARIMA model of 

Equation (1), the output and state vectors were respectively defined as follows: 

 tt xy =  (22) 

 
( ) ( ) ( ) ( ) ( )( ) ( )( )[

( )( ) ( )( ) ( ) ]SMmtt
S
Mt

S
t

S
Rt

S
tmttrttt

vecvec

vecvecvecvecvecvec

,max,1,

,1,,1,,1,

−′′

=′

eeCC

AACCAAα

KK

KKK
 (23) 

where the operator vec(V) reorganizes entries of matrix V into a row vector. Vector xt denotes 

strains recorded at time t, and the entries of the state vector are coefficients of the vector 
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ARIMA model and the noise time series defined in Equations (1) and (3)-(6). With the above 

definitions, the measurement equation (Equation 9) clearly includes multiplicative terms in 

the entries of the state vector, resulting from term such as itt −eC 1,  and ( )
Sit

S
t −eC 1, , and is 

therefore nonlinear. Note also, that with the state vector defined as in Equation (23) there is 

no output noise, i.e. εt=0. 

The transition equation (Equation 10) was assumed in the following linear form: 

 1t t t−= +α α η  (24) 

This type of time series is often referred to as the random walk model (Wei, 1993). The 

rationale behind this choice is that under the null hypothesis the parameters of the system are 

assumed not to change with time, except for some stochastic uncertainty in their 

identification. 

 

3.3. Outlier detection and intervention analysis 

 It is desirable to have an analytical tool which could be used to pick up and quantify 

unusual events and changes, such as level shifts, in a time series. The problem may be 

addressed by outlier detection and intervention analysis. Outlier detection techniques examine 

a time series in order to determine whether a particular observation protrudes unduly from the 

regimen of the analyzed time series. Intervention analysis is a next logical step after outlier 

detection. Intervention analysis enables examination of what happened to the time series after 

an unusual event and checking if this event had a permanent impact or only a transient one. In 

what follows, we describe an integrated approach to outlier detection and intervention 

analysis presented by Pankratz (1991). 

 Consider the following univariate AR model with an exogenous input: 



 

 12

 ( )
( ) ( ) ( ) t

T
tdt e

B
I

BB
Bx

φδ
ω 1

1
+

−
=  (25) 

where {xt} is the analyzed univariate time series, and {et} is a zero mean Gaussian white 

noise. φ(B) is a AR polynomial in the backshift operator B, having a general form similar to 

those of Equation (3), except being a univariate and not matrix polynomial. This polynomial 

describes the behavior of the time series at hand when it is not disturbed by any external 

inputs except the noise {et}. IT
t is, on the other hand, the exogenous impulse time series 

defined as 

 
1,
0,

T
t

t T
I

t T
=⎧

= ⎨ ≠⎩
 (26) 

Polynomials ω(B) and δ(B) describe the effect of an exogenous impulse input. They may 

generally have forms similar to Equation (3); in this study, however, their forms are restricted 

to the following simple cases: 

 ( ) 0Bω ω=  (27) 

 ( ) 11B Bδ δ= −  (28) 

where ω0 quantifies the magnitude of the exogenous input effect. The parameter δ1 is 

confined in the interval 0≤δ1<1. Depending on the value of δ1 and the order of differencing 

operator d in Equation (25), the development of the input effect in time can have several 

forms listed in Table 1 and schematically depicted in Figure 3. One may then observe a 

transient change (Fig. 3a), a level shift (Fig. 3b), a gradual change (Fig 3c), and a linear trend 

(Fig. 3d). 

Pankratz (1991) describes an integrated method for outlier detection and estimation of 

response magnitude ω0 when the polynomials φ(B) and δ(B) in Equation (25) and the 
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variance of noise {et}, denoted by 2
eσ , are known. Defining the following two auxiliary time 

series: 

 ( )
( ) ( )1

t T
t td

B
W I

B B
φ

δ
=

−
 (29) 

and 

 0t t tW eξ ω= +  (30) 

the least square estimator of the response magnitude at time T, denoted as ω0,T, is 

 0, 2

t t
t

T
t

t

W

W

ξ
ω =

∑
∑

 (31) 

Under the null hypothesis that there are no outliers in the examined time series, this estimator 

can be shown to be normally distributed with a zero mean and variance 2
ωσ  equal to 

 
2

2
2

e

t
t

Wω
σσ =
∑

 (32) 

Based on the above statistical results regarding the distribution of ω0,T, an observation is 

declared to be an outlier if its absolute value normalized by the standard deviation exceeds a 

preset threshold C: 

 0,T C
ω

ω
σ

>  (32) 

The knowledge of statistical distribution of ω0,T enables relating the threshold’s value to the 

normal distribution, and significance levels could then be assigned to the decision whether a 

tested observation is an inlier or an outlier. 

In practice, however, polynomial δ(B) and the order of differencing d are usually 

unknown a priori and have to be assumed. One has typically to test several possible values of 
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δ1 and choose that offering the best fit to the observed time series. The order of differencing, 

d=0 or 1, also needs to be determined. These decisions can be supported statistically by 

choosing the values of δ1 and d for which the quotient of Equation (32) assumes the highest 

value. 

 

4. APPLICATION 

4.1 Analysis of single signal recorded during bridge construction 

 The studied bridge was built using the balanced cantilever method and in-situ 

concreting (Mathivat, 1983). The construction process of the girder started from a pier, and 

comprised repetitive steps during which two segments of the girder beam, symmetrically 

located with respect to the pier, were first concreted, then stressed using tendons, and finally 

concreting form traveler was shifted in preparation for casting of another segment. At the end 

of construction of the span, the closure segment was cast and continuity or integration 

tendons were stressed, thus changing the static system of the bridge from separate cantilevers 

into a continuous beam. Table 2 lists major stages of the construction schedule together with 

the times when they were carried out. Each of these events, i.e. concreting, tensioning, and 

shifting of form traveler lasted for a few hours and were separated by a few days’ time 

intervals. They were performed according to a construction schedule and well documented. 

At the same time, these events can be expected to produce significant, sudden changes in 

strains, and possibly also changes in the mechanical system of the bridge. Thus, the 

concreting, tensioning and form traveler shifting events can be used to shed some light onto 

the efficiency and performance of the proposed analytical method for monitoring the state of 

the structure. For example, the cable tensioning events are likely to produce similar effects as 

possible cable failures during the service life of the bridge. It is interesting to examine 
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whether the method is capable of identifying significant construction events, and also to see 

to what extent such events are different from other strain changes caused, e.g., by abnormal 

loading or temperature. 

 This section of the paper is devoted to examining the performance of the proposed 

analytical method using signals recorded during construction and shortly after opening of the 

bridge to the traffic by the strain gauge located in Segment 31, close to the top of the girder 

(see Fig. 2), which is denoted by SG31-1. The strain time series starts on April 29, 1997 at 

00:00 hours and comprises 2944 hourly sampled measurements. This time series is shown in 

Figure 4. The sign convention is such that positive strains denote contraction; in addition, the 

numerical values of strains, given here in the microstrain units ( 61 10με −= ), correspond to 

relative rather than absolute strains and are measured from unknown reference levels, which 

are generally different for different channels. 

Preliminary inspection showed that the analyzed strain time series is nonstationary and 

in addition, as could be expected, has a clear 24-hour seasonal component due to the daily 

temperature cycle. Hence, the original signal was first differenced using operators (1-B) and 

(1-B24) once each. By trying several orders for the AR and MA regular and seasonal 

polynomials, it was finally decided that the model orders r=1, R=0, m=0 and M=1 would 

provide sufficient accuracy. This conclusion was reached by observing the autocorrelation 

function of the residual noise {et} [see Eq. (1)], which did not show significant values for the 

chosen orders, i.e. {et} became a white noise. Results of the identification using the extended 

Kalman filter method are shown in Figures 5 and 6. The first regular AR coefficient, At,1, is 

shown in Figure 5, and the first seasonal MA coefficient, ( )S
t 1,C , in Figure 6, respectively. It 

can be seen in these figures that the identified values of the coefficients exhibit quite large 

variations, and notably many level shifts. 
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In order to quantify the changes in the values of the ARIMA model coefficients, the 

statistical procedure laid out in Section 3.3. is used. Because the initial assumption or null 

hypothesis is that the values of each coefficient follow the random walk model of Equation 

(24), the AR polynomial φ(B) of Equation (25) becomes simply 1-B. As a preliminary visual 

inspection of plots of all coefficient time series, such as Figures 5 and 6, showed that the level 

shift is the most frequent and obvious type of change, we first attempted to identify and 

quantify such step changes. According to Table 1, a level shift corresponds to d=1 and δ1=0. 

In this case, the following time series take the simple forms: T
tt IW =  (impulse), and 

( ) tttt xBe −=== 1,0 ξω . The estimated values of the magnitudes of level shifts, ω0,t, for the 

first regular AR coefficient At,1 are shown in Figure 7. Several large spikes can be seen in this 

time series indicating possible outliers. If we were to proceed with the proposed rigorous 

procedure we would now have to estimate the noise variance 2
eσ  and decide on a confidence 

level with which we want to identify outliers. This can be done easily if a sufficiently large 

data set is given which contains no or only a small number of outliers. The time series of ω0,t 

has, however, many spikes and large excursions from its mean value, and it is difficult to 

isolate with confidence a long portion of the series without outliers. Faced with such an 

obstacle, we adopted a pragmatic approach and decided to focus our attention on cable 

tensioning events listed in Table 2. This approach may be supported by the following 

rationale. Firstly, it turns out that some of the tensioning events result in the largest changes 

in the values of ARIMA coefficients. Secondly, for this post-tensioned bridge, the integrity of 

the cables is by far the most critical factor determining its structural health. The values of the 

threshold C were then chosen independently for each ARIMA coefficient so as to produce 

approximately 1.5% of outliers. Such values guarantee that the number of excursions beyond 

the threshold is small and so excessive numbers of alarms can be avoided, but at the same 
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time all the tensioning events are detected along with other significant changes in the strain 

time series. 

A total of 46 events were identified among the values of the ARIMA coefficients through 

outlier analysis. It is important to mention that in this discussion, we refer to a single 

observation that exceeds the threshold value as an “outlier”. An “event”, on the other hand, is 

typically related to some abnormal changes in the strain time series that lasted for a few 

hours. An event often causes several values of the ARIMA coefficients to exceed the 

threshold value. Thus, several subsequent or very closely separated outliers are grouped and 

identify a single event. Figure 8 zooms into the time series of strains and coefficient At,1 for a 

tensioning event T24 and another identified but unknown construction event. It can be seen 

that for these two exemplary events sharp changes in strains are present and they correspond 

to step changes in the values of the AR coefficient. Thus, it can be concluded that cable 

tensioning and other events do change the mechanical system as modeled by the ARIMA 

model and that they can be detected by observing variations in the ARIMA model. Table 3 

shows a summary of identification of all tensioning events. While all 5 tensioning events 

were detected in the time series of the first regular AR coefficient, At,1, the first seasonal MA 

coefficient, ( )S
t 1,C , missed 2 of them. Thus, At,1 appears to be a good candidate signal feature to 

detect tensioning events, but ( )S
t 1,C  does not seem to be a reliable observation for such a type of 

events. 

 

4.2 Analysis of multivariate signal recorded after bridge construction 

 In the previous section, a strain signal from a single strain gauge was analyzed. The 

proposed theoretical framework is, however, capable of examining multivariate time series, 

too. Such as analysis is undertaken in this section. The main objective is to assess whether 
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new significant information about the behavior of the structure can be obtained via 

application of a vector ARIMA model. 

 For the purpose of analysis of a multivariate signal, a portion of strain time series 

recorded by two strain gauges during post-construction stage was chosen. The first gauge is 

SG31-1, used also in the previous analysis, the second one is SG23-1, located in Segment 23 

(one fourth of the span length) close to the top of the beam, similarly to SG31-1 (see Fig. 2). 

The record starts on July 8, 1999 at 17:00 hours and comprises 1264 hourly sampled 

measurements. These two time series are shown in Figure 9. 

By extending an analysis from a univariate case to a multivariate or vector model one 

expects to discover new information about the studied system and/or explain some of its 

behaviors that the univariate model cannot describe. In the context of the proposed 

monitoring method it is important to assess whether a vector ARIMA model, which accounts 

for correlations among signals recorded at various locations in the bridge structure, performs 

better than a set of univariate ARIMA models, formulated independently for each data 

channel. To obtain some insight into this problem we analyzed the post-construction two-

channel data twice. The first analysis used two independent ARIMA models for each strain 

gauge’s time series. The second analysis identified matrix coefficients of a vector ARIMA 

model for the two strain time series analyzed jointly. 

The orders of ARIMA models were in this case assumed as r=4, R=0, m=0 and M=1, 

because it turned out that as many as 4 regular AR terms are necessary for the residual time 

series {et} [see Eq. (1)] to become a white noise. The values of the threshold C were chosen 

independently for each ARIMA coefficient so as to produce approximately 1% of outliers. All 

available model coefficients were used in the simulations. It should be noted that vector 

models have also off-diagonal coefficients, thus the total number of coefficients increases for 

such models. A total of 16 events were identified jointly by the two univariate models, 
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whereas the vector model singled out 25 unusual events. There was only one event identified 

by the univariate models that was not spotted by the vector model; the reverse was true for 10 

incidents. While these observations may suggest that a vector approach could be more 

reliable, any conclusions must be made very cautiously. By including and retaining more 

coefficients in the model a chance of identifying outlying observations increases, even if these 

observation are just false alarms. Clearly, a more rigorous statistical methodology could help 

to resolve this dilemma. However, as previously mentioned, the number of outlying 

observations in the time series of ARIMA coefficients is large, making any statistical analysis 

very difficult. 

 An example of an identified post-construction event is shown in Figure 10. Figures 

10a) and 10b) zoom into the strain time series associated with the event and recorded by 

gauges SG31-1 and SG23-1, respectively, while Figures 10c) and 10d) show values of the 

selected matrix ARIMA coefficients At,1(1,1) and At,1(1,2), respectively. It can be seen that, 

similarly to the monitoring during construction, level shifts in the ARIMA coefficient values 

correspond to significant abrupt changes in the strain signals. This supports the expectation 

that the method can be used for monitoring of structural health. It is also interesting to note 

that the level shift can be noticed in both diagonal and off-diagonal matrix ARIMA 

coefficients. Thus, the analyzed events appear to alter not only the correlations between the 

current observation and its predecessors from the same data channel, but also the correlations 

between observations from spatially separated sensors. 

 

5. CONCLUSIONS 

This study proposed and examined the application of concepts of time series analysis to 

process data from a continuously operating SHM system installed in a major bridge structure. 

The recorded static strain data were modeled using ARIMA models. Two types of models 
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were used. The first one was a univariate model that described the signal recorded by a single 

strain sensor. The other model was a multivariate model, which enabled simultaneous 

analysis of signals from multiple channels and took into account the correlation among the 

signals. The coefficients of the ARIMA models were allowed to vary with time. They were 

identified on-line using the extended Kalman filter, and chosen as structural damage or 

change sensitive features. The method was first applied to strains recorded during bridge 

construction, when structural changes corresponded to the known significant events such as 

cable tensioning. This allowed some form of verification of the method’s ability to detect 

changes in the structural behavior. The proposed method passed this basic test and was able to 

detect changes caused by tensioning of tendons. In the subsequent investigations, the method 

was used to analyze signals recorded during post-construction period when the bridge was in 

service. During that period some significant changes in strain time series and associated 

ARIMA models were also revealed, showing that the method can provide information on 

structural performance under usual environmental and operational conditions. 

 While this investigation shows that the studied concepts from time series analysis 

could be useful in structural monitoring, there are several important questions that need more 

detailed and careful evaluation. For example, the proposed method does not make use of all 

available measured data, notably temperature. It is possible that some of the observed model 

changes may in fact be caused by abnormal temperature variations and are not associated with 

structural changes. To clarify this, a modified, augmented ARIMAX (ARIMA with 

exogenous inputs) model, which includes available temperature measurements, will be 

studied. This model will use multiple inputs to account for the influence of both spatial 

average of temperatures as well as spatial temperature differentials across the girder. 

More importantly, however, the proposed method enables detection of unusual events 

in the strain time series and therefore signalizes a possible onset of structural change or 
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damage, but it does not decisively tell whether any damage has actually been sustained by the 

structure. Neither does it provide any characteristics of the damage, such as its nature, 

severity or location. For practical applications, these limitations need to be overcome so that 

infrastructure managers can benefit from the method and use it confidently and effectively. 

Linking the observed patterns of changes in ARIMA models with structural changes could be 

achieved using analytical, physics-based structural models and numerical simulations of 

different damage scenarios, such as post-tensioning tendon failure or foundation settlement. 

Ongoing investigations aim at improving the discussed methodology along the above 

suggestions. 
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