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This paper considers the unit root tests in models with structural change. Par- 
ticular attention is given to their dependency on the limiting ratios of the sub- 
sample sizes between breaks. The dependency is analyzed in detail, and the 
invariant testing procedure based on a transformed model is developed. The 
required transformation is essentially identical to the generalized least-squares 
correction for heteroskedasticity. The limiting distributions of the new tests do 
not depend on the relative sizes of the subsamples and are shown to be simple 
mixtures of the limiting distributions of the corresponding tests from the inde- 
pendent unit root models without structural change. 

1. INTRODUCTION 

The evidence for the presence of unit roots in many economic time series has 
been accumulated at an accelerated rate since the work by Nelson and Plosser 
[ 5 ] .  Besides some financial series like stock prices and exchange rates, it is 
now widely believed that many important macroeconomic time series such 
as consumption, GNP, and money supply are also well characterized as ran- 
dom walks or, more generally, as integrated processes. The unit root hypoth- 
esis has been investigated for such series by many authors using the tests by 
Dickey and Fuller [2,3] and Phillips [12] and their extensions. 

The aforementioned macroeconomic time series and many others show a 
strong nonreversible, growing tendency. It seems therefore sensible to elim- 
inate the "deterministic" component from these variables prior to investigat- 
ing the stochastic nature that they reveal. The behavior of the time series after 
detrending, of course, is dependent upon the specification of the determin- 
istic trend. Especially, trend specification is important when one seeks to test 
for unit roots, because the deterministic component can severely distort the 
test results if not properly taken care of. This is well demonstrated in Per- 
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ron [lo]. It is clear that an unexplained increasing deterministic time trend 
would support the presence of unit root in favor of stationarity. 

The linear time trend has widely been used to model the growing tendency 
in many economic series, on the ground that it represents some constant 
growth rate. The unit root tests in models with linear time trend are studied 
in Dickey and Fuller [2,3] and Phillips and Perron [14], among many oth- 
ers. It appears in many cases that the linear trend specification of the deter- 
ministic component is appropriate and well justified. In many other cases, 
however, specifically when the time span of data is relatively long, the con- 
stant growth rate implied by a linear trend seems to be hard to justify. A nat-
ural extension of the linear time trend is the polynomial time trend. The 
model with the deterministic component represented by a time polynomial 
has indeed been considered by Park and Choi [7] and Ouliaris et al. [6]. 

There is yet another class of models whose deterministic trend cannot be 
represented effectively by a time polynomial of finite order: models with 
structural change. Such models, in their simplest form, include time dummy 
variables to permit structural changes in the deterministic component of the 
underlying time series. Though such a specification assuming the break points 
are known a priori may be subject to various criticism, as was raised by Zivot 
and Andrews [16], it often looks appealing. For many historical economic 
time series data, in fact, it is not uncommon that growth rate changes might 
be reasonably thought to have occurred at some fixed points. Research along 
this line has successfully been done by Perron [lo]. Having tested for unit 
roots in models with dummy variables for structural change, he provided 
somewhat surprising results: Most U.S. macroeconomic time series reject the 
unit root hypothesis if we allow for a structural break due to the Great 
Depression or the oil price shock. 

The purpose of this paper is twofold. First, we investigate the asymptotic 
distributions of the unit root test statistics in models with structural change. 
The dependency of the tests on the break points, which was observed ear- 
lier by Perron [lo], is in particular analyzed in detail. The null distributions 
are shown to involve weighted sums of those for the independent unit root 
models without structural change, and the critical values depend symmetri- 
cally on the limiting ratios of the subsample sizes. The half of the critical val- 
ues of the Phillips and Dickey-Fuller tests reported by Perron [lo] for models 
with a single break, for instance, are therefore shown to be redundant. 

Secondly and more importantly, we develop new tests that are invariant 
with respect to the break points. The tests are based on a transformed model. 
The transformation is, both in motivation and operationally, essentially iden- 
tical to the generalized least-squares correction for heteroskedasticity. Our 
procedure uses weights that are inversely proportional to the relative ratios 
of the subsample sizes. This is parallel to the generalized least-squares trans- 
formation, which weighs observations disproportionately according to the 
reciprocals of error variances. The new testing procedure drastically decreases 
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the dimension of the required tabulation of critical values, which is neces- 
sary for practical applications. Perron's [lo]tabulation for the Phillips and 
Dickey-Fuller tests with the grid size 0.1 may serve well for models with a 
single break, if not entirely satisfactory from the theoretical point of view. 
Such an attempt to tabulate critical values for several other existing unit root 
tests, especially for models with multiple breaks, however, would quickly 
become unpracticable. 

The paper is organized as follows. Section 2 presents the model with under- 
lying assumptions. In Section 3 the limiting distributions of the unit root test 
statistics are obtained and analyzed. The tests are shown to depend on the 
relative sizes of the subsamples partitioned by the break. This dependency 
is further analyzed in Section 4, and new tests are developed. The new tests 
are shown to be invariant to the break point. Section 5 investigates the 
asymptotic powers of the tests under the local alternatives. For the simplic- 
ity of exposition, it is assumed that we have only one structural break in Sec- 
tions 2-5. Section 6 extends the results in previous sections to allow for 
multiple breaks. Some concluding remarks follow in Section 7, and the 
proofs of the theorems are given in Appendix A. Finally, some critical val- 
ues of the tests are tabulated in Appendix B. 

2. THE MODEL AND ASSUMPTIONS 

We consider the test of a unit root in the time series ( x , ] ,for which the sto- 
chastic and deterministic components, (xf ] and ( x f ] ,are given, respec- 
tively, by 

with a = 1 ,  and 

where 

0 when t E Tl for T, = ( 1 , .  . . , m ] ,  
t ={ 

( t - m ) k  w h e n t E  T2for T 2 =  ( m + 1, . . . ,n ] .  

We therefore assume that there is a structural shift in the data generating 
mechanism of ( x , ]at time t = m + 1 .  The constant term and the intercept 
dummy variable are not included in the specification of the deterministic 
component ( x f] in (2), because they are dominated by the stochastic com- 
ponent ( x f )and not identifiable in our asymptotic analysis. This does not 
imply that such terms are not permissible; they are allowed but simply not 
parametrized here. The initial condition for (x : ]in ( 1 )  also does not affect 
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the subsequent theory, and we let x,"be any random variable. The (n + 1) 
observations for t = 0, .  . . ,n,  are assumed to be available for (x,) .  

Throughout the paper we assume that the sequence ( u , ) in (1) has the 
mean zero and satisfies an invariance principle. More precisely, it is assumed 
that if we construct the stochastic process B, by 

for r E [0,1], then 

B,, + 
3 B = wW, 

where W is the standard Brownian motion on [0,1] and 

The limit process B is thus a scaled Brownian motion. Also, we denote by 

a' = lim 1C E ( u : )  
n-m n ,=, 

and assume 

In (3) and (4) we assume a2 ,w' > 0. 
Invariance principle (3) is known to apply to a large class of weakly depen- 

dent and possibly heterogenous processes (see Phillips [ l l ]  and the reference 
cited there for the explicit conditions under which (3) holds). In particular, 
(3) holds for general linear stationary processes including all practical ARMA 
inodels, as shown in Phillips and Ouliaris [13]. Note that when the sequence 
( u , )is a stationary process with spectral density f ( X )  and absolutely sum- 
mable covariance function y ( k ) ,  the parameters introduced in (3) and (4) 
reduce to n2 =y(O)  and w 2  = 2.rrf(O). 

Our model therefore describes a very general time series, the stochastic 
component of which is integrated and has a unit root. As in Park and Choi 
[7] and Ouliaris et al. [6], we allow the deterministic part of the series to be 
driven by a time polynomial of an arbitrary order. Especially, a structural 
change is introduced and represented by a polynomial of time dummy vari- 
ables as in Perron [lo]. Formulations (1) and (2) thus generalize various unit 
root models considered earlier by many authors. Our approach is nonpara- 
metric and parallel to that of Phillips [ll] ,  Phillips and Perron [14], Park and 
Choi [7], Perron [lo], and Ouliaris et al. [6]. 
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3. TEST STATISTICS AND THEIR LIMITING DISTRIBUTIONS 

The test of a unit root in ( x , )is customarily based on the regression 

The null hypothesis in regression (5) is, of course, 

which is tested to be against the alternative hypothesis 1 a 1 < 1 .  For ( x , )  
generated by (1) and (2),we have vk = pk+' and vk+ = p h ,  for k = 0, .  . . , 
p - 1, and v, = v: = 0. The terms t p  and t i  are therefore redundant under 
the null hypothesis (6). Their inclusion in regression (5), however, is necessary 
to allow for the same deterministic trend under the alternative hypothesis. 

Following Dickey and Fuller [2,3], we first consider two statistics: n (&  - 1) 
and [ ( a ) ,where ti is the least-squares estimate of CY in (5) and t ( a ) denotes 
the standard t-statistic for hypothesis (6). The next theorem gives the limit- 
ing null distributions of the Dickey-Fuller statistics. We assume m/n + c as 
n tends to infinity. 

THEOREM 1. Suppose 0 < c < 1. Then 

t ( a )5(owL' V2)-'" (2L' V d W  + A), 

where W is the standard Brownian motion, X = (a2- 0 2 ) / 2 ,  and 

v =  w-S,' Wh.(S , 'hh . ) - 'h ,  

where in turn 

Similarly as in Phillips [ l l ]  and Phillips and Perron [14] the limiting distri- 
butions of the Dickey-Fuller tests are shown in Theorem 1 to depend on 
various nuisance parameters for general integrated processes. There is a 
special case that the tests are invariant with respect to the parameters of 
the stochastic component of ( x ,) .  When ( u , )in (1) is a martingale differ- 
ence sequence, as is primarily assumed in Dickey and Fuller [2,3], we have 
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u2= u2and X = 0. The results in Theorem 1 are simplified correspondingly, 
and the limiting distributions do not include any parameter of the stochas- 
tic component (x,1. 

It is interesting to note that the stochastic process V can simply be defined 
as the Hilbert space projection residual in L2[0, 1 1 ,  the set of square integra- 
ble functions on [O, l] with the inner product (x,y) =J; xy.More precisely, 
for each realization, V(r)is the residual function from the projection of 
W(r)on the subspace generated by the set of functions ( fk,fk+ We can 
easily see that 

1 " t k  1 1 " t: I~2 

fk and C T - J  f:. n ,=I n- x 7 g J o n ,=I n o 

In fact, the results in Theorem 1 may be regarded as a direct consequence 
of the fact that the projection operation is preserved under the passage into 
the asymptotics for the regressions with integrated processes like (5). This was 
first pointed out by Park and Phillips [8,9]. 

As we have already mentioned, the Dickey-Fuller tests are nuisance 
parameter dependent and not applicable for a more general process. The 
Phillips [12]tests can, however, be easily extended to our model with struc- 
tural change. We define 

where k = (G2- G2)/2,G2and G2 are consistent estimates of u2and a2, 
respectively, and (if-, ) is the residual from the least-squares regression of 
(x,_~] on tk  and tk for k = 0,.  . . ,p.  The reader is referred to Andrews [ l]  
and the reference cited there for the consistent estimation of u2.A consis- 
tent estimate of a2is given simply by the usual variance estimate. The esti- 
mates G2 and G2 are, of course, to be obtained from the least-squares 
residuals from regression (5). 

If (u,) in (1)is assumed to be an ARMA process, then we may also con- 
sider the regression 

following Said and Dickey [IS].It is possible to show that the usual t-statistic 
for a in regression (9) can be used to test for a unit root for general ARMA 
models, when the number s of the lagged differences is increased at the con- 
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trolled rate ~ ( n " ~ ) .The limiting distribution of the t-statistic in (9) for null 
hypothesis (6) is identical to that of 7, in (8). This can be shown as in Phil- 
lips and Ouliaris [13]. To simplify the exposition, we will not consider the 
Said-Dickey statistic explicitly in the rest of the paper. For all the methods 
developed later in this paper, the Phillips-type nonparametric correction in 
(8) can be replaced by the Said-Dickey approach based on the regression aug- 
mented with differenced lags such as (9). 

It is simple to deduce the following corollary. 

COROLLARY 2. Suppose 0 < c < 1. Then 

where notation is defined in Theorem 1. 

The r 1and T~ statistics are therefore invariant across a wide class of data 
generating processes for the stochastic component of ( x r ) .Their limiting 
distributions are free of nuisance parameters not just for models generated 
by martingale differences but also for general integrated processes. 

The limiting distributions in Corollary 2, however, are dependent on c, the 
limiting proportion of the samples before the break. For the tests to be appli- 
cable, it is therefore necessary to find the critical values for each of the rel- 
evant values of c. From a practical point of view, the dependency of the tests 
on the break point is certainly undesirable, if not critical. The complete tab- 
ulation for c E [0, I ]  is, of course, impossible even for models with a single 
break. This may not be a serious problem for such simple models, because 
the tabulation of the distributions with a fine enough grid would serve well 
for any practical purpose. This is certainly feasible. Perron [lo] indeed tab- 
ulates the distributions for c = 0.1,. . . ,0.9, the cases of p = 0 and 1. 

Such a tabulation, nevertheless, quickly becomes overly burdensome, as 
we allow for higher-order time polynomials and, in particular, multiple 
breaks. Fortunately, it is possible to develop unit root tests that do not 
depend on the break points as long as they are known a priori. We shall sub- 
sequently introduce new tests for the unit root hypothesis and show how the 
procedure can be readily extended to models with more than one break. To 
motivate the construction of such tests, we will first investigate the limiting 
distributions given in Corollary 2 in further detail. 

4. BREAK POINT DEPENDENCY AND INVARIANT TESTS 

In this section we develop tests for unit roots whose critical values do not 
depend on the proportion of prebreak sample in regression (5). First, we look 
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more closely at the dependency on c of the limiting distributions in Corol- 
lary 2. 

L E M M A  3 .  Let the process V be defined as in Theorem 1. Then 

where 

and W, and W2are independent standard Brownian motions defined on 
[0,11. 

In Lemma 3 we represent the stochastic process Vintroduced in Theorem 1 
in terms of two independent functionals of Brownian motion. The result fol- 
lows from the Hilbert space projection theory and the fact that Brownian 
motion has independent increments. We can easily deduce from Lemma 3 the 
next proposition. 

PROPOSITION 4. Suppose 0 < c < 1 .  Then 

where notation is defined in Lemma 3.  

The results in Proposition 4 are very helpful in understanding the depen- 
dency on c of the limiting distributions of the statistics 7 ,  and 72 in (7) and 
(8). Interestingly, they just involve the weighted sums of the corresponding 
terms for the two independent unit root models without structural change 
(see Phillips [ l l ] ,  Phillips and Perron [14], and Ouliaris et al. [6]. Notice 
also that the limiting distributions of 7 ,  and T~ remain the same even if we 
interchange c and (1 - c) .  This can be easily seen since the roles of c and 
( 1  - c )  are symmetric and interchangeable in our representation of the lim- 
iting distributions in Proposition 4. Asymmetry of the critical values obtained 
by Perron [lo] is thus simply due to the sampling variations. 

We now consider the regression 



UNIT ROOTS AND STRUCTURAL CHANGE 925 

P P 

Ax, = ox:-, + C v,tk + C v;t: + ut, 

k=O k=O 


where 

As in (9,v, = p k + land v; = p L ,  for k = O , . . . ,p - 1, and v P =  v,+ =O. 
For the model given by (1)and (2),we have /3 = 0. 

For the unit root hypothesis, we may test 

in regression (10).Similarly as in (7) and (8), we define 

where (if2,] is the residual from the least-squares regression of (xLlj on t k  
and t:, for k = 0,.. . ,p ,  t ( p ) is the standard t-statistic for hypothesis (1 1) in 
regression (lo), and other notation is defined as in (7) and (8). Consistent esti- 
mates of the parameters can be obtained using the residuals from either (5) 
or (10).Under null hypothesis (lo),the transformation for (x:_,] in (10) 
clearly would not affect the limiting behavior of the residuals. We may con- 
sider regression (10)augmented by Ax,-,'s to use the approach by Said and 
Dickey 1151. 

The motivation for the new statistics 7 ;  and 7 ;  in (12)and (13)is simple 
and straightforward from the results in Proposition 4. The following theo- 
rem shows that the asymptotic distributions of these statistics do not depend 
on c. 

THEOREM 5 .  Suppose 0 < c < 1. Then 

where notation is defined in Proposition 4. 
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As we have shown earlier in Proposition 4, the limiting distributions of the 
conventional 7 1and 7, are mixtures of the corresponding statistics from the 
two independent unit root models without structural changes. The statistics 
7 ;  and 7; based on the transformed regression in (10) makes appropriate 
adjustments for the weights c and (1 - c ) .  It is interesting to note that the 
transformation in (10) is quite similar to the generalized least-squares cor- 
rection for heteroskedasticity. The rationale behind the adjustment is intu- 
itively clear. In the transformation for regression (lo), we give the weights 
n/m and n / ( n  - m )  for the two subsamples. The weights are inversely pro- 
portional, respectively, to the sizes of pre- and postbreak samples relative to 
the sample size. Therefore, we effectively give a smaller weight to a longer 
subsample, which introduces more variation to the test statistics. The trans- 
formation in (10) is in this sense also very similar to the heterogeneity cor- 
rection made by the generalized least squares. 

Notice that the limiting distributions of 7,' and 7 ;  are, respectively, the 
same as those of 71/ 2  and T~ with c = 1 - c = $. Therefore, the critical val- 
ues in Perron [lo] (for h = 4 in his notation) can be used for 7,' and 7; 

tests, in the case of p = 0 and p = 1. We provide some additional critical val- 
ues of these statistics in Appendix B. 

5. ASYMPTOTIC LOCAL POWER 

To investigate the asymptotic powers of the tests introduced in previous sec- 
tions, we consider the sequence of local alternatives given by 

as in Phillips [12]. The following theorem can easily be deduced from Phil- 
lips [12] and our earlier results. 

THEOREM 6. Suppose 0 < c < 1. Then under the local alternatives (14) 

where 
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where in turn 

using notation in Lemma 3.  

The asymptotic local powers of 7,and r2 are thus dependent on the break 
point c in a symmetric fashion as are their asymptotic sizes. It is important 
to note that the limiting distributions given in Theorem 6 are not the weighted 
sums of those for the two independent unit root models under the local alter- 
natives of (14).This is in contrast to the results in Proposition 4 for the null 
distributions. The latter distributions would be given similarly as in Theo- 
rem 6 with 

in place of M(c ,6 )  and N ( c , 6 ) .Allowing for a structural change in testing 
for a unit root therefore not only effectively separates samples but also entails 
a deteriorating effect on the power by shrinking the local alternative param- 
eter 6 to c6 and (1 - c)6 for the divided two subsamples. 

The asymptotics for the statistics 7; and 7; under the local alternatives of 
(14)can also be easily worked out. 

THEOREM 7. Suppose 0 < c < 1 .  Then under the local alternatives 
of (14)  

where 
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using notation in Theorem 6 .  

The asymptotic local powers of 7 ;  and T;, as well as those of r 1  and r 2 ,  
depend on c. This implies, of course, that the adjustments used to construct 
the statistics 7 ;  and T; do not remove the break point dependency under the 
local alternatives of (14) .  Both the old statistics 7's and the new statistics 
T* 'S  thus may well be expected to have differing powers dependent on c. 
Unfortunately, however, it does not seem possible to draw any decisive con- 
clusion on the power comparison of 7's and T*'S from the results in Theo- 
rems 6 and 7 . When c = 4,the asymptotic distributions in Theorems 6 and 7 
become identical. As we mentioned earlier, 7; and 7 ;  are identical to r I / 2  
and r 2 , respectively, in this case. 

6. EXTENSIONS TO MULTIPLE BREAKS 

Given the previous results for models with a single break, it is simple to 
extend our methodology to models with multiple breaks. We assume that the 
deterministic component of the time series [x,] is now generated as 

in place of (2), where 0 = no < n ,  < . . . < n, < n,,, = n ,  Tk = ( n k - ~+ 1 ,  
. . . , n k )  for k = 1,. . . ,q  + 1, and 

when t E Tk for k Ij ,  

( t  - n when t E T, for k r  j + 1. 

Model (15) allows for multiple breaks and extends (2) . Here the q structural 
shifts are assumed to occur at t = n, + 1 ,  k = 1 , .  . . , q .  It is assumed as 
before that 

as n tends to infinity. 
Now we consider the regression 

P P 4 

AX, =px,*_, + C v k r k  + C Cv,J+t;, + u,,  
k=O i=O j = l  

where 

x:-l = ( n / ( n k- n k - l ) ) ~ t - l ,  f E Tk, 

for k = 1 , .  . . ,q + 1. Regression (16) is completely analogous to (10). Define 

T; and r2* similarly as (7)and (8), based on regression (16). That is, 
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where ( i f? ,1 is the residual from the least-squares regression of (x:, ) on t k  
for k = 0 , .  . . , p ,  and t k  for i = 0 , .  . . , p ,  and j = 1, . . . ,q. Other notation 
is defined from regression (16) similarly as in (7 )  and (8). 

The limiting distributions of T;* and 7; are given by the following 
theorem. 

THEOREM 8. Suppose 0 < c < 1. Then 

where W,, k = I ,  . . . ,q + 1 ,  are ( q + 1) independent standard Brownian 
motions and Vk is defined f r o  W, similarly as in Proposition 4. 

Theorem 8 shows that the asymptotic distributions are invariant with 
respect not only to the parameters of the stochastic component but also to 
the break points in the deterministic component of ( x , ] .The distributions 
depend only on p,  the order of maintained time trend, and q, the number 
of structural changes. We provide in Appendix B the critical values of the 
statistics 7; and 7; for p = 0,1,2,3, and q = 1,2. 

7.CONCLUDING REMARKS 

The unit root models with structural change in deterministic trends were 
investigated in this paper. The dependency on the break points of the conven- 
tional unit root tests in such models was analyzed in detail, and the testing 
procedure that is invariant with respect to the break points has been developed. 
The new tests rely on a transformation of regression, which was motivated 
similarly to the generalized least-squares correction for heteroskedasticity. 

The theory and methodology developed in the paper to solve the test 
dependency on the break points are not confined to any specific estimators. 
Although we have explicitly considered only some special class of tests based 
on the unit root regression, this is just for illustrative purposes. The invari- 
ant tests can easily be derived for all the existing approaches, using similar 
transformations. For instance, we may simply transform a given series using 
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weights inversely proportional to the relative sizes of the subsamples to make 
the variable addition test by Park and Choi [7] invariant. All the existing unit 
root test statistics have nonstandard limiting distributions that are dependent, 
in general, on trend specifications and, in particular, on the break points for 
trends with breaks. All their asymptotic distributions, however, can be rep- 
resented as functionals of Brownian motion, and for this reason our proce- 
dure utilizing the property of independent increments of Brownian motion 
naturally extends to them. 
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APPENDIX A 

Proof of Theorem 1. We set x,S = 0 for simplicity, write 
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and define 

d 
I 
-
-

(n-1/2 n - ( 2 p + l ) / 2  t p ,n-"Zt;, , , , , n - ( 2 ~ + ~ ) i ~P t) . . . ,  fnr). 

Let 

Then we have 

Define 

f n k ( r )  = (9)"f ,+,(r) =and 

for r E [O, 1 1 ,  where [ w ]  denotes the largest integer not exceeding w,  and [ w ]  =+ 

max(0, [ w ] ) .Then f,, -- fk and f;. 4f,i uniformly for k = 1,. . . , p .  Let 

d 
k t  
-
-

n - ( 2 k + l ) ' 2 t k  and d,:=n-(2k+U~'2t,,,k . 
It follo\vs immediately that 

for i,j = I , .  . . , p ,  and 

for k = I , .  . . ,p. Also, we let 


g n k ( r ,  = n((&)*
nr]  + 1 

- (+)"), 


Then g,, -- gk  and gn+k g z  uniformly, where g k ( r )= (d /dr)f k  ( r )and g$ =g k ( r- c )  
if r > c,  and 0 otherwise. It can be shown using summation and integration by parts 
that 
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for k = 1, . . . , p .  Finally, we have 

as shown in Phillips [ l l ] .The theorem follows from (A.2)-(A.6)with B = w W. W 

Proof of Corollary 2. The stated result follows immediately from 

which was shown in the proof of Theorem 1 .  N 

Proof of Lemma 3. Let f L ( r )  = r k  if 0 Ir Ic ,  and 0 otherwise, and redefine 

f ; ( r )  = fk+(r). Let 


f ;  = ( f , ' , . . . ,f ; ) '  and fi* = ( f ? , . . . , f j ) ' ,  


and subsequently define 


f* = ( f ; ' , f ; '  ,: 

Because the subspace of ~ ~ [ 0 , 1 ] 
generated by f ,  is identical to that generated by h ,  
we have 

We have on the interval [0,c ], 

If we define 

1 1 

W I ( ~ )  W ( c r )  and f ; ( c r ) , 
= - h l ( r )= 

VF dc 

it can then be easily deduced for 0 5 r 5 c that 
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Similarly, on the interval (c, I ] ,  

Therefore, if we let 

then for c < r I1 

It is easy to see that the stochastic processes Wl and W, are Brownian motions on 
[O, I ] .  The independence of W, and W2follows from the fact that a Brownian motion 
has independent increments (see, e.g., Doob [4]). ¤ 

Proof of Proposition 4. We have from (A.7) and (A.8) 

r - c  

= c ~ ' v 1 ( ~ ) ' d ~ +  V2(-)1 - c  d r 
(1 -C)I' 

Also, it follows that 

The stated result is now immediate from Corollary 2. W 

Proof of Theorem 5. Let be defined as (A.l) ,  a, = n/m and b, = n / ( n  - m). 
We have 
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which follows from (A.9) and (A.lO). In particular, if x: = C: uk as in the proof of  
Theorem 1, then 

using Ito's formula, which yields d W 2  = 2 W d W  + dr. We also note that 

and the proof for 7; is complete. The proof for 7; is entirely analogous and omitted. 

Proof of Theorem 6. As shown in Phillips [ l l ] ,  we have 

under the local alternatives of (14), where 

Notice that 

= lr.e(")" dU; ( s )  
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and 

The rest of the proof is essentially identical to those for Lemma 3 and Proposition 4. 
rn 

Proof of Theorem 7. The proof is parallel to those of Lemma 3 and Theorem 5 ,  
given the results in Theorem 6. rn 

Proof of Theorem 8. It is easy to see that all the arguments used to prove the pre- 
vious results are also applicable to the case of multiple breaks. The proof is there- 
fore omitted. rn 

APPENDIX B 

The critical values were estimated based on 500 observations and 50,000 iterations. 
The computations were done using GAUSS386. 

q =  1 q = 2  

P Size 7; 72' 7 ;  7; 
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Appendix B continued 

q = l  q = 2 


P Size 7; 72* 7; 72' 
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