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Abstract

This paper provides a methodology to test existence, type, and strength of changes in the distribution of a sequence of
hydrometeorological random variables. Unlike most published work on change-point analysis, which consider a single structure
of change occurring with certainty, it allows for the consideration in the inference process of the no change hypothesis and
various possible situations that may occur. The approach is based on Bayesian model selection and is illustrated using univariate
normal models. Four univariate normal models are considered: the no change hypothesis, a single change in the mean level
only, a single change in the variance only, and a simultaneous change in both the mean and the variance. First, inference
analysis of posterior distributions via Gibbs sampling for a given change-point model is recalled. This scientific reporting
framework is then generalized to the problem of selecting among different configurations of a single change and the no change
hypothesis. The important operational issue of forecasting a future observation, often neglected in the literature on change-point
analysis, is also treated in the previous model selection perspective. To illustrate the approach, a case study involving annual
energy inflows for eight large hydropower systems situated in Que´bec is detailed.q 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

It is argued in this paper that, when a change in
meteorological time series at an unknown epoch is
suspected, hydrologists must entertain a range of
possible belief models, at least one of which assumes
a given type of change and another that represents the
no change hypothesis. When facing important deci-
sions based on these data, decision makers should not
put all their eggs in the same basket. In fact, any

individual who considers only a single model for a
decision problem, for instance forecasting future
observations, ignores model uncertainty, which can
be a major part of overall uncertainty about quantities
of interest. As hydrological studies are mainly based
on samples of limited sizes, this issue becomes very
important for change-point analysis since uncertainty
about the existence and the configuration of a change
will always remain.

Following the emergence of published studies on
climate changes, a number of hydrologists have used
models which describe certain types of changes to
represent hydrometeorological time series. Bayesian
methods to study a single unknown change-point in a
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sequence of random variables have been increasingly
used in hydrological literature. In most of these
papers, a given type of change (often in the mean
level) occurring with certainty is assumed, and focus
has been put on the characterization of the change.
Even if such inference is vital to help with decision
making, it is not sufficient. First, conclusions
stemming from this type of inference are entirely
conditional upon the given configuration of change
that the model assumes (for instance, in the mean
only). This scientific reporting framework in turn
forces the hydrologist to choose one situation among
different possible models to perform the change-point
analysis, and consequently to exclude all other kinds
of changes. Second, these models proposed in the
hydrological literature always assume a change with
certainty. Therefore, the analysis of posterior distribu-
tions of parameters cannot be used, in addition to
inference about the characteristics of a possible
change, to “test” its existence. However, although
the no change hypothesis does not have any status
in this type of formulation, such questionable
analysis can be found in published papers for
change-point models, namely in Bruneau and
Rassam (1983), Rao and Tirtotjondro (1996), and
Lubès-Niel et al. (1998). In fact, these authors use
posterior estimates from Bayesian analysis under
such models to reject or accept the no change hypoth-
esis. Entertaining several models in change-point
analysis allows for a clear formulation of each possi-
ble situations, and therefore to proceed adequately
when diagnosis about the different alternatives is
needed.

In a companion paper, Perreault et al. (2000)
presented a Bayesian approach for the inference
about the parameters of a single change-point
model. A sudden change in the mean level and in
the variance in a sequence of normal random variables
were investigated. This article provides a more
general formulation of change-point analysis, which
allows us to take into account model uncertainty when
making decisions. Single change-point analysis is
viewed as a model choice problem among the various
possible situations that may occur. Bayesian model
selection is adopted here under the perspective
where the range of models under consideration is
assumed to include the “true” belief model. Two
different decision problems are examined within this

framework: (1) the verification of the existence of a
change and the identification of its type, i.e. only
model choice; and (2) model choice followed by the
prediction of a future observation. Although these
decision problems cannot be viewed in water
resources management as terminal actions, they are
very important steps in the decision-making process.
As in Perreault et al. (2000), the purpose of this paper
is not to determine why changes occurred (e.g.
climatic change or site-specific factors), but is only
concerned with developing statistical tools to help
decision making.

In Section 2, we recall the general formulation of a
single change-point model and show how marginal
posterior distributions of the parameters of interest
can be evaluated analytically or, if necessary, via a
straightforward iterative Markov Chain Monte Carlo
method, namely the Gibbs sampler. In Section 3, we
show how predictive distributions can be used to test
whether a change has in fact occurred, to identify its
type among several alternatives, and finally to derive a
prediction that takes into account the no change
hypothesis and all configurations of change. Section
4 is dedicated to the evaluation of the predictive densi-
ties when no expression in closed form can be
obtained. The methods are based on posterior simula-
tion outputs by Gibbs sampling. Finally, this new
perspective for change-point analysis is illustrated
for a sequence of independent normal random
variables in Section 5. Four models are consid-
ered: the no change hypothesis, a single change
in the mean level only, a single change in the
variance only, and a simultaneous change in both
the mean and the variance. An application to eight
series of Hydro-Que´bec annual energy inflows is
offered.

2. Inference for univariate single change-point
models

The general formulation for a single change-point
model assumes a sequence ofn independent random
variables X � �X1;X2;…;Xn�; for instance Hydro-
Québec annual energy inflows, such that

Xi , p�xi uu1�; i � 1;…; t

Xi , p�xi uu2�; i � t 1 1;…;n
�1�
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where the densityp(xuu ) belongs to a known class of
probability densities indexed by a parameteru taking
values in the setQ so thatu1 ± u2. The parametert �
1;2;…; n 2 1 is the unknown change-point. Model (1)
assumes that the time series exhibits an abrupt change.
Indeed, in hydrometeorological time series, other
types of changes such as trends can exist. However,
recent understanding of global climate interactions
such as the El Nino/La Nina and the North Atlantic
Oscillation phenomena give credence to the idea that
climate may operate in two or more quasi-stationary
states, and that it can rapidly switch from one state to
another (Rodriguez-Iturbe et al., 1991; Kerr, 1992,
1999). Hence, a sudden change may be representative
for several hydrological and climatic time series.
The independence assumption between successive
values can also be questioned. Hydro-Que´bec
annual energy inflows are proportional to the net
basin supplies, which in turn are evaluated follow-
ing the water balance equation. Therefore, the data
considered herein are implicitly adjusted for
surface and subsurface storage effect that could
induce interannual correlations, and the assump-
tion of independence seems reasonable to us, at
least as a first methodological step. It will be
relaxed in further studies.

The corresponding likelihood function for the reali-
zationsx � �x1; x2;…; xn� is

p�xuu1; u2; t� �
Yt
i�1

p�xi uu1�
Yn

i�t1 1

p�xi uu2� �2�

In the Bayesian perspective, a joint prior distribu-
tion p�u1; u2; t� is assumed for the parameters.
Bayes theorem provides the joint posterior distri-
bution p�u1; u2; t ux� of u1; u2; t given the datax.
This probability density function (p.d.f.) is propor-
tional to

p�xuu1; u2; t�p�u1; u2; t� �3�
Evaluation of this joint density and all desired

marginal posterior densities can be a very difficult
task. But the Gibbs sampler enables a straightfor-
ward solution to such a problem, if conjugate
prior distributions for fixedt are assumed (see
Carlin et al., 1992; Stephens, 1994; Perreault et
al., 2000). Implementation requires sampling

from the full conditional distributions
p�t uu1; u2; x�; p�u1u u2; t; x� and p�u2uu1; t; x�;
which are all proportional to Eq. (3). Note that
p�t uu1; u2; x� is exactly of the form

p�t uu1; u2; x� � p�xuu1; u2; t�p�t�Xn2 1

t�1

p�xuu1; u2; t�p�t�
�4�

and can be easily sampled since it involves a
discrete density.

As an illustration for inference about the
parameters of change-point models, let us
consider, as in most published approaches on
change-point studies, a sequence of independent
normal random variablesX1;X2;…;Xn: The normality
assumption is appropriate as a first step to analyze a
single change in Hydro-Que´bec large hydropower
system annual energy inflows. One can invoke the
central limit theorem to justify the normal
assumption, since annual energy inflows for a
given hydropower system are calculated as a
summation over time and space of the monthly
energy inflows. Even if the normal model is rather
simple, it allows for various types of changes,
which are interesting in hydrology. Considering
only a single change as in Eq. (1) along with
the no change hypothesis, some basic situations
with the usual parametrization of the normal
model are as follows:

• Model M0:

Xi , N�xi um;s
2�; i � 1;…;n

• Model M1:

Xi , N�xi um1;s
2�; i � 1;…; t

Xi , N�xi um2;s
2�; i � t 1 1;…;n

• Model M2:

Xi , N�xi um;s
2
1�; i � 1;…; t

Xi , N�xi um;s
2
2�; i � t 1 1;…; n
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• Model M3:

Xi , N�xi um1;s
2
1�; i � 1;…; t

Xi , N�xi um2;s
2
2�; i � t 1 1;…; n

where N�xi um;s
2� stands for the normal p.d.f.

with parametersm [ R and s [ R
1
: Assuming

conjugate prior distributions and independence
betweent and the other parameters, all posterior
marginals can be obtained in closed form for
modelsM0, M1 and M3. Inference about the para-
meters can therefore be made directly to charac-
terize each of these situations. Expressions for the
posterior distributions for modelM0 are well-
known results and can be found, for instance, in
Berger (1985). Those corresponding to the change-
point model M1 are given in Perreault et al.
(2000). The general idea is to first evaluate the
joint and marginal posterior distributions ofm 1,
m 2 and s 2 assuming the change-pointt is
known. Then, the unconditional posterior densities
are deduced by averaging these distributions over
t . The posterior marginals appear to be finite
mixtures of Student t-distributions conditional
upon t , each weighted by the corresponding
posterior massp�t ux�: This last discrete density
can be deduced from the Bayes theorem denomi-
nator givent , which is easily evaluated following
the conjugacy properties. In a similar way, all
desired posterior marginals can be derived analy-
tically for the more general situation of a single
change in both the mean and the variance, i.e.
model M3. In our opinion, this model is important
for hydrometeorological series, since a shift in the
mean level often seems to come with a change in
variability. In Appendix A, the posterior distribu-
tions of the parameters of interest, assuming
this type of change, are derived using conjugate
priors. Results forM0 and M1 assuming conjugate
priors are also recalled in Appendix A. Finally, a
single change only in the variance (modelM2)
does not lead to solutions in closed form as for
M0, M1 and M3. However, the Gibbs sampler
provides an elegant and convenient answer to this
problem (details can be found in Perreault et al.,
2000).

Up to this point, exactly one change of a given type

has been assumed, i.e. it is known that a change of this
configuration has occurred. Therefore, the no change
hypothesis has no status in that formulation nor any
other type of change, and inference about the exis-
tence of a change or about its configuration cannot
satisfactorily be made based only on a single model.
For example, if onlyM1 is considered, examination of
the posterior density ofd � m2 2 m1 to assess the no
change hypothesis is not valid. Bayesian perspective
adopted in this paper, has little role for the non-Baye-
sian concept of hypothesis test, especially where these
relate to point null hypotheses such asH0 : d � m2 2
m1 � 0 (no change). Inferences about a specific value
d under a given hypothesis (change) in the absence of
a well-specified alternative (as in classical statistics)
cannot be made. In order for a Bayesian analysis to
yield a non-zero probability for a point null hypoth-
esis, it must begin with a non-zero prior probability
for that hypothesis. However,d a continuous para-
meter and the probability for an event {d � 0} is
zero. Therefore, actions such as “accept or reject no
change”, i.e.M0, based on the examination of a cred-
ible interval aboutd underM1 is not justified. That is
why we cannot test the existence of a change only on
the basis of a change-point model, and must consider
separately the alternativeM0 in order that the no
change situation becomes a possible outcome. A
well-known simple example that illustrates the
problem is the so-called experiment on used electro-
nic and quantum-mechanical random event generators
with visual feedback. This design can be modeled by a
Binomial experiment. Suppose a Bernoulli trial where
u � Pr(success),n� 104 490 000 trials andX is
defined as the number of successes. Therefore,X
follows a Bin(n,u ). Let the realization ofX be
x� 52 263 446. We want to testH0 : u � 1=2 against
H1 : u ± 1=2: With uniform priorp(u), we obtain as a
95% credible intervalu [ �0:50008; 0:50027� under
H1. On the other hand, if we consider modelH0 and
assume Pr�H0� � Pr�H1� � 1=2; we have Pr�H0ux� �
0:94; which highly favorH0. Clearly, one cannot do
Bayesian tests using posterior distribution under a
given hypothesis without considering an alternative.
Therefore, the approach should be extended by
including in the analysis the possibility of no change,
and all other types of change likely to occur over the
period of observation. Bayesian model selection is a
solution to such a problem, since it allows for the
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consideration of a range of possible models in the
inference process.

3. Entertaining a range of possible models for
change-point analysis

In this section, Bayesian model selection is
presented in the context of change-point analysis.
Two different decision problems are examined within
this perspective: the verification of the existence of a
change and the identification of its type, if any, and
the prediction of a future observation. But first,
predictive analysis, on which model selection and
forecasting are based, is briefly recalled. In the rest
of the paper, since a range of possible models is now
considered, the model indicatorMk is introduced in
the list of unknown parameters.

3.1. Definitions

The general problem of statistical prediction may
be described as that of inferring the values of
unknown observable variables, sayz, from the current
state of belief denotedH. In the Bayesian perspective,
this is done through the predictive distribution, which
is obtained by integrating the parametersc out of the
joint density p�z;cuH� conditional upon the actual
state of beliefH:

p�zuH� �
Z

p�zuc;H�p�cuH� dc �5�

If the change-point model (1), denotedMk, is
assumed before any datax � �x1; x2;…; xn� are
considered, thenz� x; c � �u1; u2; t� and H � Mk:

Therefore, assuming independence betweent and
�u1; u2�; the predictive distribution of the unknown
but observablex is

p�xuMk� �
Xn2 1

t�1

ZZ
p�xuu1; u2; t;Mk�

� p�u1; u2; t uMk� du1 du2

�
Xn2 1

t�1

p�t uMk�p�xut;Mk� �6�

This density is often called the marginal distribution
of x, but a more informative name is the prior predic-

tive distribution. That is, this density is the probability
of seeing the data, which were actually observed
assuming a given change-point model, calculated
before any data became available. This predictive
density, implied by the likelihood and the prior distri-
bution, provides a basis for assessing the compatibil-
ity of the data with our prior state of belief, i.e. model
Mk.

After the datax, assumed to be generated by model
Mk, have been observed, we can predict an unknown
future valuey from the same process. In this case,z�
y; c � �u1; u2; t� andH � �x;Mk�: Using elementary
probability rules (Berger, 1985), this new predictive
distributionp�yux;Mk� appears as finite mixtures of the
predictive densities for fixedt , weighted by the
appropriate posterior probability of a shift occurring
at that point:

p�yux;Mk� �
Xn2 1

t�1

ZZ
p�yuu1; u2; t;Mk�

� p�u1; u2; t ux;Mk� du1 du2

�
Xn2 1

t�1

p�t ux;Mk�
ZZ

p�yuu2;Mk�p

� �u1; u2ut; x;Mk� du1 du2

�
Xn2 1

t�1

p�t ux;Mk�p�yut; x;Mk� �7�

This distribution is called the posterior predictive
distribution, posterior because it is conditional on
the observedx and predictive because it is a prediction
for an observable.

Note, in some cases the integrals in Eqs. (6) and (7)
can be evaluated analytically. More often, these inte-
grals are intractable and thus must be computed by
numerical methods. In this paper, we favor an
approach based on Gibbs sampling that is straightfor-
ward to implement, and easily accessible to the aver-
age statistical practitioner without numerical analysis
skills (see Section 4).

3.2. Comparison of change-point models

Bayesian model selection consists of evaluating
posterior probabilities for each model being true
among a discrete set denotedM. Let us assume that
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the random variablesX � �X1;X2;…;Xn� have arisen
from one of q 1 1 possible models inM �
{ M0;M1;…;Mk;…;Mq} ; where, as in Section 2,M0

denotes the model which assumes that no change
has occurred, whileM1;…;Mk;…;Mq are change-
point models. First, the Bayesian model selection
proceeds by selecting prior probabilitiesp�Mk� of
each model being true. Often, equal prior probabilities
are used, i.e.p�Mk� � 1=�q 1 1�: In the context of
change-point analyses for water resources manage-
ment, this choice based on a full symmetry of all
situations can be criticized. In fact, the no change
hypothesis will often represent the status quo situa-
tion, which many decision makers favor. Moreover,
the remaining hypotheses will generally induce
changes in policies that could be drastic, and that
may involve a lot of money. Therefore, if no prior
information is available about the existence of a
change in the series of interest, the decision maker
will be tempted to affect at least half of the weight
to the no change hypothesis. Here, a more sensible
choice would give equal weight to the “change” and
“no change” alternatives:

p�M0� � 1=2 andp�M1� �…� p�Mq� � 1=�2q� �8�
After the prior probabilities have been chosen, the

analysis then proceeds by computing the posterior
probabilities of each model being true. Using Bayes
theorem, we have

p�Mkux� � p�xuMk�p�Mk�Xq
j�0

p�xuMj�p�Mj�
�9�

where p�xuMk� is the prior predictive density ofx
under modelMk given in Eq. (6).

Let us consider only the problem involving the
verification of the existence of a change and, if any,
the identification of its type. This problem is essen-
tially that of choosing a model inM, without any
subsequent decision, when the “state of the world”
of interest is defined to be the “true” model. To
proceed we first assume that the range of models
under consideration includes the “true” belief
model. This is the so-calledM-closed perspective
described in Bernardo and Smith (1994). This
assumption may be difficult to accept in a literal
sense. However, for a change-point analysis, this

hypothesis might be considered reasonable. In fact,
often in hydrology, a given model, for instance
model M0, has been extensively adopted and found
to be a successful predictive device in a wide spec-
trum of applications. Now, suppose a hydrologist
suspects that a certain type of change, for example
M1, may have occurred, and in this new context
wants to incorporate uncertainty aboutM0. Provided
the hydrologist is comfortable with assigning prior
weights to the alternative formulations, theM-closed
perspective can be exploited sinceM0 is generally
viewed as a proxy to the true model. If the natural
zero-one utility function is used in theM-closed
setting, maximizing expected utility implies that the
optimal model choice is the one with largest posterior
probability (9) to be true. Therefore, these posterior
probabilities can be used in a formal way to verify if a
change in a hydrometeorological series is a plausible
hypothesis, and if necessary what type of shift may
have occurred.

For the particular situation where only two models,
Mj andMk, are to be compared, the above discussion
suggests that one should use the posterior odds ratio

p�Mj ux�
p�Mkux� �

p�xuMj�p�Mj�
p�xuMk�p�Mk�

�10�

Expression (10) reveals the key role of the prior
predictive density in providing the way in which the
data update the relative prior beliefs into the relative
posterior belief about the true model. This leads natu-
rally to the Bayes factorBjk, defined as the ratio of
posterior to prior odds onMj againstMk,

Bjk �
p�Mj ux�
p�Mkux�

,
p�Mj�
p�Mk� �

p�xuMj�
p�xuMk�

; �11�

which can be interpreted as a measure of whether the
data x have increased or decreased the odds onMj

relative toMk. The Bayes factor given in Eq. (11) is
similar enough to the likelihood ratio statistic, but the
parameters are eliminated by integration rather than
by maximization. Naturally,Bjk . 1 signifies thatMj

is now more relatively plausible thanMk in light of x;
Bjk , 1 signifies that the relative plausibility ofMj has
decreased. However, in many problems, such criteria
for interpreting the Bayes factors can be very loose.
Based on the work of Jeffreys (1961), Raftery
(1996) suggested more conservative guidelines for
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interpreting the Bayes factor, which are on the same
scale as the familiar deviance and likelihood ratio test
statistics. The guidelines are reproduced in Table 1.

Many questions can be answered using Bayes
factors (or equivalently the posterior probability of
each model) along with Table 1. For instance, if one
is interested in how much the data support a given
model Mk compared to its competitor alternatives in
M, the appropriate Bayes factor, denotedBk�2k�; is
given by

Bk�2k� � p�Mkux�
1 2 p�Mkux�

� �,
p�Mk�

1 2 p�Mk�
� �

�
Xq

j�0�± k�
Bjk

p�Mj�
1 2 p�Mk�

� �24 3521

�12�

An important particular case is the overall assess-
ment of change versus no change. SinceBjk � B21

kj ;

we note that testing the existence of a change in a
hydrometeorological series can be based on

Bc0 � B�20�0 � 1 2 p�M0ux�
p�M0ux�

� �,
1 2 p�M0�

p�M0�
� �

�
Xq
j�1

Bj0
p�Mj�

1 2 p�M0�
� �

�13�

The right-hand side of Eq. (13) has the form of a
weighted average of individual Bayes factors for
specific configurations of change against no change.
If, as above, equal prior probabilities are specified for
the q change-point models, and equal prior weights
are assigned to the change and no change alternatives,
the Bayes factorBc0 for change against no change is
just an average of the Bayes factorsBj0, taken over all
considered change-points model. Finally, if we
assume that a change has occurred, identification of

its type may be carried out by evaluating the Bayes
factor (12) for each alternative, excluding the no
change modelM0. According to the scheme in Table
1, its type is identified after examining if one of
these Bayes factor provides enough evidence in
favor of a given change-point model compared to its
competitors.

It is important to notice that the use of Bayes
factors, and therefore of Eq. (9), needs proper infor-
mative prior distributions for all parameters to be
specified. When prior distributions are improper, the
prior predictive distributionsp�xuMj� andp�xuMk� are
not defined. However, this rather embarrassing
problem can be overcome by using default Bayes
factors, such as the “Intrinsic Bayes factor” (Berger
and Pericchi, 1996) and the “Fractional Bayes factor”
(O’Hagan, 1995). In this paper, we do not address
model selection with non-informative priors since
we assume that some prior hydrologic expertise is
available, however vague it may be.

3.3. Accounting for model uncertainty when
forecasting

Suppose we are interested in a decision problem
that involves not only model choice but also a subse-
quent action, such as the prediction of a future valuey.
Following the discussion in the previous section, if
one wishes to consider a single model, the one with
largest posterior probability to be true, denoted byMp

k ;

will be selected for prediction. If we consider a quad-
ratic utility function, maximizing expected utility
leads to the optimal prediction~yp

k underMp
k given by

~yp
k �

Z
yp�yux;Mp

k� dy� E{ yux;Mp
k} �14�

where p�yux;Mp
k� is the posterior predictive density

(7). This prediction depends upon a given model
Mp

k : Using it forces the hydrologist to select a single
model and to ignore model uncertainty, which can be
a major part of overall uncertainty about future values.
The more general Bayesian model selection frame-
work, presented in the previous section, allows for
the evaluation of an “overall” posterior predictive
distribution, which takes into account all models in
M. In fact, since under theM-closed perspective
each model has a posterior probabilityp�Mkux�; one
can maintain consideration of several models by
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Raftery’s scale for interpreting the Bayes factor

2 ln Bjk Bjk Evidence forMj

0–2 1–3 Not worth more than a
bare mention

2–6 3–20 Positive
6–10 20–150 Strong
.10 .150 Very strong



weighting each conditional posterior predictive
densityp�yux;Mk� by p�Mkux� :

p�yux� �
Xq
k�0

p�yux;Mk�p�Mkux� �15�

Assuming again a quadratic utility function, it is
seen that the optimal overall predictionỹ with respect
to expected utility is

~y�
Z

yp�yux� dy�
Xq
k�0

E{ yux;Mk} p�Mkux�

�
Xq
k�0

~ykp�Mkux� �16�

Eq. (15) shows, in particular, that selecting a single
model and proceeding conditionally on it may be
reasonable if one of the posterior probabilities
p�Mkux� is close to unity. If not, then prediction condi-
tional on a single model fails to take into account all
of the uncertainty about the configuration of the
change, and the precision of forecasts may be over-
estimated.

4. Evaluations of predictive densities

As mentioned in Section 3.1, the prior and posterior
predictive distributions,p�xuMk� and p�yux;Mk�; may
not be expressible in closed form, and recourse to
numerical approximations is needed. Since estimation
of the parameters for model (1) is done via Gibbs
sampling (Section 2), it would be natural to use the
simulated outputs to estimate the predictive densities.
The problem is easily solved by Monte Carlo genera-
tion for posterior predictive distribution. On the other
hand, the evaluation of the prior predictive distribu-
tion from Gibbs outputs is more challenging. In the
following, we present how the Gibbs algorithm can be
used to evaluate such integrals. The parameters of
model (1) are denoted byu � �u1; u2; t�; and we
suppose {u�j�; j � 1;…;m} are them draws from the
joint posterior densityp�uux;Mk� obtained using the
Gibbs sampler, after the firstt values of the chain have
been discarded.

4.1. Posterior predictive density

The posterior predictive density can be readily

approximated via the Gibbs sampling process used
to estimate the posterior distributions. For each draw
of the parameters {u�j�; j � 1;…;m} from the poster-
ior distributionp�uux;Mk�; one simply has to sample
one value of y from the likelihood function
p�yuu�j�;Mk�; which for model (1) isp�yuu�j�2 ;Mk�: The
set of simulatedy from all the u (j) characterize the
posterior predictive density,p�yux;Mk�; and can be
used to estimate it. For instance, as a rough estimate
for p�yux;Mk�; one can use a histogram. A better esti-
mate is given by

p̂�yux;Mk� � 1
m

Xm
j�1

p�yuu�j�2 ;Mk� �17�

Gelfand and Smith (1990) referred to this averaging
technique as Rao–Blackwellization and argued that it
improves on the usual histogram estimate. This
approach was adopted in Perreault et al. (2000) for
inference about the parameters of modelM2.

If one is concerned with model uncertainty, an
overall posterior predictive distribution can be esti-
mated using the posterior probabilities associated
with each model. If, for all models, prior and posterior
predictive distributions are intractable, we have

p̂�yux� �
Xq
k�0

p̂�Mkux�p̂�yux;Mk�; �18�

wherep̂�yux;Mk� is given by Eq. (17) and̂p�Mkux� is
the estimated posterior probability ofMk being true
obtained by substituting in Eq. (9) the prior predictive
by an estimated value (see Section 4.2). Finally,
conditional and overall point predictions for a future
value, assuming a quadratic utility function, can be
evaluated in a way similar to that in Section 3.3.

4.2. Prior predictive density

As it was mentioned, the evaluation of the prior
predictive distributionp�xuMk� from Gibbs outputs is
a more complicated task. In fact, integration is done
with respect to the prior density, whereas the Gibbs
sampler produces the draws from the posterior. There-
fore, the simulated outputs from the Gibbs method, or
other Markovian iterative schemes, cannot be used
directly to evaluate prior predictive distributions as
is the case for posterior predictive densities.

Several approaches, based on such posterior
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simulation, have been proposed to estimate prior
predictive densities likep�xuMk�: However, many of
these estimates are known to be unstable, or need
large samples (see Kass and Raftery, 1995). Other
more accurate estimates requires a tuning function,
which can be quite difficult to determine (see Gelfand
and Dey, 1994). On the other hand, Chib (1995)
developed a very simple approach that is free of the
problems just mentioned. This method, which is
adopted here, was developed in the setting where
the Gibbs sampling algorithm has been used to
provide sample draws from the posterior distribution.
To use it, it is necessary that all normalizing constants
of the full conditional densities involved in the Gibbs
sampling be known. This is usually the case when the
Gibbs algorithm is implemented.

Chib (1995) exploits the fact that the prior predic-
tive density is the normalizing constant in the Bayes
theorem, and therefore can be expressed as the prior
distribution times the likelihood function over the
posterior density, i.e.

p�xuMk� � p�xuu;Mk�p�uuMk�
p�uux;Mk�

�19�

This simple identity holds for any parameter value.
The numerator in the last expression can be directly
evaluated at a given point, sayu p. However, no

expression in closed form is available for the denomi-
natorp�uux;Mk�: Therefore, if a density estimate for
p�uux;Mk�; denotedp̂�uux;Mk�; is available, an esti-
mate for the prior predictive distribution using expres-
sion (19) can be derived as

p̂CH�xuMk� � p�xuup
;Mk�p�upuMk�

p̂�uux;Mk�
; �20�

whereu p is any parameter value. The simple solution
proposed by Chib (1995) to evaluatep̂�uux;Mk� is to
perform additional Gibbs cycles. A brief description
of the implementation for our particular problem is
offered in Appendix B. A scheme summarizing the
approach is presented in Fig. 1. See Chib (1995) for
more general discussions and properties.

Although Chib’s procedure leads to an increase in
the number of iterations, it does not require new
programming and thus is straightforward to
implement.

5. Applications assuming normal change-point
models

This new perspective for change-point analysis is
illustrated by applying the methods presented in the
previous sections to eight series of annual energy
inflows. The four normal models discussed in Section
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Fig. 1. Basic steps for Chib’s estimate.
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Fig. 2. Annual energy inflows for eight hydropower systems in TWh (1943–1996).



2 are considered: the no change hypothesis, a single
change in the mean level only, a single change in the
variance only, and a simultaneous change in both the
mean and the variance. Perreault et al. (2000) have
already applied modelsM1 andM2 to annual energy
inflows for two sites. However, their analysis was
restricted to the estimation of the change-point and
its intensity, and did not account for model
uncertainty.

All calculations that require Gibbs sampling
(evaluation of prior and posterior predictive distribu-
tions for modelM2) were based ont� 1000 iterations
andm� 1000 replicates. To ensure maximum accu-
racy of Chib’s approach, the prior predictive estimate
was evaluated at a high density pointu p, namely the
posterior mode.

5.1. The data

The series of particular importance for energy plan-
ning in Québec are the annual energy inflows for the
eight major hydropower systems managed by Hydro-
Québec: St-Laurent, Outaouais, La Grande, St-Maur-
ice, Bersimis, Manicouagan, Outardes and Churchill
Falls. For each of these systems, the energy inflows
are evaluated by multiplying the natural inflow of
each reservoir in the system by a factor based on the
production capacity of the corresponding power plant.
The historical annual energy inflows expressed in
terawatt-hour (TWh) for all hydropower systems
(1943–1996) are shown in Fig. 2.

Examining these time series, an abrupt change in
the mean level and/or the variance for some hydro-
power systems may be suspected. However, statistical
characteristics for these series, such as the mean and
the variance, are calculated over the entire period of
observation, and then used as inputs to design scenar-
ios or for forecasting future energy availability.
Stationarity is therefore assumed, even when in fact
this hypothesis could be violated. This might lead to
wrong decisions regarding policies about future
energy-related development for the company. There-
fore, in order to develop management rules for energy
planning, procedures for analyzing changes in energy
inflow series are needed.

5.2. Specifying prior distributions

Bayesian model selection using standard Bayes

factors cannot be made using non-informative prior
distributions. Prior knowledge must thus be elicited
from expert opinion and/or from external information
about the studied phenomena in order to obtain proper
prior distributions. In what follows, we briefly
describe how proper prior distributions were specified
for our particular problem.

As mentioned in the previous section, the annual
energy inflows are generally used by Hydro-Que´bec
for energy planning, under the assumption that all
historical observations were obtained under the
same conditions. ModelM0, which represents the no
change hypothesis, can then be considered as a proxy
to the true model in a prior state of belief. Therefore,
following the discussion in Section 3.2, prior prob-
abilities for each model being true were chosen such
that change and no change alternatives have equal
weight, i.e.

p�M0� � 1=2

and

p�M1� � p�M2� � p�M3� � 1=6:

Faced with such vague knowledge and lack of convic-
tion about the existence of a change, one cannot
reasonably favor any epoch of change for models
M1, M2 and M3. The yeart at which a change may
have occurred was therefore assumed to follow a
discrete uniform distribution for each of these models.
Note that with this density, the prior expected change-
point is 1970, i.e. the mean of a discrete uniform
probability distribution on the interval [1943, 1995].

Finally, for the other parameters, the prior degrees
of belief were assumed to be represented by normal-
inverted gamma type of distributions (see Appendix
A). The complete specification of prior knowledge
about these quantities required the choice of hyper-
parameters in these expressions. This was done by
eliciting regional information, as described in
Perreault et al. (2000). For each site, a regression
model was used to predict the average and the
variance of the energy inflows, before and after
1970. These predictions were then used, along with
their standard error, to estimate the mean and the
variance of the normal and inverted gamma
distributions. Finally, simple systems of equations for
the first two moments were solved, yielding estimated
hyperparameter values for all sites. A simple regression
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considering only the generating capacity appeared to be
the best regional model for predicting the average and
the variance of the energy inflows for each hydropower
system. For details, see Perreault et al. (2000).

5.3. Inference about the existence and the
configuration of a change

We are now concerned with the problem of verify-
ing the existence of a change in the annual energy
inflow and, if any, the identification of its type
among the configurations assumed byM1, M2 and

M3. As explained in Section 3.2, this is essentially
the problem of choosing a model inM �
{ M0;M1;M2;M3} ; without any subsequent decision.
To perform a Bayesian model selection inM, each
of the four prior predictive densities,p�xuMk� i �
0;…;3; has to be evaluated. This is easily done for
modelsM0, M1 andM3. The densityp�xuM0�; assuming
conjugate prior distributions, is a well-known result
and is expressible in closed form (Berger, 1985). The
prior predictive distributionsp�xuM1� andp�xuM3� can
be calculated using Eq. (6). Sincep�xut;M1� and
p�xut;M3� appearing in Eq. (6) can be expressed in
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Table 2
Bayes factors and model posterior probabilities for all series

Bjk M0 M1 M2 M3 p�Mkux�

Bersimis M0 1 0.3865 0.2642 0.2364 0.2205
M1 2.5870 1 0.6835 0.6115 0.1902
M2 3.7850 1.4631 1 0.8947 0.2783
M3 4.2307 1.6354 1.1177 1 0.3110

Churchill Falls M0 1 0.1659 0.7848 0.0929 0.1424
M1 6.0284 1 4.7313 0.5603 0.2862
M2 1.2742 0.2114 1 0.1184 0.0605
M3 10.7591 1.7847 8.4441 1 0.5108

La Grande M0 1 0.7049 0.6445 0.9349 0.4261
M1 1.4187 1 0.9143 1.3264 0.2015
M2 1.5517 1.0937 1 1.4507 0.2204
M3 1.0696 0.7539 0.6893 1 0.1519

Manicouagan M0 1 3.3276 0.4086 1.5035 0.4678
M1 0.3005 1 0.1228 0.4518 0.0469
M2 2.4475 8.1445 1 3.6800 0.3816
M3 0.6651 2.2132 0.2717 1 0.1037

Outaouais M0 1 3.0306 0.2644 0.7530 0.3554
M1 0.3300 1 0.0872 0.2485 0.0391
M2 3.7827 11.4638 1 2.8482 0.4481
M3 1.3281 4.0249 0.3511 1 0.1573

Outardes M0 1 1.7533 0.1761 1.1560 0.2966
M1 0.5703 1 0.1004 0.6593 0.0564
M2 5.6798 9.9585 1 6.5660 0.5615
M3 0.8650 1.5167 0.1523 1 0.0855

St-Maurice M0 1 1.1804 0.7005 1.7396 0.5129
M1 0.8472 1 0.5934 1.4737 0.1448
M2 1.4276 1.6852 1 2.4835 0.2441
M3 0.5748 0.6785 0.4027 1 0.0983

St-Laurent M0 1 ,0.0001 0.0727 0.0001 0.0001
M1 .150 1 .150 1.6854 0.6274
M2 13.7496 0.0005 1 0.0009 0.0003
M3 .150 0.5933 .150 1 0.3722



closed form (see Appendix A), the evaluation of the
prior predictive densities for modelsM1 and M3 is
straightforward. More precisely, we have

p�xuM0� � 1
2p

� �n=2 1���������
1 1 nl
p ba

�b 0�a 0
G�a 0�
G�a� �21�

p�xuM1� � 1
2p

� �n=2 ba������
l1l2
p

G�a�
Xn2 1

t�1

p�t uM1�

� �l 01l 02�1=2 G�a 0�
�b 0� a 0 �22�

p�xuM3� � 1
2p

� �n=2 ba1
1 ba2

2������
l1l2
p

G�a1�G�a2�
Xn2 1

t�1

p�t uM3�

� �l 01l 02�1=2 G�a 01�G�a 02�
�b 01�a 01�b 02�a 02

(23)

where the updated hyperparameters for these models
are given in Appendix A. To simplify, the same nota-
tion for the hyperparameters of each model was used.
But, to stay rigorous, different notations should have
been used to express the fact that hyperparameter
values depend upon their specific model.

Now, since informative prior distributions were
specified for each parameter, the Bayes factorsB10,
B30 and B31 and the model posterior probabilities
p�Mkux�; k � 0;1;3; can be evaluated analytically
using Eqs. (11) and (9) with the above expressions.
However, the integral needed to evaluatep�xuM2� is
intractable (Perreault et al., 2000). Therefore, the
Bayes factorsB20, B21 and B32 cannot be evaluated
analytically. This problem can be solved via Gibbs

sampling by using Chib’s method as presented in
Section 4.2. The full conditional distributions needed
for Chib’s approach were derived in Perreault et al.
(2000), and are recalled in Appendix A.

All Bayes factors for each hydropower system are
presented in Table 3. These can be used to compare,
two by two, all models. The posterior probabilities (9)
of each model being true have also been evaluated,
and are given in the last column of Table 2. They can
be compared to the prior probabilities specified in
Section 5.2 in order to see how the prior state of belief
was updated by the data.

It can be seen in particular that the odds for model
M0 have decreased for every series except St-Maurice.
Therefore, the data tend to contradict Hydro-Que´bec’s
prior belief that the annual energy inflows were gener-
ated from the same process. We can be particularly
confident about the existence of a single change for
the St-Laurent series, since the posterior probability
for M0 is very small (0.0001). However, for the other
systems, it may be appropriate to use the Bayes factor
Bc0 given by Eq. (13) along with a decision rule such
as Raftery’s scheme (Table 1). These Bayes factors
are reported in Table 3 for each series.

According to the scheme of Table 1, the Bayes
factorsBc0 for Bersimis and Churchill Falls provide
positive evidence in favor of a single change, while
for St-Laurent, as it was anticipated, very strong
evidence against no change is provided. Note that
the annual energy inflows of Outardes almost exhibit
a change�Bc0 � 2:37�: For the other systems, it is not
possible to reject the no change hypothesis. Since for
Bersimis, Churchill Falls, Outardes and St-Laurent
the change hypothesis is plausible, Bayes factors to
identify its type were calculated as described at the
end of Section 3.2. Discarding modelM0 as a credible
hypothesis, Eq. (12) was used to evaluateB1(2,3), B2(1,3)

andB3(1,2). The Bayes factorB1(2,3) corresponds to the
ratio of posterior to prior odds onM1 againstM2 and
M3, and so on. These pairwise comparisons of plausi-
bility measures may be used to discriminate between
the considered change-point models, under the
hypothesis that one of these configurations has
occurred. It seems that modelsM2 andM3 are equally
credible for Bersimis, while for OutardesM2 is clearly
the most plausible configuration of change, if any. The
annual energy inflows observed for Churchill Falls are
more likely to exhibit a simultaneous change in both
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Table 3
Bayes factors for change against no change and for identifying the
type of the change, if any

System Bc0 B1�2;3� B2�1;3� B3�1;2�

Bersimis 3.53 0.65 1.11 1.33
Churchill Falls 6.02 1.00 0.16 2.95
La Grande 1.35 – – –
Manicouagan 1.14 – – –
Outaouais 1.81 – – –
Outardes 2.37 0.10 14.25 0.16
St-Maurice 0.95 – – –
St-Laurent .150 3.37 0.00 1.19



the mean and the variance (M3). Finally, it seems that
the most plausible type of change for annual energy
inflows for St-Laurent is a single change in the mean
only (M1).

Inference about the parameters of interest, assum-
ing configurationM1 or M2, can be made by using the
approaches described in Perreault et al. (2000). In
particular, assuming a single change in the variance
only, 1960 and 1954 are seen to be the most probable
years of change (mode ofp�t ux;M2�� for Bersimis and
Outardes, respectively. In Perreault et al. (2000) a
detailed analysis was performed to characterize a
change in Churchill Falls annual energy inflows
assuming modelM1. This inference may be revised
in light of the above results by using the posterior
distributions for M3 derived in Appendix A. It is
important to note that if Raftery’s scheme has to be
strictly used, discrimination between the three
change-point models is not possible for Bersimis

L. Perreault et al. / Journal of Hydrology 235 (2000) 242–263 255

Table 4
Posterior predictive densities conditional ont (note:
ST�xua;b; c� / �1 1 c21b�x 2 a�2�2�c11�=2)

Density Parameters of the Studentt-distributions

Locationa Scaleb Degrees of
freedomc

p�yux;M0� f 0 a 0��1 1 l 0�b 0�21 2a 0

p�yut; x;M1� f 02 a 0��1 1 l 02�b 0�21 2a 0

p�yut; x;M3� f 02 a 02��1 1 l 02�b 02�21 2a 02
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Fig. 3. Conditional and overall 1-year predictive densities.



and Churchill Falls. In fact, none of the three Bayes
factors indicate positive evidence (Bi(jk) . 3).

5.4. Predictive analysis

The detection of a change and the identification of
its type are important for Hydro-Que´bec, but predic-
tion is often the real ultimate goal when analyzing
annual energy inflows. In what follows, we derive
the posterior predictive density for a future value
under each of the models in the setM �
{ M0;M1;M2;M3� and use them to evaluate an overall
posterior predictive distribution, as developed in
Section 3.3. The forecasting of a future observation
is then performed for all Hydro-Que´bec’s series of
annual energy inflows.

For modelsM1 and M3, integration in Eq. (7) to
evaluatep�yut; x;Mk� is straightforward and leads to
an expression in closed form. The resulting density
functions p�yut; x;M1� and p�yut; x;M3� are seen to
be Studentt-distributions. For modelM0, the predic-
tive density p�yux;M0�; which of course does not
involve a change-point parametert , is also a Student
distribution (Berger, 1985). The parameters of the
correspondingt-distributions are presented in Table 4.

Hence, for a given change-point model, sayM3, the
unconditional densityp�yux;M3�; is evaluated with Eq.

(7), and appears as a finite mixture of the associated
conditional distributions weighted by then 2 1 values
of p�t ux;M3� given by Eq. (A5). As it was the case for
the prior predictive density, the posterior predictive
distribution p�yux;M2� cannot be calculated analyti-
cally. However, it can easily be approximated using
the Gibbs sampling outputs (see Section 4.1).

Posterior predictive distributions for a 1-year future
value,p�yux;Mk�; were computed for the eight series
of annual energy inflows assuming the four models.
The overall posterior predictive density was also eval-
uated using Eq. (18) and the posterior probabilities
given in Table 3. These are shown in Fig. 3 for Bersi-
mis, Churchill Falls, Outaouais and St-Laurent. The
dotted lines correspond to the conditional posterior
predictive densitiesp�yux;Mk�; while the continuous
line is the combined predictive mixture. This figure
illustrates how the overall posterior predictive distri-
bution behaves, as compared to the conditional ones.
When uncertainty about the true model is quite low,
i.e. one of the posterior probabilities is near one (St-
Laurent for instance), this distribution is very close to
the predictive distributions obtained from the optimal
modelMp

k : On the other hand, when uncertainty about
the true model is considerable, i.e. all posterior prob-
abilities are similar (Bersimis for instance), all condi-
tional posterior predictive distributions contribute to
the overall predictive distribution.

Various quantities of interest about future energy
availability (quantiles, exceedance probabilities, etc.)
can be derived from these densities. Table 5 reports a
point prediction for each of the posterior predictive
densities along with its standard deviation (in parenth-
eses). A quadratic utility function was assumed, i.e.
the 1-year forecast corresponds to the expected value
(Eqs. (14) and (16)). The 90% credible interval for the
overall prediction is illustrated in Fig. 4 for each
hydropower system.

Among others, the main observations drawn from
Table 5 and Fig. 4 are as follows:

• For 5 hydropower systems, assuming the usual
stationarity hypothesis leads to 1-year higher
forecasts of energy inflow than those obtained by
maintaining all models in an overall point predic-
tion. In particular, this is the case for Churchill
Falls (110%) and La Grande (10.9%), the systems
which contribute the most to the overall energy
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Table 5
Results of a 1-year prediction for all hydropower systems

System Conditional prediction Overall

M0 M1 M2 M3

Bersimis 8.00 8.60 7.93 8.45 8.23
(0.97) (0.94) (1.09) (1.06) (1.07)

Churchill Falls 34.43 30.16 34.34 30.44 31.16
(4.93) (4.88) (4.58) (4.39) (4.91)

La Grande 79.32 77.02 79.46 77.46 78.61
(11.55) (11.64) (13.02) (13.37) (12.24)

Manicouagan 21.91 20.88 22.07 20.91 21.82
(2.96) (3.01) (3.65) (3.94) (3.37)

Outaouais 10.03 9.82 9.94 9.60 9.91
(1.65) (1.69) (1.20) (1.12) (1.39)

Outardes 9.91 9.51 9.89 9.78 9.87
(1.27) (1.26) (1.36) (1.35) (1.33)

St-Maurice 9.19 9.39 9.20 9.36 9.24
(1.43) (1.39) (1.24) (1.33) (1.37)

St-Laurent 12.46 13.32 12.50 13.32 13.32
(1.36) (1.07) (1.40) (1.01) (1.05)
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Fig. 4. 90% credibility intervals for a 1-year forecast.



produced by Hydro-Que´bec. In this particular
application, incorporating uncertainty aboutM0

provided a more conservative prediction about
future energy availability.

• Considering all situations in an overall prediction
leads to forecasts with larger standard deviations
for five systems. This stems from the fact that, in
addition to the sample uncertainty about the para-
meters, model uncertainty is taken into account.

• Finally, 90% credible intervals can be very large,
especially when uncertainty about the true model is
important. This is the case for Bersimis, La Grande
and Manicouagan. The credible interval for the
overall prediction may even cover more than the
range of the observed sample data (Bersimis).

It is important to mention that, in contrast with
Bayesian point estimates such as the posterior mean,
the Bayes factors, and therefore model selection, tend
to be sensitive to the choices of priors on the model
parameters. Thus, an important issue which was not
discussed here is the sensitivity of the approach to
prior distributions. Such analysis should be performed
in practice. Some guidelines and references can be
found in Kass and Raftery (1995).

6. Discussion and conclusions

The hydrologist is often dealing with many models
that involve different assumptions about the studied
phenomenon. This is the case when changes have to
be analyzed in hydrometeorological series. Even if the
hydrologist wishes to infer using a single model, there
are necessary many choices to be made. For example,
one may hesitate between a change in the mean level
only and a simultaneous change in both the mean and
the variance. Moreover, a hydrologist would generally
not consider the no change hypothesis as an impossi-
ble situation. In estimating quantities of interest, such
as future realizations, it is certainly desirable to
provide an assessment of the uncertainty that accounts
for the model-building process itself (Kass and
Raftery, 1995; Berger and Rios Insua, 1998). As it
was mentioned in Section 1, most authors have
centered their investigations on the estimation of the
change-point and the intensity of the change for a
given model. Few have addressed the problem of

comparing various alternatives, including the no
change situation. Another important issue which has
been neglected in the literature is posterior predictive
analysis for change-point problems. This paper has
provided a new and convenient approach, based on
Bayesian model selection: (1) for the overall assess-
ment of change versus no change, and, if necessary,
discrimination between different configurations of
change; and (2) to maintain consideration of all models
when forecasting a future observation. The approach
was illustrated by its application on Hydro-Que´bec
annual energy inflows assuming four univariate normal
models (one model representing the no change hypoth-
esis, and three change-point models).

The approaches presented herein can be used for
other models such as gamma, binomial and Poisson
distributions. More precisely, the use of probability
distributions that belong to the exponential class of
p.d.f.’s allows for exactly the same line of reasoning
based on conjugacy for fixed change-point. Moreover,
the independence hypothesis may be released, and
change-point analysis can be performed for autore-
gressive models. Indeed, stationary autoregressive
series with a strong coefficient of autocorrelation
may exhibit the same type of behavior as series with
changes in the mean level. With regard to the common
use of AR models to represent hydrological persis-
tency, it is therefore important to study which of
two hypotheses (AR orM1) is more credible. The
methodology presented in this paper can answer this
question by including in the set of modelsM an AR
model. It is important to note that the models consid-
ered are not appropriate to forecast in the future if
another change in climate state takes place. These
models assume that we will stay indefinitely in the
second state. If we think that in the future the state
may change again, we should generalize the approach.
However, the series of interest in this paper do not
indicate any return to the original state since only
one change seems to have occurred. Anyhow, if one is
interested to generalize the approach, useful models for
forecasting if another change in climate state may take
place would be the so-called hidden Markov chain
models (see Robert et al. (2000) and references therein).

Finally, a complete Bayesian analysis can be
achieved to cast the statistical inference of hydro-
meteorological changes into an operational decision-
making framework with terminal actions such as
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planning new dams. Such investigations could
develop Krzysztofowicz’s results (Krzysztofowicz,
1994): he embraces the decisional aspects for non-
stationary stopping-control processes; or more recent
work by Hobbs et al. (1997), and Venkatesh and
Hobbs (1999) who studied the problem of investments
for managing water levels under climate change
uncertainty.
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Appendix A. Bayesian inference for univariate
normal change-point models

A.1. Model M3

Writing m � �m1;m2� ands � �s 2
1 ;s

2
2�; the like-

lihood function resulting fromn observationsx �
�x1; x2;…; xn� generated by modelM3 is given by

p�xum;s; t;M3� � 1
2p

� �n=2 1
s 2

1

 !t=2
1
s 2

2

 !�n2t�=2

× exp 2
t

2s 2
1

�s2
t 1 � �xt 2 m1�2�

( )

× exp 2
n 2 t

2s 2
2

�s2
n2t 1 � �xn2t 2 m2�2�

( )
(A1)

where

�xt �
Xt
i�1

xi

t
; �xn2t �

Xn
i�t1 1

xi

n 2 t
;

s2
t �

Xt
i�1

�xi 2 �xt�2
t

; s2
n2t �

Xn
i�t1 1

�xi 2 �xn2t�2
n 2 t

:

For fixedt , that expression has the same structure as
a product of two normal distributions with two inverted
gamma distributions. This suggests a normal-inverted
gamma type of distribution to represent prior knowl-
edge aboutm ands . Assuming prior independence
betweent and the other parameters, and thatp�t uM3�
is any discrete distribution on the set {1;2;…;n 2 1} ;
leads to the joint prior parameter p.d.f.:

p�m;s; t uM3� �N�m1uf1;l1s
2
1�N�m2uf2;l2s

2
2�

×IG�s 2
1 ua1;b1�IG�s 2

2 ua2;b2�p�t uM3�
�NNIGIG�m;s uf;l;a;b�p�t uM3� �A2�

where f � �f1;f2�; l � �l1;l2�; a � �a1;a2�;
b � �b1;b2�are the hyperparameters, andIG
�s 2ua;b� stands for the inverted gamma distribution
with parametersa andb . Because of conjugate proper-
ties the conditional joint posterior distribution
p�m;s ut; x;M3� also belongs to the class of normal-
inverted-gamma distributions, but with updated para-
meters�f 0;l 0;a 0;b 0�: More precisely,

p�m;s ut; x;M3� �NNIGIG�m;s uf 0;l 0;a 0;b 0�
�A3�

where

l 01 � l1=�1 1 tl1�; l 02 � l2=�1 1 �n 2 t�l2�;
f 01 � �1 2 l 01t�f1 1 l 01t �xt;

f 02 � �1 2 l 02�n 2 t��f2 1 l 02�n 2 t� �xn2t;

a 01 � a1 1 t=2; a 02 � a2 1 �n 2 t�=2;

b 01 � t

2
�s2

t 1 �1 2 l 01t��f1 2 �xt�2�1 b1;

b 02 � �n 2 t�
2

�s2
n2t 1 �1 2 l 02�n 2 t���f2 2 �xn2t�2�1 b2

The prior predictive distributionp�xut;M3� can be
determined by dividing the Bayes factor numerator
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p�m;s; xut;M3� by Eq. (A3), cancelling factors invol-
ving m ands 2:

p�xut;M3�

� 1
2p

� �n=2
��������
l 01l

0
2

l1l2

s
ba1

1 ba2
2

�b 01�a 01�b 02�a 02
G�a 01�G�a 02�
G�a1�G�a2� :

�A4�
Given t and x, it is then straightforward to show

thatm1 andm2 are conditionally distributed as Student
t-distributionsST�mi ua;b; c�; s 2

1 ands 2
2 as inverted

gamma distributionsIG�s 2
i ua;b�: Integrating the

appropriate parameters out of expression (A3), leads
directly to these conditional posterior distributions of
the parameters before and after the change-point:

p�mi ut; x;M3� �ST�mi uf
0
i
;a 0i�l 0ib 0i�21

; 2a 0i�;

p�s 2
i ut; x;M3� � IG�s 2

i ua 0i ;b
0
i�; i � 1;2:

To draw conclusions regarding the intensity of
shifts, it is natural to define the parametersd � m2 2
m1 andh � s 2

2 =s
2
1 : Their conditional posterior distri-

butions can be deduced by simple univariate transfor-
mations of variable from the conditional distributions
of the original parameters. Givent and x, h has a
Beta distribution of the second kind (Menzefricke,
1981). It can also be shown that�a 01b 01h=a 02b 02� is
distributed as a Fisher distribution with 2a 02 and 2a 01
degrees of freedom. The posterior conditional distri-
bution of d is a Behrens–Fisher distribution, which
cannot be evaluated in closed form. However, it can
be efficiently approximated by a Studentt-distribu-
tion. Details can be found in Box and Tiao (1973).

Since, according to the Bayes theorem, the joint
p.d.f. for �x; t� is justp�xut;M3�p�t uM3�; the marginal
posterior density of the change-pointt � 1;2;…; n 2
1 underM3 is readily seen to be

p�t ux;M3� � p�xu t;M3�p�t uM3�Xn2 1

t�1

p�xut;M3�p�t uM3�

/ p�t uM3�
�������
l 01l 02

q G�a 01�G�a 02�
�b 01�a 01�b 02�a 02

�A5�

This discrete distributions gives, at time pointt , the
posterior probability of simultaneous shift occur-

rence in both the mean level and variance. To
draw conclusions regarding the parameters
m1;m2;s

2
1 ;s

2
2 ; and the intensity of shiftsd � m2 2

m1 and h � s 2
2 =s

2
1 ; their marginal posterior distri-

butions must be derived. The corresponding
marginal distributions are finite mixtures of the
associated conditional distributions weighted by
the n 2 1 values of p�t ux;M3� given by Eq.
(A5). For instance, we have

p�mi ux;M3� �
Xn2 1

t�1

p�mi ut; x;M3�p�t ux;M3�; i � 1;2

A.2. Model M0

• Prior distribution

p�m;s 2uM0� �N�muf;ls 2�IG�s 2ua;b�

�NIG�m;s 2uf;l;a;b� �A6�

• Posterior distribution

p�m;s 2ux;M0� �NIG�m;s 2uf 0; l 0;a 0;b 0� �A7�
where

l 0 � l

�1 1 n p l�

f 0 � �1 2 l 0 p n� p f 1 l 0 p n p �x

a 0 � a 1 n=2

and

b 0 � 1
2 �ns2

n 1 �1 2 l�21�f 2 �xn�2�1 b

A.3. Model M1

• Prior distribution

p�m;s 2
; t uM1�

�N�m1uf1;l1s
2�N�m2uf2;l2s

2�

�IG�s 2ua;b�p�t uM1�
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• Conditional posterior distribution

p�m;s 2ut; x;M1� �NNIG�mm;s 2uf 0;l 0;a 0;b 0�
�A9�

where

l 01 � l1=�1 1 tl1�;
f 01 � �1 2 l 01t�f1 1 l 01t �xt;
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2
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• Prior predictive distribution conditional ont
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• Marginal posterior distribution oft
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A.4. Model M2

• Prior distribution
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• Full conditionals
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Appendix B. Implementation of Chib’s approach

In the context of the general change-point model
(1), the full conditional distributions arep�t uu1;

u2; x�; p�u1uu2; t; x� and p�u2uu1; t; x�; and {u�j� �
�u�j�1 ; u�j�2 ; t�j��; j � 1;…;m} are them draws from the
joint posterior densityp�uux;Mk� obtained using the
Gibbs sampler, after the firstt values of the chain have
been discarded.

Chib’s estimate forp�xuMk� is given by

p̂CH�xuMk� � p�xuup
;Mk�p�upuMk�

p̂�upux;Mk�
�B1�

wherep̂�upux;Mk� is an estimate forp�uux;Mk� eval-
uated atup

: Using basic probability rules, the posterior
density ordinatep�u p ux;Mk�; for a given valueup,
can be expressed as

p�upux;Mk� � p�up
1ux;Mk�p�up

2uup
1; x;Mk�p�tpuup

1; u
p
2; x;Mk�
�B2�
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The last term of the right-hand side is nothing other
than the full conditional distribution oft evaluated at
t p after setting�u1; u2; t� � �up

1; u
p
2; t

p�: Since all full
conditionals are assumed to be expressible in closed
form, p�tpuup

1; u
p
2; x;Mk� can be evaluated exactly. For

the same reason, the first termp�up
1ux;Mk�; which is

the marginal ordinate, can be estimated from them
draws of the Gibbs run using the Rao–Blackwellized
estimate:

p̂�up
1ux;Mk� � 1

m

Xm
j�1

p up
1uu�j�2 ; t�j�; x;Mk

� �
�B3�

However, the partial conditional ordinate
p�up

2uup
1; x;Mk� in Eq. (B2) cannot be obtained directly.

In fact, the draws ofu2 from the Gibbs sampler are
from the distribution p�up

2ux;Mk� and not from
p�u2uu1; x;Mk�; so that an estimate for this density
cannot be calculated using these simulated values.
The simple solution proposed by Chib (1995) is to
continue sampling for an additionalm iterations
with the conditional densities

p�u2uup
1; t; x;Mk�

and

p�t uup
1; u2; x;Mk�

where in each of these densities,u1 is set equal toup
1:

Consequently,

p̂�up
2uup

1; x;Mk� � 1
m

Xm
j�1

p�up
2uup

1; t
�j�
; x;M2� �B4�

is a Rao–Blackwellized estimate for the second term
in Eq. (B2).

Substituting the density estimates Eqs. (B3) and
(B4) into Eq. (B2), and then the obtained estimate
p̂�upux;Mk� into Eq. (B1) yields finally to

p̂CH�xuMk�

� p�xuup
;Mk�p�upuMk�

p̂�up
1ux;Mk�p̂�up

2uup
2; x;Mk�p�tpuup

1; u
p
2; x;Mk�

�B5�
Since expression (19) holds for any value ofu , the

choice of u p is not critical. However, Chib (1995)
pointed out that efficiency considerations dictate that
for a given number of replicatesm, the prior predictive
is likely to be more accurately estimated at a high

density point, where more samples are available,
than at a point in the tails. The posterior mode or
the maximum likelihood estimate, which can be easily
approximated from the initial Gibbs output, should be
used. Alternatively, one can also use the posterior
mean provided there is no concern that it is a low
density point. Finally, this approach can be easily
generalized to more than three unknown parameters.
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