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Abstract

This study first reexamines the findings of Perron (1989) regarding the claim that most
macroeconomic time series are best construed as stationary fluctuations around a deter-
ministic trend function if allowance is made for the possibility of a shift in the intercept of
the trend function in 1929 (a crash) and a shift in slope in 1973 (a slowdown in growth).
Unlike that previous study, the date of possible change is not fixed a priori but is
considered as unknown. We consider various methods to select the break points and the
asymptotic and finite sample distributions of the corresponding statistics. A detailed
discussion about the choice of the truncation lag parameter :n the autoregression and of
its effect on the critical values is also included. Most of the rejections reported in Perron
(1989) are confirmed using this approach. Secondly, this paper investigates an inter-
national data set of post-war quarterly real GNP {or GDP) series for the G-7 countries.
Our resulis are compared and contrasted to those of Banerjee et al. (1992) and Zivot
and Andrews (1992). In contrast to the theoretical result: contained in these papers, we
derive the limiting distribution of the sequential test without trimming. © 1997 Elsevier
Science S.A.

Keywords: Hypothesis testing, structural change; Stochastic trends; Deterministic trends;
Simulation experiment; Unit root
JEL classification: C22; E30

1 wish to thank Tim Vogelsang for computational assistance beyond the calt of duty. This research
was supported by grants from the Social Sciences and Humanities Rescarch Council of Canada, the
Natural Sciences and Engineering Research Council of Canada and the Fonds pour la Formation de
Chercheurs et 'Aide 4 Ia Recherche du Québec. John Campbell, Robert Shiller and Charles Nelson
kindly provided some of the data used. I also wish to thank Don Andrews, René Garcia, Robin
Lumsdaine, Serena Ng, Jim Stock and Tim Vogelsang for comments on an earlier version. This is
a substantially revised version of the 1990 Princeton University Econometric Research Program
Memorandum No. 350.

0304-4076/97/$17.00 © 1997 Elsevier Science S.A. All rights reserved
PII 50304-4076(97)00049-3



356 P. Perron [ Journal of Econometrics 80 (1997) 355-385
1. Introduction

In a previous paper, Perron (1989), we argued that many macroeconomic time
series could be represented as stationary fluctuations around a deterministic
trend function if allowance is made for a possible change in its intercept in 1929
(a crash) and in its slope in 1973 (a slowdown in growth), The test statistics were
constructed by adding dummy variables for different intercepts and slopes,
extending the standard Dickey-Fuller procedure. The asymptotic distribution
theory underlying the critical values obtained under the different models as-
sumed that the dating of the break points was known a priori, or more precisely,
that the dates chosen were uncorrelated with the data.

This postulate has been criticized, most notably by Christiano (1992) who
argued that the choice of these dates had to be viewed, to a large extent, as being
correlated with the data. This is an important problem because both the finite
sample and asymptotic distributions of the statistics depend upon the extent of
the correlation betwien the choice of the break points and the data. There is
a sense, as argued before, in which the choice of these dates can be regarded as
independent of the data. First, the dates used in the previous study were chosen
ex-ante and not modified ex-post. Secondly, these dates are related to exogenous
events for which economic theory would suggest the effects that actually hap-
pened; e.g., the stock market crash of 1929 with the ensuing dismantle of the
economic organization and the exogenous sudden change in oil prices with the
resulting alteration of international economic coordination and policies.

In the sense described above the choice of the dates can be viewed as
uncorrelated with the data. There is, however, a validity to the argument that it
is only ex-post (after looking at the data) that we can say that the changes that
followed these exogenous events actually occurred as predicted by the theory.
Furthermore, many other exogenous events did not have the major impact that
some theories would have predicted. In this sense, the choice of the break points
must be viewed as being correlated, at least to some extent, with the data. To
what ¢xtent is a difficult and practically impossible question to answer. At the
very lcast the choices were not perfectly correlated with the data as no attempts
were systematically made to maximize the chances that the unit root be rejected
nor te find where, according to some test criteria, were the most likely dates of
change.

While we still believe that the assumption about the exogeneity of the choice
of the break points is a good first approximation to the true extent of the
correlation with the data, it is useful to investigate how robust the results are to
different postulates. The aim of this paper is to take the extreme view where the
choice of the break points is effectively made to be perfectly correlated with the
data. This case is instructive to study because if one can still reject the unit-root
hypothesis under such a scenario it must be the case that it would be rejected
under a less stringent assumption.
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We proceed as follows for the practical implementation. Again, as in the
previous analysis, only one possible break point is allowed for any single series.
This break point is first chosen such that the ¢-statistic for testing the null
hypothesis of a unit root is smallest among all possible break points. We also
consider choosing the break point that corresponds to a minimal z-statistic on
the parameter of the change in the trend function. This allows the mild a priori
imposition of a one-sided change which permits substantial gains in power. We
also investigate various issues regarding the choice of the autoregressive trunc-
ation lag and its effect on the finite sample critical values.

Our paper is closely related to and complements those of Banerjee et al. (1992)
and Zivot and Andrews (1992) in that similar procedures and series are ana-
lyzed. We extend their analysis in several directions. On a methodological level,
we consider the asymptotic distribution of the sequential test based on the
minimal value of the unit-root tests over possible break points. We show the
results of Zivot and Andrews (1992) to be valid without any trimming at the
end points. The proof, which is of interest in itself, is based on projection
arguments and introduces a method that can be applied to a variety of frame-
works. Concerning the empirical results, our analysis is more extensive and
shows that alternative procedures can lead to conclusions that are less favorable
to the unit root than suggested in these two studies. We pay particular attention
to the importance of the selection of the truncation lag on the outcome of the
tests.

The paper is organized as follows. Section 2 reviews the statistics involved.
Section 3 discusses their asymptotic distribution under the null hypothesis of
a unit root and Section 4 their finite sample distribution using simulation
methods. Section 5 contains simulation experiments providing information
about their size and power under various data-generating processes. Section 6
presents the empirical results for the Nelson-Plosser (1982) data set and
Section 7 analyzes an international data set of post-war quarterly real GNP
series. Section 8 offers concluding comments and a mathematical appendix
contains the derivation of the limiting distributions.

2. The models and statistics

In this section, we briefly review the statistical procedures used to test for
a unit root allowing for the presence of a change in the trend function occurring
at most once. The reader is referred to Perron (1989) for details on the models.
Throughout, T, denotes the time at which the change in the trend function
occurs, The first model allows only a change in the intercept under both the null
and alternative hypotneses. Furthermore, this change is assumed to occur
gradually and in a way that depends on the correlation structure of the noise
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function. This was termed the ‘innovational outlier model’, and the unit-root test
is performed using the ¢-statistic for testing « = 1 in the following regression:

k
Yo=p+ 6DU, + ft + 3D(Ty) + ay,—1 + Y, cidy—i + e, 1)

i=1
where DU, = 1(t > T,) and D(T},), = 1(t = T, + 1) with 1(-) the indicator
function. Regression (1), like the others that follow, is estimated by OLS and is in
the spirit of the Dickey—Fuller (1979) and Said-Dickey (1984) methodology
whereby autoregressive moving average processes are approximated by
autoregressive processes. Under the second model, both a change in the inter-
cept and the slope are allowed at time Ty,. The test is performed using the

t-statistic for the null hypothesis that « = 1 in the regression:

k
ye=pu+ 0DU, + Bt +yDT, - 6D(Ty), + ay,—1 + Y, cidy,—i + ¢, (2)
i=1
with DT, = 1(t > T)t. Under the third model, a change in the slope is allowed
but both segments of the trend function are joined at the time of break. Here the
change is presumed to occur rapidly and corresponds to the ‘additive outlier
model’ in the terminology of Perron (1989). We use the following two-step

procedure. First, the series is detrended using the following regression where
DT‘* = l(t > Tyt — Ty)

ye=pu+ pt +yDTF + 7. (3a)

The test is then performed using the z-statistic for & = 1 in the regression:

k
Vi=0j—1 + 'Zl cdy_i +e. (3b)

We denote by t;(i, Ty, k) (i = 1, 2, 3), the t-statistic for testing & = 1 under
model i with a break date T, and truncation lag parameter k (using regressions
(1), (2) and (3b) for i = 1, 2, and 3, respectively). In these regressions, T, and k are
treated as unknown. We next describe various data-dependent methods to select
these values endogeneously.

2.1. Methods to choose the break date T\,

We consider two methods to select T, endogenously. First T, is selected as
the value which minimizes the t-statistic for testing o = 1. We define the
statistics as 13 (}) = Miny, ¢ 4+ 1, 1) ta(i Ty, k) (i = 1, 2, 3). The asymptotic distri-
bution of t}(1) and t¥(2) was studied by Zivot and Andrews (1992) under the
condition that the range of possible values for the break point be restricted to
some subset that excludes values at each end of the sample. In the next section,
we show their result to remain valid even without trimming,
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Secondly, T, is chosen to minimize either t;, the t-statistic on the parameter
associated with the change in the intercept (Model 1) or ¢, the ¢-statistic on the
change in slope (Models 2 and 3). We denote the t-statistic on a (for a null
hypothesis that « = 1) obtained from such a procedure by t5 o(1) for Model 1
and by ¥ (i) (i = 2, 3) for Models 2 and 3. More precisely, i3(1) = t5(1, T4, k),
where T is such that t3(TF) = Ming, e« + 1, 7 ts(To, k), Where again different
specifications about the choice of k will be analyzed. The statistics i¥ (i) {i = 2, 3)
are defined in an analogous fashion. This procedure allows the possibility of
imposing the mild a priori restriction of a one-sided change, i.e. allowing the
date of the change to be unknown but restricting the analysis to the cases of
a ‘crash’ or a slowdown in growth. We also discuss the case where the break
point is selected using the same procedure without any a priori assumption on
the sign of the change. In this context the break date is selected using the
maximum of the absolute value of #; or ;. The corresponding statistics are
denoted by t¥ (1) for Model 1 and tf,,(}) (i = 2, 3) for Models 2 and 3.

2.2. Methods to select the truncation lag parameter k

There is now evidence that using data-dependent methods to select the
truncation lag parameter k leads to test statistics having better properties (stablz
size and higher power) than if a fixed & is chosen a priori (unless, of course, one
happens to select that value of k which is best), see Ng and Perron (1995), Perron
and Vogelsang (1992) and Hall (1994). We consider two such data-dependent
methods. The first is a general to specific recursive procedure based on the
t-statistic on the coefficient associated with the last lag in the estimated autoreg-
ression. More specifically, the procedure selects that value of k, say k*, such that
the coefficient on the last lag in an autoregression of order k* is significant and
that the last coefficient in an autoregression of order greater than k* is insignific-
ant, up to a maximum order k max. In the simulations and empirical applica-
tions below, we use a two-sided 10% test based on the asymptotic normal
distribution to assess the significance of the last lags. This procedure is denoted
below as ‘z-sig’.

Said and Dickey (1984) use yet a different method in their empirical applica-
tion. It is based on testing whether additional lags are jointly significant using an
‘F-test’ on the estimated coefficients. First a maximum value of k, k max, is
specified and the autoregressions with k max and (k max — 1) lags are estimated.
A 10% one-tailed F-test is used to assess whether the coefficient on the k maxth
lag is significant and if so, the value of k chosen is this maximum value. If not, the
model is estimated with (k max — 2) lags. The lag(k max — 1) is deemed signifi-
cant if either the F-test for (k max — 2) versus (k max — 1) lags or the F-test for
(k max — 2) versus k max lags are significant based on the 10% critical values of
the chi-square distribution. This is repeated by lowering k until a rejection that
additional lags are insignificant occurs or some lower bound is attained. In the
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empirical applications, the lower bound is set to k = 1. This procedure is
denoted below as ‘F-sig’.

We choose these ‘general to specific’ procedures rather than methods based
on information criteria, such as AIC, because the latter tend to select very
parsimonious models leading to tests with sometimes serious size distortions
and/or power losses with data in the class of ARMA processes. Indeed, Ng and
Perron (1995) show that using an information criterion leads to a selected value
of k that increases to infinity, as T increases, only at the very slow rate log(T).
This is consistent with many empirical results showing that using the AIC leads
to very small values of k being selected (typically 0 or 1) and that often times the
estimated residuals exhibit serial correlation (see Perron, 1994),

3. The asymptotic distribution of the statistics

In this section, we consider the limiting distribution of the statistics. To
simplify the derivations we suppose the data-generating process to be a random
walk,

Vi=Y-1+e, (=12 ..,T), @

where the errors ¢, are martingale differences (y, is some fixed value), and
consider the statistics constructed with k = 0. Using arguments in Ng and
Perron (1995), we can then state that the resulting limiting distribution remains
the same when additional correlation is present and the statistics are construc-
ted with one of the data-dependent methods to select k. This holds provided
k max3/T — 0 as T — oo. This is the same strategy as used by Zivot and Andrews
(1992) and Banerjee et al. (1992). All statistics are asymptotically invariant to
a change in intercept. Vogelsang and Perron (1994) show that they are not
asyraptotically invariant to a change in slope but that the asymptotic distribu-
tion corresponding to a zero change in slope is a better approximation to the
finite sample distribution for vaiues typically encountered in practice. The
following Theorem concerning the asymptotic distribution of t¥(i)) (i = 1, 2, 3) is
proved in the appendix.

Theorem 1. Let {y,}T be generated by (4) and denote by ¢ =" weak convergence in
distribution from the space D[0, 1] to the space C[0, 1] using the uniform metric
on the space of functions on [0, 1]. Then:

@) fori=1,2

1 1 1/2
inf'rhe[l' T] to-((i, Tb’ k= 0) = infze[o_ 1] j W,-(r, A)dW(r)/[j W;(r, A)Z dr] 3
1] 0
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(b) for Model 3:

1
infns[,' T} t&(i, Tb, k = 0) = inf;.e[()’ i} l:f Wg(r, A,) dW(r)
(1]

1 1 1 12
—af(r — DWo(dr | Wa(r, ) dr] / [j' Wl(r, 2)? dr] ,
2 0 0

where a = (A3(1 — 2)3/3)"}, Wo(r) and W(r, A) are residuals from a projection
of a standard Wiener process W (r) onto the subspace generated by the func-
tions {1,r} (i=0), {L,r,du(r, )} (i=1), {1,r,du(r, 1), dt*(r, )} ((=2) and
{1, 7, dt*(r, )} (i = 3), with du(r, }) = 1(- > A) and dt*(r, 1) = 1(r > A)(r — A).

Theorem 1 differs from the results in Zivot and Andrews (1992) in two
respects. First there is no need to have the hybrid mettic considered in that
paper. The weak convergence results hold under the uniform metric. This is
achieved using arguments in Gregory and Hansen (1996) so that there is no need
for a weak convergence result for the sample moments of DU, or DT¥. The
most important and novel aspect in which our result differs is that we do not
require that the possible range of values for the break point be restricted to
exclude the end points. To achieve this, our proof is rather different and
somewhat more involved and is based on projection arguments. The intuition is
quite simple. With a break at either end points, the regressions indeed exhibit
perfect multicollinearity but the coefficient on the lagged-dependent variable, a«,
is a linear combination of the parameter vector that is identifiable and estimable
and its t-statistic is also well defined. In such cases, the regressions become
equivalent to ones without dummy and the standard limiting distribution of
Dickey and Fuller (1979) applies. This last result is important because it makes it
unnecessary to use an arbitrary trimming near the end points, such as the 15%
exclusion on both sides suggested by Banerjee et al. (1992). The arguments in the
proof of Theorem 1 can also be applied to other context such as the cointegra-
tion tests with regime shifts considered by Gregory and Hansen (1996).

We used simulations to obtain the percentage points of the asymptotic
distributions described above. These were based on 10,000 replications using
partial sums of iid. N(0, 1) random variables to approximate the Wiener
process and 1000 steps to compute the integrals. The critical values are present-
ed in the rows labelled ‘T =00’ in Table 1.

This relaxation of the need for trimming at the end points does not appear to
be possible for the tests whereby the break point is chosen with respect to the
t-statistic on the coefficient of the intercept or slope change. The asymptotic
distributions of 13,(1) and ¢}, (1) assuming the break point to be in some
compact subset was derived in Banerjee et al. (1992). Similar asymptotic results
are in Vogelsang and Perron (1994) for ¢2.(i) and ¢¥,,(i) (i = 2, 3). The critical
values are reproduced in Table 1.
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Table 1

Finite sample and asymptotic distributions

10% 25% 50% 100% 500% 900% 950% 97.5% 99.0%
(a) Model 1, t¥(1), Choosing T\, minimizing t;
T=60 k(F-sigg —583 —549 -521 —-491 -391 -300 -270 -241 -196
kit-sig) —592 -—-558 —523 -—492 -391 -300 -—-274 -255 -225
T=80 k(F-sigg —577 —535 —-515 —-484 -387 -29 -270 -241 --212
k{t-sig) —-577 -531 -—-509 —-484 -38 -295 -273 =255 -222
T =100 k(F-sigy —570 -535 ~509 —482 -389 -300 -274 -246 -222
k(t-sigy —5.70 -536 —510 —4.82 -387 -—-305 -275 -246 -—222
T=w -541 =502 —480 —-458 =375 -299 -277 ~-256 -—232
(b) Model 1, t}: 4(1), Choosing T\ minimizing t;
T=60 k(F-sig) —558 -515 —488 -—-447 -333 -160 084 -005 0.56
kit-sigg —-570 —521 -492 -453 -332 -—-179 -114 -—-035 042
T=80 k(F-sigg —550¢ —511 —485 -4.53 -—-333 -—186 -106 -032 0.67
kit-sig —559 —-509 -483 —454 -—-333 -192 -—-119 -046 0.34
T =100 k(F-sigg —542 —-503 -480 —447 -333 -—-192 -—-133 -077 0.02
k{t-sigy —~543 =505 -483 —-450 -334 -202 -—-138 -~-084 -0.05
T=w —-515 —4.87 —-464 -—-437 -339 -227 -185 -138 -—-0.70
(c) Model 1, 13,5(1), Choosing T, maximizing ||
T=60 k(F-sigy —577 —-542 -513 —480 -370 -1.87 -119 -039 024
k(t-sig) —585 -—-551 -518 -483 -—-370 -214 -134 -—-0.55 0.05
T=80 k{F-sig —575 -526 -506 —477 -371 -214 -142 -0.79 0.11
k(t-sigy —-566 —529 -—-504 —-478 -372 -228 -167 -096 -006
T =100 k(F-sig) —569 —-534 -503 —-475 -374 -233 -180 -120 -0.18
k{t-sig) —568 —536 -505 -—-477 -3.71 -240 —1.88 —-121 -0.34
T=w® —-534 -508 —-484 —-459 -374 -271 -235 -201 -—1.54
(d) Model 2, t¥{2), Choosing T\, minimizing t;
T=70 k(F-sig) —622 -—-581 -552 =522 -—-421 328 =300 -276 -254
k(t-sig) —632 -—-590 -559 —-529 -—-424 -332 -—-308 -~285 -267
T=100 k(F-sigg —607 -572 -548 =517 -—4.17 -329 -305 -283 -258
k(t-sigy —621 —586 —5.55 —525 —422 -335 -3.13 -285 -2.63
T =00 —-557 -530 -508 -—-482 -398 -325 -306 -291 -272
(e) Model 2, t% (2), Choosing T, minimizing t; '
T=70 k(F-sig) —577 -—-532 —-495 -451 -292 —-137 -093 -054 —-0.02
k(t-sig) =577 --538 -—-498 —-455 =304 -153 -110 -071 -—-027
T =100 k(F-sigy —550 -516 -—485 —-447 -291 -150 -111 -073 -030
k(t-sig) —536 -5.23 —-49% —-447 -299 -—-155 —-119 -078 -0.38
T=0w0 —~028 —495 —-462 -428 -294 -—-164 —-133 -098 -0.59
(f) Model 2, t¥,,(2), Choosing T\, maximizing |¢;]
T=70 k(F-sig —601 —-556 -525 -488 —-364 -—-217 -182 -—-137 -0.76
k{t-sig) —6.07 -561 -533 -—-494 -372 -228 —189 —150 -085
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Table 1 (continued)

10% 25% 50% 100% 500% 900% 95.0% 975% 99.0%

T =100 k{F-sig} —572 -537 -514 —-484 -354 -211 -—-176 142 089
kit-sigy —586 —549 ~519 -—-488 -360 -223 -—187 -—-149 -095
T =0 —557 ~-520 —491 —-459 -347 ~-215 -186 -—159 -130

(g) Model 3, t#(3), Choosing T\, minimizing t;

T=100 k(F-sig) —541 —499 —474 —444 -336 -—-253 -234 -221 -208
kit-sig) —545 —511 —483 —448 -344 -260 -239 -222 206
T =150 k(F-sig) —5.19 —485 -—-459 —431 -332 -247 -229 -211 -196
k(r-sig) —5.28 —496 —465 —438 -333 -250 -230 -213 -193
T =200 k(F-sigy —519 —484 —-459 —-430 -—-330 —-246 -226 -—-209 -—196
k(r-sig) —528 —496 —465 —438 -332 -248 -227 -210 -190
T=w —491 -462 -436 —-407 -313 -232 -212 -19 -1L78

(k) Model 3, 1} (3), Choosing Ty, minimizing t;

T=1(C k(F-sigg —502 -469 —440 399 -276 —-1.76 —~146 -112 --0.79
k(t-sigg 526 -482 -444 --407 -283 -176 -145 112 —083
T =150 k(F-sig —489 —454 -427 -393 -274 -170 -133 -—-101 -064
kitsig) —500 —463 —436 -—-399 -278 —-172 -140 -107 —-049
T =200 k(Fsig) —475 —443 ~413 -379 -269 -153 --123 -0%90 -0.59
k(t-sigg —477 -—-450 -422 -383 -272 -—-157 -124 -096 -—0.56
T=w —467 —436 -—408 -377 -265 -—157 -122 -—-09 -—-049

(i) Model 3, t%,,,(3), Choosing T, maximizing [t;|

T =100 k(F-sigg —529 —487 —457 -—-427 -315 -219 -199 -169 -140
k(t-sig) -538 -502 -467 -436 -—-324 -228 -204 175 -146
T =150 k(F-sig) —515 —477 —-449 —-421 -315 -216 -—-189 —-159 -—L119
k(t-sigg -523 —491 —457 —-428 318 219 -—-192 -163 -130
T=200 k(F-sigy —502 —475 —-441 —-410 -307 -211 -186 -1.63 —1.29
k{t-sig) —502 —475 —441 —417 -31!1 -215 -191 -168 —126
T=c ~487 —458 -434 -404 508 -214 187 -—-1l61 -—-130

4. Finite sample critical values

In this section we report simulation experimexts tc evaluate the finite sample
distributions of the statistics under the null hypothesis of a unit root. We
consider the leading case of a random walk where the data are generated by (4)
with yo = 0 and ¢, ~ i.i.d. N(0, 1). This allows us to assess the effects of the data
dependent methods to select the truncation lag. Given the nature of the data sets
analyzed in later sections, we present critical values for the following sample
sizes. For Model 1, T = 60, 80 and 100; for Mode! 2, T = 70 and 100; and for
Model 3, T = 100, 150 and 200. The results were obtained using 2000 replica-
tions. The program was coded using the C language and N(0, 1) random
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deviates were obtained from the routine RANT1 of Press et al. (1986). For purely
computational reasons, k max is set to 5. The results are presented in Table 1.

We first give some remarks on the finite sample distributions when £k is fixed.
The results are not reported but are available in the working paper version. In
all cases, the critical values are fairly stable as k changes provided that k is held
fixed when minimizing over T. In those cases where k is fixed, the asymptotic
distribution is a good approximation to the finite sample distribution. Upon
comparison with the results in Perron (1989), it is readily seen that the critical
values are much lower when T, is allowed to be data dependent than when it is
considered fixed. For example, consider §(1) with T = 100 and k = 0, the 5%
critical value is — 4.93 when minimizing over T, as opposed to — 3.76 when
the date of the break is considered fixed at mid-sample.

The critical values for the test constructed with k chosen according to
recursive F-tests on the coefficients of the lagged first differences are presented in
the rows labelled k (F-sig). For example, the 5% point with T = 100 is — 5.09.
The critical values for the test constructed with k chosen according to a z-test on
the last included lag in the autoregression are presented in the rows labelled
k (t-sig). The resulting values are close to the values obtained using F-sig.! In
those cases where a data-dependent method is used to select &, the asymptotic
approximation is not as goed, indicating that the use of the asymptotic critical
values would lead to tests that are liberal in finite samples. Comparing the
distribution of the statistics t¥(i} (i = 1, 2, 3), it is interesting to note that the
highest critical values (in the left tail of the distribution) occur for Model 3. This
is contrary to the fixed T, case where the highest critical values correspond to
Model 1.

Consider now the critical values of the statistic t}4(1) and },(i) (i =2, 3)
where T, is chosen to minimize ¢3 or ¢;, the t-statistic on the change in intercept
or slope. The corresponding critical values are now smaller in absolute value.
This is due to the a priori imposition of a one-sided change in the intercept of the
trend function.

Consider now the statistics based upon choosing the break date maximizing
the absolute value of t; or t;, t3 (1) and t¥,,,(i) (i = 2, 3). These statistics like ¢7 (i)
do not impose any a priori condition on the sign of the change. We remark that
for Models 1 and 3, the critical values in the left tail of the distribution are
essentially the same between (1) and ¥ 4(1) and between £3(3) and t¥,,,(3).
Hence for Models 1 and 3, these two statistics are likely to have similar

! The simulated critical values involving a test of significance on the lagged first differences of the
data are for tests of size 10%. We chose this value on the principle that it is safer to include extra lags
to achieve the correct size in finite samples (at the expense of a loss in power). However, critical
values with 5% tests were also computed and are not included since they are very similar to those
with thz 10% tests.
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properties. Things are diflzrent for Model 2. The critical values in the left tail of
the distribution are smaller (in absolute value) for t},,(2) compared to £7(2).
Hence, one could expect the former to provide a more powerful test.

5. Finite sample size and power simulations

We now discuss finite sample size and power simuiations. The aim is to
determine the following: how size and power are affected by the choice of k in the
presence of more general error processes, and by different values of the change in
intercept and slope. Finally how power varies across procedures for choosing
Ty. The focus of the simulations is placed on Models 1 and 3. The data
generating process (DGP) used for Model 1 is of the form

4
ye=0DU, + 0D(Tu)t + ay..y + Y, 6@ 4y.—i + (1 +¥L)e,, &)

i=1

where e, ~ 1.i.d. N{0, 1) and y, = ¢; = 0. For Model 3, the DGP is of the form

4
Ye=yDTF + §is Jo=of—1 + ), d)4F-: + (1 + L)e.. (6)
i=1

For the size simulations, ¢ = 1 and for power a is sct to 0.8. The sample size
for all simulations is T = 100 and 1000 replications are used. Regressions were
run for fixed k =0,1, ...,5 and for k(F-sig) and k(z-sig) with k max = 5. For
fixed k, the 5% asymptotic critical values were used, and for k(F-sig) and k(t-sig),
the appropriate 5% finite sample critical values for T = 100 were used. When
the change in intercept or slope is non zero, the break date is T, = 50 (at
mid-sample). For Model 1, we used values of é (under the null) and 8 (under the
alternative) of 0, 2, 5 and 10. For Model 3, we used values of y at 0, 0.1, 0.3, 0.5
and 1. Seven different error specifications were used: (1) ¢()) =0(i=1, ..., 4)
and ¥ =0; (2) ¢(1)=0.6, ¢() =0 (=2, 3, 4) and ¥ =0; (3) $(1)=— 04,
¢i)=0 (=2, 3, 4 and Yy=0;, 4 o(1)=04, ¢$(2)=02 and
¢Q3) =@ =y =0; (5) ¢(1)=03, $(2) =03, ¢(3) =024, ¢(4) =0.14 and
=006 ¢()=0(=123,49and y =0.5(7) ¢())=0(=1, 2, 3, 4) and

= — 0.4. Experiment (1) has i.i.d. errors. This specification is used to isolate
the effects of choosing k too large. Experiment (2) has positive correlation in the
errors and is quite common in empirical data. Experiment (3) has negative
correlation in the errors. Experiments (4) and (5) have higher-order correlation
and are useful in isolating the effects of picking k too small. Finally, experiments
(6) and (7) have MA(1) errors.

Due to space constraints, we only include, in Table 2, the full set of results for
tx (3) and some for t},(3) with t-sig (the full set of results is available on request).
We begin by summarizing results pertaining to the choice of k. When k is chosen
less than the true order of the process, substantial size distortions often occur. In
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most cases the exact size is much greater than the nominal size. If k is chosen at
least as big as the true order of the process, the exact size is rarely greater than
the nominal size. However, power is lost if the lag structure is over para-
meterized. When the k({¢-sig) or k(F-sig) procedure is used to pick k, the exact
size is close to the nominal size in all cases except when there is a negative MA
component as in experiment (7). In this case the exact size is substantially
inflated above the nominal size. Power using k(z-sig) or k(F-sig) is generally
quite good. It is greater than when k is larger than the true order of the process
and is nearly as high as when k is set to the true order in the case of
autoregressive errors. Overall, the k(t-sig) and k(F-sig) procedures have good
size and power properties and clearly dominate using a fixed k. The results
indicate that tests based on the k(t-sig) procedure are slightly more powerful
than those based on k(F-sig).

Now consider how a change in intercept or slope affects the exact size. The
tests t¥(1) and ¢} 4(1) become oversized as & increases. For example, consider
experiment (1) for £%(1) with k(t-sig); when é = 0 the size of the test is 0.047, when
6 =2itis 0.053, when d = 5 it is 0.096 and it rises to 0.486 when 4 is as big as 10.
The results in Tables 2 for t¥(3) concerning models with a change in slope y show
that changes in y do not affect the size of the tests for the range of values
considered. For t7,(3), there are slight distortions in some cases as y increases.
Additional simulations revealed that larger values of y induce substantial size
distortions. The reader is referred to Vogelsang and Perron (1994) for a more
detailed analysis on this issue. It is important to note here, though, that the
magnitude of é and y where size distortions become a problem are of the order of
5 to 10 times the standard deviation of the errors for J and at least 2 times the
standard deviation of the errors for y. For most macroeconomic time series
(including those analyzed in later sections) intercept shifts are less than 5 stan-
dard deviations and slope changes are less than 0.7 standard deviations. There-
fore, distortions caused by large changes are not a problem in practice but care
should be used if a series is suspected to have a very large intercept or slope
change.

We conclude by noting the efifect on power of imposing the mild a priori
condition on the sign of the change, i.e. comparing t¥(1) versus t¥ 4(1) 2nd ¢§(3)
versus ¢ ,(3). It is seen that power is higher when this condition is imposed and
there is indeed a non-zero change in the trend function.

6. Empirical results for the Nelson-Plosser data set

Table 3 presents the empirical results for the Nelson—Plosser (1982) series for
which, in Perron (1989), Model 1 was the specification of interest. A rejection of
the unit root was claimed for all these series except the Consumer Price Index,
Velocity and Interest Rate. Results are presented for both cases where the
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Table 2

Finite sample size and power simulations; Model 3, 2(3) (DGP: y.=7DT® + js
Fi = ey + 20, ¢DAF i + (1 + L) e, e ~iid. N, 1); T = 100, T, = 50; 2000 replications;
5% nominal size; k max = 5)

k Size (x = 1.0) Power (x = 0.8)

y=0 =01 =03 y=05 y=1 y=0 9=01 =03 y=05 y=1

Mo =00(=1,...,4), % =00

0 0049 0053 0055 0047 0036 0358 0365 0344 0331 0325
1 0044 0049 0048 0042 0037 0287 0299 0283 0277 0277
2 0045 0046 0048 0041 0040 0203 90215 0207 0199 0205
3 0038 0039 0042 0040 0.047 0160 0.177 0.169 0.165 0.167
4 0035 0037 0039 0036 0.041 0122 0129 0134 0130 0134
5 0035 0035 0039 0038 0039 0.110 0123 0125 0116 0117
F-sig 0050 0054 0058 0055 0.050 0235 0256 0244 0231 0233
t-sig 0049 0051 0058 0050 0045 0257 0278 0270 0259 0258
7,3 0051 0064 0093 0092 0094 0292 0419 0417 0413 0398

(1) =06,y =9(H=00(=23,9

0000 0000 0000 0000 0.001 0000 0000 0000 00600 0000
0058 0060 0056 0054 0.062 0908 0903 0904 0902 0901
0046 0048 0049 0049 0055 0753 0758 0761 0753 0.756
0045 0046 0040 0041 0045 0.586 0592 0600 €594 0593
0037 0040 0034 0038 0044 0405 0426 0424 0417 0417
0033 0033 0034 0037 0045 0289 0302 0306 0305 0305
F-sig 0049 0051 0047 0047 0.054 0.676 0.679 0679 0688 0.693
t-sig 0049 0047 0038 0046 0049 0760 0773 0774 0778 0.785
tF,(3) 0044 0048 0055 0067 0079 0.781 0.828 0.840 0841 0835

[V T O ]

B =-06,Yy=¢)=00(i=23,4)

0.858 0874 0873 0858 0848 0997 0997 0998 0998 0.998
005t 0048 0043 0038 0034 0131 0132 0117 0114 0113
0046 0040 0040 0037 0034 0090 0.100 0096 0094 0098
0044 0045 0041 0037 0039 0084 0098 009 0099 0.099
0034 0030 0033 0032 0033 0063 0074 0082 0083 00677
0033 0035 0038 0037 0039 0056 0073 0073 0075 0070
F-sig 0037 0040 0044 0042 0044 0091 0104 0104 0104 0100
t-sig 0039 0039 0042 0034 0037 0095 0105 0105 0104 0097
X3 0046 0062 0082 0076 0073 0.113 0.192 0.180 0178 0.267

Wb W —=O

@ (1) =04, $2) =02,y = () = ¢ =

0004 0004 0005 0004 0004 0001 00600 0000 0000 0000
0009 0008 0008 0007 0006 0432 0439 0428 0421 0424
0048 0051 0050 0049 0048 0756 0764 0765 0763 0.760
0040 0042 0047 0044 0051 0598 061f 0611 0607 0.602
0038 0039 0043 0044 0045 0413 0432 0438 0436 0421

BN =
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Table 2 (Continued)
(DGP: 3, =yDT} + §i3 Ji = af—1 + 2oy §D4Fi-i + (1 + YL) e, e ~iid. N, 1) T =100,
Ty = 50; 2000 replications; 5% nominal size; k max = 5)

k Size (o = 1.0) Fower (¢ = 0.8)

y=0 y=01 y=03 =05 y=1 y=0 =01 9=03 =05 y=1

5 0.042 0043 0040 0040 0050 0.300 0314 0318 031f 0313
F-sig 0040 0048 0049 0047 0050 0582 0593 0600 0591 0593
t-sig 0038 0040 0038 0040 0044 0.607 0625 0.626 0624 0.620
1.3 0.037 0043 0049 0056 0.069 0.659 0733 0.755 0737 0.737

(5) ¢(1) =03, $(2) = 0.3, (3} = 0.25, ¢(4) = 0.14, ¥ = 0.0

0.108 0107 @106 €105 0100 0000 0000 0000 0000 0.000
0001 000f 0001 0001 0000 0033 0036 0033 0033 0034
0002 0002 0001 0001 0000 0.566 0.568 0569 0.571 0.578
0033 0033 0031 0031 0034 0877 0881 0878 0876 0873
0071 0073 0078 0077 0080 0904 0898 0900 0897 0.899
0051 0051 0054 0051 0051 0762 0774 0771 0770 0769
F-sig 0.048 0046 0050 0048 0.051 0857 0863 0858 0858 0856
t-sig 0038 0037 0039 - 0037 0037 0855 0859 0864 0860 0859
.3 0022 0020 0025 0025 0025 0864 0893 0882 0893 0.8%

BN O

O ¢y =0500)=00((=1,..,4)

0.002 0003 0003 0003 0001 0008 0010 0007 0007 0005
0.150 0142 0160 0160 0.156 0.548 0552 0566 0545 0542
0021 0021 0028 0028 0020 0096 0100 0110 0103 0.103
0052 0050 0057 0061 0059 0.190 0202 0215 0203 0.202
0034 0035 0033 0033 0034 0.101 G105 0.117 0111 0113
0038 0037 0039 0035 0.041 0102 0.111 0.128 0.119 0117
F-sig 0053 0055 0062 0065 0.061 0206 0213 0222 0210 0209
t-sig 0067 0066 0070 0069 0.064 0244 0258 0271 0257 0262
.3 0056 0067 0092 0.104 0111 0254 0339 0373 0365 0364

WV W e O

MNy=—04,¢i))=003G=1,...,4

0734 0738 0739 0717 0691 0996 0996 099% 0995 0.995
0202 0210 0206 0.189 0.174 0751 0763 0727 0720 0.715
0079 0087 0075 0074 0074 0395 0406 0383 0385 0376
0044 0048 0050 0046 0.046 0252 0263 0254 0251 0245
0036 0037 0034 0033 0036 0159 0173 0163 0164 0.156
0031 0031 0033 0032 0.035 0131 0144 0132 01438 0.135
F-sig 0145 0.148 0.156 0.148 0.149 0456 0476 0452 0451 0442
t-sig 0235 0247 0257 0251 0248 0631 0.658 0646 0643 0.647
2,03 0174 0236 0287 0272 0273 0.587 0.690 0673 0.665 0.659

h B W N O

Note: All entries refer to the statistic t3(3) except those in the rows labelled £ ,(3) which correspond
to this statistic constructed using the ¢-sig procedure.
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truncation lag is selected using the F-sig or t-sig methods and for both ways of
selecting the break point. Here, k max is specified to be 10.2 The statistics of
most interest are the estimates of « and their ¢-statistic as well as six p-values in
the last columns (reported to the nearest 1%). The first set corresponds to (1)
and the second to t¥4(1). The: first p-value in each set is based on the asymptotic
distribution. It is included because it may be more robust, for example, to the
presence of additional correlation than those based on finite sample distribu-
tions. The second and third p-values correspond to the F-sig and ¢-sig methods,
respectively. The critical values used correspond to samples of size 60, 80 or 100
whichever is closest to the actual sample size.

The empirical results show that the unit root hypothesis can be rejected at the
5% significance level or better, under either scenario about the choice of k, for
Real GNP, Nominal GNP, Industrial Production and Nominal Wages. For
the Employment series, the finite sample p-value is 0.05 with F-sig and 0.09 with
t-sig (the corresponding asymptotic p-values are 0.02 and 0.04, respectively).
Hence, the unit root is also rejected for the Employment series. The Real per
capita GNP and Money Stock series present a more ambiguous case. When k is
chosen with the F-sig procedure, the p-value for the Real per capita GNP series
is 0.12 using the finite sample distribution and 0.06 using the asymptotic
distribution. The corresponding figures are 0.14 and 0.08 for the Money Stock
series. These values are marginal for a rejection at the 10% level.*

The unit-root hypothesis cannot be rejected for the Consumer Price Index
(CPI), Velocity and Interest Rate series under any procedure. The choices of
T, and k obtained using the data-dependent methods for choosing k are
different but yield the same qualitative results. The only series offering a mark-
edly different picture from the fixed T, case is the GNP Deflator. With k chosen
according to either method the p-value is 0.35 (0.29 using the asymptotic
distribution). Hence, for this series, the rejection of the unit root reported in
Perron (1989) is not robust to correlation between the choice of Ty, and the data.

2 The choice of & max is somewhat arbitrary. On the one hand, one would like a large value to
have as unrestricted a procedure as possible. On the other hand, a large value of k max yields
problems of multicollinearity in the data and also a substantial loss of power. The choice of k max
was also sct such that the estimated autoregressions did not show any sign of remaining correlation
in the residuals as indicated by the Box-Pierce statistic. Most of the results are robust to alternative
choices for k max.

3 For the Nominal GNP series, k max was found binding in the sense that k = 10 was selected.
Hence k max was increased to 15 which again was found to be binding. We did not increase k max
further given the relatively few number of observations. Nevertheless, the conclusion is robust to
basically any value of the truncation lag parameter k chosen.

41t is of interest to note, that applying the tests to the Friedman and Schwartz (1982) Real per
Capita GNP (using the sample 1909-1970) allows an overwheiming rejection of the unit root under
either method. See the working paper version for more details.
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A comment is warranted about the choice of T, selected according to these
procedures. Except for the CPI, Velocity and Interest Rate series (for which the
unit root is not rejected), the value T, is either 1929 (for Nominal Wage and
Money Stock) or 1928 (for the other series). While 1928 does not exactly
correspond to the date specified in Perron (1989), the economic interpretation
remains the same. The selection of 1928 is due to the presence of the dummy
variable D(T,,), in regression (1). Hence, 1928 is often chosen because the
dummy variable takes value 1 in 1929 and offers some additional fit to the 1929
crash over what the change in the intercept can do alone.

Now consider the results when T, is chosen to minimize ¢, the t-statistic on
the change in intercept, i.c. imposing the one-sided restriction of a crash. When
a rejection of the unit-root hypothesis occurred using £¥(1), it does so again here
and more strongly, given that the tests have higher power. As was the case
earlier, the unit roct cannot be rejected for the GNP Deflator series. The results
offer, however, a different picture for three series. First, for the Employment
series, the unit root can be rejected at the 5% level (using any procedure) instead
of 10% with the statistic £¥(1). More interestingly, the unit root can now be
rejected at the 10% level for the Real per capita GNP and Money Stock series.
For example, (he p-values under the F-sig procedure are 0.06 and 0.07, respec-
tively.

We now turn to the analysis of the Common Stock Price and Real Wage
series where Model 2 is specified, i.e. allowing both a change in the intercept and
the slope of the trend function. The procedures used and the presentation of the
estimation results in Table 4 follow our previous analysis except that k max is
now 5. Consider first the case where T, is chosen to minimize the z-statistic on a.
The date of break selected for the Common Stock Price series is 1928 (consistent
with the imposition of 1929 as the break date in Perron, 1989). Both methods to
choose the truncation lag yield the same model and test statistic with an
asymptotic p-value of 0.02 and finite sample p-valuc of 0.04 for F-sig and 0.06 for
t-sig. Similar results hold for the Real Wage series. The break date is 1939; the
asymptotic p-value of the test is 0.03 and the finite sample ones are 0.07 with
F-sig and 0.08 with z-sig.

Consider now results obtained when T, is chosen maximizing ¢; or |t;], the
t-statistic on the coefficient of the slope change. The results are quite interestirg
in that the unit root is strongly rejected using either method to select the
truncation lag even without the a priori imposition on the sign of the change in
slope. The selected break date is still 1939 for the Real Wage series but now 1936
for Common Stock Price.

To compare our results with those of Zivot and Andrews (1992), note first the
methodological differences involved. First, we retained the one time dummy
D(T4), in regressions (1) and (2); we consider the F-sig procedure to select the
truncation lag as well as the ¢-sig procedure; we consider k max = 5 instead of 10
for the Real Wages and Common Stock Price series; and we also consider the
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case where the break date is selected using a test of significance on the coefficient
of the change in slope. For the series Real GNP, Nominal GNP, Industrial
Production, Nominal Wages and Common Stock Prices our results agree with
those of Zivot and Andrews (1982), namely a rejection of the unit root. Qur
results also show these rejections to be robust to alternative specifications for
choosing the break date and the truncation lag (except for Nominal Wage using
*(1) and F-sig). For the Employment series, our results allow a rejection at the
10% level using the finite sample critical values for the z-sig method when the
break is selected minimizing the unit-root statistic (basically due to the inclusion
of the one-time dummy D(T), in (1)). However, our results show that a stronger
rejection, at the 5% level, is possible using the F-sig method and that this
rejection becomes even stronger if the mild a priori restriction of a one-sided
change is imposed. For the Real per capita GNP and Money Stock series, the
results with ¢}(1) and the ¢-sig method are similar to those in Zivot and Andrews
(1992), namely p-values of 0.21 and 0.28. Using the F-sig procedure, the p-values
are substantially reduced to 0.12 and 0.14, respectively. Imposing the sign of the
change a priori allows a rejection at the 10% level for both series using F-sig and
for Real per capita GNP using t-sig. The difference for the Real Wage series is
due to the different choice of k max. Our results agree for non-rejections for
GNP Deflator, CPI, Velocity and Interest Rate.

7. Results with an international data set for postwar reai GNP

This Section analyzes an international data set of post-war quarterly real
GNP or GDP series. The countries analyzed and the type and sampling period
of the series are the following: USA (GNP; 1947:1-1991:3}; Canada (GDP;
1947:1-1989:1); Japan (GNP; 1957:1-1988:4); France (GDP; 1965:
1-1988: 3); Germany (GNP; 1960: 1-1986: 2); Italy (GDP; 1960: 1-1985: 1); and
the United Kingdom (GDP; 1957:1-1986:3). The data for USA are from
Citibase and for Canada from the Cansim data bank. For Japan and France
they are from the IFS data tape. The remaining series (UK, Germany and Italy)
are from Data Resources Inc. and are those used in Campbell and Mankiw
(1989). Al scries are seasonally adjusted and at annual rates, except for the USA
and the United Kingdom which are at quarterly rates. The plots of the logar-
ithm of most series are presented in Fig. 1. In these graphs the dashed line is the
estimated trend function allowing a one-time change in slope. The date of the
change varies for each series and was selected using the test £¥(3).

The results pertaining to the statistic t¥(3) are presented in Table 5. Using the
asymptotic critical values, the unit root is rejected, at close to the 5% level, for
all series except Italy (for Canada this rejection is not robust when using F-sig).
Using the finite sample critical values, the results are niot, in general, as sharp.
For Japan, the unit root is strongly rejected (p-values of 0.02 and 0.03). The
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CANADA (1947:1-1989:1;Tb=1976:3} JAPAN (1957:1-1988:4;Th= 1971:3)
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Fig. 1. Log recal GNP for selected countries.

results are not as clear for most of the other series but some interesting cases still
emerge. For the United Kingdom, using the F-sig and t-sig procedures, the
p-values are 0.07 and 0.08 respectively, allowing a rejection of the unit root at the
10% level. The results for Canada, France, Germany and the United States are
similar in terms of the z-statistics obtained. They range from — 4.22 to — 4.33
with finite sample p-values between 0.12 and 0.14 (this excludes the case of
Canada with F-sig). While the unit root cannot be rejected at the 10% level, the
results are not very much at odds with the hypothesis that the series can be
construed as stationary fluctuations around a breaking trend function. Such is
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not the case, however, with the GDP series from Italy. Here the p-values are
large enough to cast little doubt on the unit root.

It is interesting to look at the estimated change in the slope of the trend
function and the dating of the break implied by the estimation procedure. The
estimated percentage decrease in the rates of growth are: USA, 37%; Canada,
36%; Japan, 58%; France, 66%; Germany, 56%; Italy, 57%; UK, 54%. These
figures are indeed quite large and suggest, besides the unit-root issue, that an
important structural change has occurred. The break dates are different for each
country but are all close to the year 1973, associated with the first oil price
shock. They vary between 1971:2 (USA) and 1976: 3 (Canada). It is to be noted,
however, that the method used here is not directly gearzd at providing a consis-
tent estimate of the date of change. Hence, the break dates should be viewed as
approximate.

As discussed, using t7,(3), which select T, based on the parameter of the
change in slope, is likely to allow tests with greater power. p-vzlues pertaining
to this test are presented in the last columns of the table. Indeed, it appears more
powerful. Using the t-sig procedure, the p-values for the null hypothesis of a
unit root are at most 0.11 for all countries except Italy. Using the F-sig
procedure, the p-values are smaller than 0.10 for USA, Japan, France and
the United Kingdom; they are 0.13 and 0.14 for Canada and Germany, respec-
tively. These results show that a simple imposition of a one-sided downward
change in slope (still with an unknown break point) is enough to warrant
rejection of the unit root hypothesis at close to the 10% level for all countries
except Italy.

We view these results, especially given the small span of the data, as sub-
stantial evidence against the umit root. It is indeed somewhat revealing
to consistently obtain such p-values given the relatively low power of unit-
root tests using data over a short span (see Perron, 1991). Given that the
statistical procedure used is one where an extreme assumption is made about the
correlation of the choice of the break point and the data (yielding a procedure
with low power compared to the case where T, is assumed fixed), we view these
results as consistent with the hypothesis that the series are best characterized as
stationary fluctuations around a breaking trend function with a change in slope
near 1973.

To compare our results with those of Banerjee et al. (1992) (BLS), we first note
the main differences in the studies. First, the data used are slightly different in
terms of both the sources and the horizon. Second, they use the one-step
innovational outlier method which does not allow for a change in slope under
the null hypothesis. Third, they use a fixed value of the truncation lag set at 4 for
all countries and they note that the results are robust when setting this fixed
value to 8 or when using an information criterion (AIC or Schwartz) to select the
order. Using these different specifications they found little evidence against the
unit root for all countries except Japan.
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After several investigations using both types of methods applied to both data
set,” it turns out that the major factor responsible for the conflicting results is the
method to choose the truncation lag. For example, our data-dependent methods
select k = 4 only for Japan for which we both reject the unit root. For the other
countries the implied value of the selected truncation lag is different (in no case
do our methods select k =8 either). We believe our methods to select the
truncation lag to be better for the purpose of the unit-root tests for the following
reasons documented in Ng and Perron (1994). First, fixing k to some arbitrary
value can involve serious size distortions and/or power losses because the actual
correlation structure of the data is not only unknown but is likely to be different
across countries. However, even for data-dependent methods that implies
asymptotically valid unit-root tests, there are important differences between
methods based on a general to specific approach and methods based on
information criteria. In the context of a model where the noise component is an
ARMA process, Ng and Perron (1995) show that the latter implies a sequernice of
selected values for k that increases with the sample size at a logarithmic rate,
a very slow rate. The finite sample implication of this result is that methods
based on information criteria will tend to select very low autoregressive orders.
These imphed parsimonious autoregressions will often not be enough to capture
important serial correlation in the data and can lead to tests with size distortions
and/or power losses. These theoretical issues are consistent with the empirical
results of BLS, who report values of k at 0 or 1 for all countries when using an
information criterion. In no cases do our methods select such low values (except
for Italy where we both agree for a non-rejection).

8. Concluding comments

This paper documents the robustness of the results presented in Perron (1989).
Unlike this previous study, we analyzed the case where the break date is
explicitly correlated with the data and provided critical values to carry inference
under a variety of procedures. This work is not intended as a substitute for the
statistical procedures presented in that earlier paper but rather as a complement.
Indeed, a case can often be made for using critical values that are based on the
assumption of no correlation between the choice of the break point and the data.
On the one hand, it may represent a close approximation to the actual extent of
the correlation. On the other hand, each investigator may differ as to the
amount of a priori information he or she is willing to incorporate into the
analysis.

5 My thanks to Robin Lumsdaine for correspendance on this issue.
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Another issue concerns the power of the tests. There appears to be a clear
trade-off between power and the amount of a priori information one is willing to
incorporate with respect to the choice of the break point. The presumption is
clearly that a procedure imposing no such a priori information, as the ones
presented in this paper, has relatively low power. In this respect, the rejection of
the unit-root hypothesis, even when assuming a perfect correlation between the
choice of the break point and the data, is quite strong.

Appendix. Proof of Theorem 1

To simplify cross-references, we adopt the notation of Zivot and Andrews
(1992), henceforth referred to as Z—A4. Let S,=Y_,¢; (So=0} and
Xi(")=0"1T" ‘/ZS[T,], (j—=1)/T<r<j/T (for j=1,. T) where 62 =
limy. o, T E(S% )and [-] denotes the integer part of the argument Since {e,} is
iid. with finite variance, we have X;(r)= W (r), where = denotes weak
convergence in distribution (from the space D[0, 1] to the space C[0, 1] using
the uniform metric on the space of functlons on [0, 1]) with W(r) a standard
Wiener process on [0, 1]. Also, 6% = T 'Y T ¢? — 6 where —, denotes conver-
gence in probability. Omitting the one-time dummy variable D(T), (since it is
asymptotically negligible), we consider the following regressions:

¥ = B Dzi(A) + A y-1 e, (E=1,..,T), (A1)

for models i = 1, 2. The vector zi;(4) encompasses the deterministic components
of the model and depends explicitly on 4, the break fraction, and T, the sample
size. For example, z; T(A) =(1,t, DU,(%). Let Z7(4, 1) = 6Tz[T,] r(4) be a res-
caled version with 6% a diagonal matrix of weights. For example,
6} =diag(l, T, 1). We also define the limiting functions Z(,r)=
(1, r,du(d, r)) where du(i,r) = 1(r > ), and Z%(4,r) = (1, r,du(d, ), dt*(4, 7))
where dt*(4, r) = 1(r > )(r — A). Note that, as argued in Z — A, we do not have
Zi(h, = Z'(4, 1) (i =1, 2) as T — oo, using the uniform metric on the space of
functions on D[0, 1]. The proof nevertheless remains valid without the need to
introduce another metric to guarantee such convergence results. For simplicity,
we henceforth drop the superscript denoting the model. Note that the following
proof is valid, with trivial modifications, for a large class of deterministic
components including higher-order polynomials, multiple structural changes
and other types of discrete shifts.

It is convenient to first transform (A.1) as follows. Let
Pzp(A) = [Pzy 7(4), ... . Pzr,r(4)] be the linear map projecting onto the space
spanned by the columns of zy(4) =(z;,7(4), ...,2rr(4). By definition
Pzy(2) = z4(A)z1(A) z1(A)) " zr(4)’ where ()~ denotes a g-inverse. Premultiply-
ing by Mz(1) = (I — Pz(4)), (A.1) can be written, in matrix notation, as

Mzp(D)Y = a(A)Mz() Y, + Mz(De, (A2)
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where Y' =(yy, ..., yrh Y21 = (Yo, ... ,¥7-1)and ¢ = {e;, ... ,er). The t-statis-
tic of interest can be written as

ianeio, 1] ti(A) = inﬁe[o. 1] {r- 2yL Mz ()Y} 12 (r- y. 1Mzr(A)el/s7{4),

where s3(1) = T " YY — @A) Y-y Mz;(A(Y — &(A)Y - ,) with &(4) the OLS esti-
mate of a in (A.2). We have

T
T 2Y_ Mz;()Y_, =T 2 Y
=1

T
X {.Vr— 1— Z:.T(’"-)’[ Zl Zs,r(l)zs.'r(}»)':l

T 2
X Zs,r{A) ys- 1}
=1

s

=T"! Z {T—UZS'_I - ZI.T(A)'aT

=1

T - T 2
X [T—l Z 5T2s.1(2-)2s.r()~)'57:| T z 5']‘23,1‘(’1)88—1} + 0p:(1)
s=1 s=1

= (f) {GXT(r) — Zeh, 7Y [i Zo0 ) Z1(h, s ds]—i Z:(h, s)o'XT(s)ds}zdr
+ 0p:(1)
= g? i {X1(r) — Pzo(A) X7 (N} dr + 0,,(1), (A.3)
(0p.(1) denotes a random variable that converges in probability to 0 uniformly
in 2) and:
-1

1
Pzr(A)X1(r) = Z1(4, 1) [I Zy(A, 8)Zr(4, sY dS] § Z1(4, 5) X 7(s)ds.
0 o

Also, using developments as in Z — A4,

T T -
T 'Y_ Mzy()e=T"" 21 {}’:— 1 — Z,7d) [ Y zs.r(i)zs.T('l)':I
t= s=1

T
X zs.T(’l)ys—l}et + Opl(l)
=1

1 1
= g? j XARdX () —a® f Prz()X7(P)dX () + 0pat1).
0 °

(A4)
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We can, therefore, express the t-statistic as a composite functional:

1
infyeponts() =g (X ("), _" Xp(r)dX (), Pzr(A) X (1),
0

1
J Pzr(AD X (N dX (), Sr(i)) + 0pa(1),
0

where

1
g=~h* [h [H 1[X7(), Pzp () X (1], H, [g X7(r)dX1(r),

}szwxr(r)dxr(r)} sT(A)]],
()]

with h*(m) = inf; (o ;3 (4) for any real function m = m(-) on [0, 1]; and for any
real functions m,(-), ma(-), ms(:) on [0,1}, A[m (1), ma(A), ms(2)] =
my(A)”~ Y2m,(2)/m3\4). The functionals H; and H, are defined by (A.3) and (A.4).
The weak convergence results for each of the elements are contained in the
following lemma.

Lemma A.1. The following convergence results hold jointly:
(@) X1(r)=W();

1 1
(b) g Xp(r)dX+(r)= j; W(r)dW (r);
(©) PzelA) X 1(r) =>Pz(YW (1) =Z(}, rY [} Z(4, )Z(4,sY ds] _i Z(4,5)W (s)ds;
0 0

1 1
d (5) Pzy (A X7 () dX(r)= (I) P2(A)W(r)dW (r);

() sTd) = a® + opa(l).

Parts (a) and (b) are standard results, and part (e) follows using (¢} and (d) and
the fact that T'Y] e} —,0% To prove part (), we start with the following
Lemma which follows from Theorem 5.5 of Billingsley (1968).

Lemma A.2. Pzy(A)X 1(r)= Pz(A)W(¥) if X(r) = W (r) and for any sequence. of
functions {vy(s)} (0 < s < 1) approaching v(s), we have:

Pz;(vr(s)) = Pz(v(s)), (A.5)
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where

1 -1
Pzy(or(s) = Zr(4, 7Y [I Z1(4 )Z1(4, sY dS] § Z+(4, s)or(s)ds,
0 0

and
Pz(v(s)) = Z(A, v) [;' VA (Z, s)Z(4, sy ds]_ jl' Z(A, s)v(s)ds.
(1] 1]

We prove (A.5) in two steps. First, let
1 -1
Pz(vy(s)) = Z(4, 7)Y [j Z(A,8)Z(4, s)'ds] [Z (4, s)vr(s) ds.
] 1]
By the properties of projections in Hilbert spaces (e.g., Brockwell and Davis,
1991, p. 52):
Pz(v(s)) = Pz(v(s)) if vr(s) — v(s). (A.6)
Now let

Pz (v(s)) = Z1(A, 7Y [;' Z(A, S)Zr(A, sY ds]—}l' Z (4, s)v(s)ds.
0 0

We need the following Lemma stated in Parthasarathy (1977, proposition
41.19).

Lemma A.3. Let S, = S, = --- be an increasiny sequence of subspaces in a Hil-
bert space H# and let S,, = \);S;. Then limy._,, P(St)(x) = P(S.)(x) for all x,
where P(S7)(x) is the projection of x on the subspace St.

Lemma A.3 applied to our problem implies that

Pzy(A)(v(s) = Pz(D(v(s)), (A7)

since we can take ¥ =D{[0,1] in which case Z;(4,reD[0, 1] and
Z(A,neC[0,1] = D[0, 1].

Next, we use the result that if for some sequence of random variables {X 7}
and {Y} we have X7 =X and || Xy — Y|| - 0 (under some P-measure), then
Yr= X (under the same P-measure) (e.g., Billingsley, 1968, Theorem 4.1; Par-
thasarathy, 1977, Corollary 51.3). Let X = Pz(v(s)), X1 = Pzp(v(s)) and
Yr=Pzr(vy(s)). Given (A7), we only need to show that
l|Pz¢(v(s)) — Pzy(v(s))]| — 0. This follows easily since

| Pz(v(s) — Pze(or(sHII* = | Pzz(v(s) — vr(s)II

= [|p(s) — v {S)}I?
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— Hv(s) — vr(s) — Pzg(v(s) — vr (I
< [lv(s) — or(s)II> - 0.

This completes the proof of part (c). To prove part (d), note that we have

§ Pr2(A) X r(r)AX 1 (r)
0

= jl'Z (A, ¥ dX (1) [} Zy(A,8)Z1(4,s) ds:lwi Z1(A, s)X r(s)ds.
0 (1] [+]

For concretencss consider model 2 where Z¢(4, s) = (24, 1(s), Z, (4, s)) with
Z, 1) =(L[TsYT), Z;1(4 5) = ({[TsYT > A), {[Ts)/T > H({[Ts}T — )
and Z(4, 5) = (Z,(s), Zx(s, A with Z,(s) = (1, 5}, Z(4, s) = (du(4, 5), di*(4, s)).
Alsc define Z% +(s) = (1, [Ts]/T — A and Z%(s) = (1, (s — 4)). Using arguments
as in Gregory and Hansen (1996),

1
§ Zp(h ) Z (A, sY ds
0
-1

1
jzl.T(s)Zl.T(s), ds IZI,T(S)ZZ.T(}": sy ds
) o

1 1
jlzz.r()», $)Z,,r(s) ds Izz.T(/?-a 85)Z,,7(4, s) ds
b

1
j Zy 1(s)Z,,7(s) ds j Zy 1(5)Z% 1(sY ds]
0 A

Z51(9)Zy 7(s)'ds Z?.T(S)Zi:r(S)'dSJ
s

Z,()Z,(s) ds izl(s)Zﬂs)’ds
)

ZE(S)Z(sY ds ;' Z3(5)Z%(s) ds
2

1
= [Z(4, 9)Z(4, s) ds.

1
Zy(A)Zy(sYds | Z2(4, 9)Z,(A sy ds|  °
)]

Z(s)Zy(s) ds j‘Zl(s)Zz(l, s) ds

Oty bt O ey N Gy et (D Gy b N ey e

Note that the result does not require that Z;(4, s) = Z(4, s) under the uniform
metric. Similarly, we have

1 1
§Z(4, ) X r(s)ds = [ Z(4, s) X (s)ds.
) 0
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Finally,

jl‘ZT(/I, rYdX, () =T i Zr(A, t/T)e,
0 1

T T T T
=(T'1"22e,, T 32Yte, T4 Y ¢, T3 ¥ (t—T.,)e,)
1 1

Tyt1l Tpt+1

=><W(1), }rdW(r), w(l) — W), }(r - A)dW(r))
0 A

= ;'Pz()l) W (r)dW (r).

This completes the proof of part (d).
To complete the proof of the main result, we need to show continuity of the
various functionals. Continuity of h* and h is proved in Z — A.

Lemma A.2. The functions H, and H, defined by (A.3) and (A.4) are continuous at
(W), Pz())W(r)) and (L‘, W dWir), L‘, Pz(A) W (r)dW (r)) with W -probability
one.

Proof. Since H, and H, are continuous functions of their respective elements,
the proof follows if each of the eiements is bounded over [0, 1] with W-
probability one. W (-} is bounded with W-probability one and so is
Ll, W (r)dW (r) as discussed in Z — A. Using arguments similar to those in Z — 4,
L’, Pz(A)W (rydW (r) will be continuous if Pz(A)W(r) is continuous, ie. if
sup;co. 171 P2(A) W (r)| <oo We note that Pz(-) is a linear operator that maps an
element on C[0, 1] (the Wiener process W (r) which is continuous) to a subspace
defined by the functions Z{4, r). Continuity of Pz(1) W (r) follows since a linear
projection map is bounded and continuous (see, e.g., Ash, 1972, p. 130 and
p.148). I

It is useful to illustrate this result by an example. Consider Model 1| where
Z(A,r) =(1,r,du(4, r)). Note that
. 1 1/2 1-4
§Z(,9Z@,syds =] 1/2 1/3 (1 —1%)/2
’ -2 1-32 (-2
IfA=0,13Z0,5Z0,syds=Aandif A =1, [§ Z(1,)Z(1, s} ds = B, where
1 12 1 1 12 0
A=} 172 1/3 12| and B=| 1/2 1/3 0
1 121 0 0 O
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A and B are obviously singular, but a common g-inverse is given by

13 —1/2 0
G=12| —-12 1 0
0 0 o

Since the choice of g-inverse leaves a projection map unchanged, we have for
A=0,1:

-11
Pz(A)W () = Z*(r) I:j' ZLY()Z(sY ds] 1 [ Z+(s)W (s)ds,

0 0

where Z1{(r) = (1, r), in which case the limiting distribution of t4(1) (A =0, 1)
reduces to that in the case where no dummy for structural change is included.
The proof for Model 3 follows similar arguments and is therefore omitted. It
uses the limiting distribution for fixed A derived in Perron and Vogelsang
(1993a, b} (see also Vogelsang, 1993).
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