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Abstract

We extend the class of M-tests for a unit root analyzed by Perron and Ng (Rev. Econ.
Studies 63 (1996) 435) and Ng and Perron (Econometrica 69 (2001) 1519) to the case where a
change in the trend function is allowed to occur at an unknown time. These tests (MS"S) adopt
the GLS detrending approach developed by Elliott et al. (Econometrica 64 (1996) 813) (ERS)
following the results of Dufour and King (J. Econometrics 47 (1991) 115). Following Perron
(Econometrica 57 (1989) 1361), we consider two models: one allowing for a change in slope
and the other for both a change in intercept and slope. We derive the asymptotic distributions
of the tests as well as that of the feasible point optimal test (P$S) suggested by ERS. Also,
we compute the non-centrality parameter used for the local GLS detrending that permits the test
PSS to have 50% asymptotic power at that value. The asymptotic critical values of the tests
are tabulated. We show that the M®S and P§S tests have an asymptotic power function close
to the power envelope. A simulation study analyzes the size and power in finite samples under
various methods to select the truncation lag for the autoregressive spectral density estimator. An
empirical application is also provided.
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1. Introduction

Since the seminal paper of Nelson and Plosser (1982), the unit root hypothesis
has received a lot of attention from both theoretical and empirical perspectives (e.g.,
Campbell and Perron (1991) and Stock (1994) for surveys). Using tests developed by
Dickey and Fuller (1979), Nelson and Plosser (1982) argued that current shocks have
permanent effects on the level of most macroeconomic series. This finding was sup-
ported by other approaches which found that a typical shock has both important tran-
sitory and permanent components (see, e.g., Campbell and Mankiw, 1987a, b; Shapiro
and Watson, 1988; Clark, 1987; Cochrane, 1988).

In contrast to this literature, Perron (1989) argued, as an alternative to the unit root
hypothesis, that macroeconomic fluctuations are most likely stationary if allowance is
made for the trend function to exhibit occasional changes. Allowing for a single change
in intercept and/or slope, he rejected the unit root hypothesis for 11 of the 14 series
analyzed by Nelson and Plosser. As discussed in Banerjee et al. (1992) this finding
may be important for the following reasons. First, it offers an alternative picture of the
persistence in macroeconomics series. Second, this approach can provide a parsimonious
model for a slowly changing trend component that may be useful as a data description.
Third, the implications for inference in more complex models are very different.

Christiano (1992) criticized the results of Perron (1989) on the basis that the break
points should not be treated as exogenous since the imposition of a given break date
involves an issue of data mining. Accordingly, Zivot and Andrews (1992), Banerjee
et al. (1992) and Perron (1997) considered unit root tests with unknown break points.

We continue to treat the potential break points as occurring at unknown times and
contribute to this literature in two ways. First, we use the MOS tests analyzed by
Perron and Ng (1996) and extend them to permit a one time change in the trend
function. Second, following Elliott et al. (1996) (hereafter ERS) and the prior work
of Dufour and King (1991), we use local to unity GLS detrending of the data. We
consider two specific models: one with a break in the slope of the trend function and
one with a break in both the intercept and slope. In this setup, there is no need to
analyze the case where only a change in the intercept is allowed since the tests then
have the same asymptotic distribution as the case where the deterministic components
include a constant and a time trend which was analyzed in ERS (since a change in
intercept is a special case of what they refer to as a “slowly evolving deterministic
component”).

The reasons for considering the M-tests, originally proposed by Stock (1999) and
further analyzed by Perron and Ng (1996) is that these tests have much smaller size
distortions than other classes of unit root tests when the errors have strong negative
serial correlation. Also, using GLS detrending when constructing the M-tests allows
substantial gains in power as showed by Ng and Perron (2001), similar to the DFSLS
test proposed by ERS.

Given that a uniformly most powerful test is not attainable, we follow ERS and
derive a feasible point optimal test (P$YS). The asymptotic power function of this
test is derived and we use the associated power envelope to choose the non-centrality
parameter (¢) to perform the GLS detrending such that the asymptotic power of the
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test is 50% against the local alternative & =1+ ¢/T. For our two models, we obtain
¢=-225.

The rest of the paper is organized as follows. The model and some preliminary
theoretical results are presented in Section 2. In Section 3, we derive the asymptotic
distribution of the M-S and DFSLS tests in both cases where the break point is known
or unknown. Section 4 considers the asymptotic Gaussian power envelope and the limit
distribution of the feasible point optimal test. The asymptotic critical values and the
asymptotic power function of the various tests are presented in Section 5. Section 6
considers the size and power of the tests in finite samples using simulations. Section 7
presents an empirical application and Section 8 briefly concludes. An appendix contains
technical derivations.

2. GLS detrending with structural change

The data generating process considered is of the form:

yt:dt+ut) IZO,...,T, (1)

Uy = 0Ur—q + Uy, (2)

where {v,} is an unobserved stationary mean-zero process. We use the assumption that
uy = 0 throughout, though the results generally hold for the weaker requirement that
E(u}) < co. The noise function is v, = > ooy 71— with Y o i|7:| < oo and where
{n:} is a martingale difference sequence. The process v; has a non-normalized spectral
density at frequency zero given by ¢? :af,y(l)z, where O'% =limy_o0 T~! Zz] E(n?).
Furthermore, 7~'2 Y201y, = W (r), where = denotes weak convergence in dis-
tribution and W (r) is the Wiener process defined on C[0,1] the space of continuous
functions on the interval [0,1]. In (1), d; = Y/z,, where z, is a set of deterministic
components to be discussed below. For any series y,, with deterministic components
z;, we define the transformed data y# and z* by

vi=Wo(1=aLl)y), zf=(z20,(1—al)z), t=0,..T.
We let lﬁ be the estimate that minimizes

T
S* W, 8)=> (0 =¥z} 3)
t=0

and denote the minimized value by S(&, d).

2.1. The specifications of the deterministic components

Model I Structural change in the slope: For this model, the set of deterministic
components, z; in (1), is given by

zp={Lt,1(t > Tp)(t — Tp)}, (4)
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where 1(.) is the indicator function and 73 is the time of the change. Without loss of
generality, we assume that 75 =T9 for some 6 € (0,1). In this case, 1&(5):(;21,/%,& )
is the vector of estimates that minimizes (3).

Model II. Structural change in intercept and slope: For Model 1I,

zy={L,1(¢t > Tp),t, 1(¢t > Tp)(t — Tp)}. (5)

In this case, the vector of coefficient estimates is t/;(é):(ﬁl, 2, ﬁ 1, Bz ). In this model,
we have the same results as with Model 1 since the effect of fi, — u, is negligible in
large samples. This is because the change in intercept is a special case of a slowly
evolving deterministic component in condition B of ERS.

3. The tests and their asymptotic distributions
3.1. The tests

The M-tests, originally proposed by Stock (1999), and further analyzed by Perron
and Ng (1996), exploit the feature that a series converges with different rates of nor-
malization under the null and the alternative hypotheses. They are defined by

T —1
MZS’LS((S):(T%—sﬁ(ﬂﬁjf%) : (6)
=1
1/2
MSBOS(6 < Zth 1/s> , (7)

—1/2
MZFS(S) = (T35 —s )<4s2T 22% 1> (8)

. ~ ~ ~ . . . . . .
with $, =y, — z, where } minimizes (3). The term s? is the autoregressive estimate
of the spectral density at frequency zero of v;, defined as

s? = s/ (1 = b)Y, ©)
with s2 = (T —k)™' Y, €4, b(1) =7, by, and by, {é4} obtained from the
regression (see Perron and Ng (1998) for more details):

k
A =boFi1+ > biAT;+ eu. (10)

J=1
The first statistic is a modified version of the Phillips and Perron (1988) Z, test
originally developed by Phillips (1987). The second statistic is a modified version of
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Bhargava’s (1986) R; statistic which builds upon the work of Sargan and Bhargava
(1983). The third statistic is a modified version of the Phillips and Perron (1988) Z,
test. As Perron and Ng (1996) showed, the MSB and Z, tests are related by Z; ~
MSB x Z,. This relation suggests the MZ, test defined by (8) since it satisfies the
relation MZ, = MSB x MZ,. Another test of interest is the so-called ADF test which is
the ¢-statistic for testing bp=0 in the regression (10), see Dickey and Fuller (1979) and
Said

and Dickey (1984). We denote this test by ADFSS(§). Our approach is an exten-
sion of Ng and Perron (2001) and Elliott et al. (1996) to the case where the trend
function contains a structural change. In this case, the MSS tests will depend on the
unknown break point .

3.2. Asymptotic distributions of the tests

We start with a statement of the limiting distribution of the various tests in the case
where the break point is considered known.

Theorem 1. Let y, be generated by (1) with a=1+c/T, MZS™S, MSBCS and MZS"S be
defined by (6)—(8) with data obtained from local GLS detrending (y,) at 4=1+¢/T,
and ADFS'S be the t-statistic for testing by =0 in the regression (10). Also, s* is a
consistent estimate of ¢*. For Models I and II, we have

O.SKI(C, C_, 5) o HMZ(‘.LS

MZGLS 5
0= e 0)

(C’ C-’ 5)’

MSBSS(8) = (Ka(c,&,6))> = HYB™ (¢, ¢, 6),

0.5K1(C, C_, 5) o HMZlGLS

GLS/ ¢
MZ720) = (e e.c o)

(c’ c_’ 5)3

0.5K1(C, C_, 5) o HADFGLS

GLS
ADET0) = e e o)) —

(c’ E’ 5)’

where

Ki(c,6,0)=vP,0) —2r21,6) - 1,

1 1
Kx(c,&,0) = / v (o2 dr -2 / vi(r,8)dr,
0 d

and VO (r,0) = Wo(r) — rbs, VI(r,0) = ba(r — O)[We(r) — rbs — (1/2)(r — 8)bs) with
W.(r) the Ornstein—Uhlenbeck process that is the solution to the stochastic differential
equation dW.(r) = cW.(r)dr + dW(r) with W.(0) = 0. Also, b3, by are defined by
by = (L1by + 22b3) and by = (Ayby + Asby) where by = (1 — &)W.(1) + & fol rWw.(r)dr,
by=(1=E+8E)W(1)+E [} Wlr)r=08)dr—W(3), =d/O, Ja=—m/O, d=1—6—i+
280 —E0* =0+ (G /3)(1=8%), m=1—0—+E0—(E%/2)0+(E*/2)P+(&%/3)(1—-5%),
a=1—-¢+/3, 0 =ad —m? and )3 = a/O.
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In practice, it is usually the case that an investigator wants to treat the break point as
unknown. In this case, an estimate of the break point is needed. A method suggested
by Zivot and Andrews (1992) is to consider estimating J as the break point that yields
the minimal value of the statistics, i.e. using infsJO"S(8) where J = MZ,, MSB, MZ,,
and ADF. Using the continuous mapping theorem and arguments as in Perron (1997),
we have, assuming no shift in the trend function under the null hypothesis:

: GLS 5 : JOs =

5&1[1({1# )= 6ér[1({1]H (¢,¢,9), (11)
for J = MZ,, MSB, MZ,, and ADF with the functions H(-) defined in Theorem 1.
Note that no truncation for the range of possible break points needs to be imposed. As
discussed in Vogelsang and Perron (1998), the implied estimate of J is not consistent
for the true value of the break point when the data generating process contains a break.
These authors also note that the tests statistic are not invariant (even asymptotically)
to values of the coeflicients of the change in the trend. Nevertheless, they argue that,
in typical sample sizes, this is not a problem unless the changes are extremely large.
Thus, these tests can still be used with the critical values derived assuming no shift
under the null hypothesis.

An alternative method to select the break date, as used in Perron (1997), is to choose
it such that the absolute value of the z-statistic on the coefficient of the change in slope
is maximized. This procedure has been used by many authors, e.g. Christiano (1992),
Banerjee et al. (1992), Perron (1997) and Vogelsang and Perron (1998). Consider, for
example Model 1 where the deterministic component is given by d, = py + pit +
Pa(t — Tp)1(t > Tp). Let /?2(5) be the GLS estimate of f§, and tﬁz(é) be its associated

t-statistic. The break point can be selected using the estimate d=arg max;c, | |tA2((3)|,
where ¢ is some small number imposing a trimming on the possible values of the
break dates. We shall use ¢ = 0.15 throughout. As discussed in Vogelsang and Perron
(1998), if under the null hypothesis we have 5, # 0 and the true break point given
by T9/T = &°, then 5 is a consistent estimate of 6° and the limiting distributions of
the test statistics correspond to those in the case where the break date is known, i.e.
the limit distributions given in Theorem 1 evaluated at 5?. In practice, one can simply
evaluate these limit distributions at the estimated value 0.

When, under the null hypothesis, = 0 in which case there is no change in the
slope of the trend function, it is easy to show (using the results of Lemma A.2 in
Appendix A) that tﬁz(é) = b4/(/1;/ 2), where by and A3 are defined in Theorem 1. We
then have

5o 6 (8) = bs/ (2] = &°. 12
o, O] = e G5 "

Hence, the limiting distributions of the statistics are given by
JOS() = B (¢,8,6%), (13)

for J =MZ,, MSB, MZ,, and ADF with the functions H(-) defined in Theorem 1.
In practice, it is difficult to know if there is a change in slope since any test of such
hypothesis would depend on whether a unit root is present or not. Hence, a conservative
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procedure is to use the critical values corresponding to the case where it is assumed
that no break is present, i.e. (13). This is the procedure we use in the following.

4. Feasible point optimal test and the power envelope

Elliott et al. (1996), following Dufour and King (1991), have considered the issue
of developing tests with optimality properties under Gaussian errors. The case where
the break point is assumed known follows closely their analysis. While a uniformly
most powerful test is not attainable, it is possible to define a point optimal test against
the alternative a=ad. If v, is i.i.d., this is provided by the likelihood ratio statistic, which
simplifies, under normality, to L(d) = S(&,d) — S(1,0), where S(&, d) and S(1,9) are
the sums of squared errors from a GLS regression with « = & and « = 1, respectively.
Varying the value of &, gives a family of point optimal tests and the Gaussian power
envelope for testing a=1. To allow for serial correlation in the errors v;, ERS proposed
a feasible point optimal test (P$LS) defined by

PP(c,¢,6) = {8(a,0) — aS(1,6)}/s>. (14)
The next theorem provides the limiting distribution of the PSS test.

Theorem 2. Let y, be generated by (1) with a=1+c/T. Let P$*S be defined by (14)
with data obtained from local GLS detrending (7,) at & =1+ ¢&/T. Also, let s* be a
consistent estimate of . The limit distribution of the P$™S test under Models I and
11 is given by

1
P§S(c,&,0) = M(c,0,0) — M(c,é,0) — 2¢ / W.(r)dW (r)
0

1
+ (& — 2éc) / We(rydr—¢
0

= HP"(¢,8,6). (15)

where M(c,¢,d) = A(c,é,0)B(¢,8) " A(c, ¢, 8) with A(c,é,0) a 2 x 1 vector defined by

1
W(1)+(c—5)/ W.(r)dr
0
1 1
- dW(r)—(c —¢)¢ W.(r)d
c/or (r)—(c c)c/or(r)r

1
(14 6¢) ([W(l) — W]+ (c— 5)/S Wc(r)dr>

1 1
_C/(s rdW(r)—(c— c)c/(5 rW.(r)dr
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and B(¢,0) is a symmetric matrix with entries

GZlB3—c+1 (1 =8)(1—2¢)+ @2+ —38)/6
F(1—0%)/3 =1 — )1+ ¢) + (1 — 8)(1 + 6¢)

The asymptotic expression (15) for the PSS test allows us to define the asymp-

totic power envelope for the two models. It is given by m(c,d) = Pr[H” gLs(c, ¢, 0)
< bP77(c, )], where b7 (c,d) is such that Pr[HTT(0,c,8) < bF7 (¢,5)] =, with v
the size of the test. Note that, in general, a different power envelope exists for each
values of 9.

When 6 is unknown, things are rather different. The principle is, however, the same.
To maximize the likelihood function under the null and alternative hypotheses, the
estimate of J must be chosen to minimize the sum of squares residuals S(1,6) and
S(4&, ), respectively. Hence, the corresponding asymptotic version of the feasible point
optimal test is then

P§s = inf  S(&0)— inf aS(1,0 2
Seo={, oSG0 - nt 30,0 /s

Note that a trimming ¢ is necessary otherwise the critical values become unbounded.
The reason is similar to that encountered in the context of tests for structural change
(see, e.g., Andrews, 1993). We use ¢=0.15 throughout. In the case of this feasible point
optimal test, there is a problem of which method to choose to select the break date
to construct the estimate s>. Based on finite sample properties assessed via simulations
we opted for evaluating s*> at the break point 5, say, which minimizes the sum of
squared residuals under the alternative, i.e. we select o = arg mingep, |, (& 0). Using
Theorem 2, we have

PGLS(c ¢)= sup M(c0,0)— sup M(c,¢,0)
0€[e,1—¢] o€[e,1—¢]

1 1
_hs 2 5= 24, =
20/0 W.(r)dW((r)+ (¢ 200)/0 W.(r)y dr—c
= 1" (,6). (16)

The asymptotlc Gaussian power envelope is then deﬁned as n*(c) = Pr[ (c c)
b P (c)] where, with v the size of the test, b 7 (c) is such that Pr[H, i (O c)

< bi)T (¢)] = v. Furthermore, the power envelope allows us to find the “optimal”
non-centrality parameter ¢ for our models. ERS recommended to choose the Value ¢

such that the asymptotic power of the test is 50%, i.e. ¢ is such that Pr[ (c c)

(c)] 0.5. Using simulations, we found that ¢ = —22.5 and we use this value
in the rest of the paper.
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5. Critical values and asymptotic power functions

In this section, we obtain the asymptotic critical values for the tests assuming ¢ =
—22.5 is used to detrend the data. We simulate directly the asymptotic distributions
using 1000 steps to approximate the Wiener process on [0,1] as the partial sums
of i.i.d. N(0, 1) random variables. The limiting distributions are tabulated for the null
hypothesis ¢=0. For the finite sample distributions, we use 7=100 with data generated
by a random walk with zero initial condition and i.i.d. N(0O, 1) errors. Here k is set
to 0 which is equivalent to using the true value of o?; the effects of selecting k
are investigated in the next section. In all cases, 10,000 replications are used. The
results are in the first three columns of Table la and Table 1b for, respectively, the
case where the break point is selected by minimizing the tests and when the break
point is selected maximizing the absolute value of the z-statistic on the coefficient of
the change in slope. In general, the approximation to the finite sample distribution is
adequate but somewhat less good for Model II which contains a change in intercept
that is asymptotically negligible.

The asymptotic power functions of the tests are defined by Tras(c, €) = Prlinfsepo, 1)
H'"(¢,6,0) < b (&)] or Wias(c,&)=Pt[H'""(¢,¢,8%) < b/""(&)] for J=MZ,, MSB,
MZ,, ADF and with H'(c,¢) defined in Theorem 1 and 6* defined by (12). The con-
stants b”*"(¢) and b/ () are such that Pr[infscpo i H'"~ (0,,0) < b’ (&)] =v, and
Pr[H’ GLS(0, c,0") < biGLS(E)] =0, the size of the tests. The asymptotic power functions
are shown in Fig. 1 where the solid line is the power envelope. The M!S tests, and
especially the PELS test, have asymptotic power functions very close to the power en-
velope both when the break point is selected by minimizing the tests and when it is
selected maximizing the absolute value of the f-statistic of the coefficient on the change
in slope. This is also true of the ADFSLS test since it is asymptotically equivalent to
the MZSS test. Hence, in terms of asymptotic power, all tests considered are basically
equivalent.

6. Size and power of the tests in finite samples
6.1. The size issue, the selection of k and information criteria

All tests require the estimation of the augmented autoregression (10). Ng and Perron
(2001) recommended using GLS detrended data with the same non-centrality parameter
¢ for constructing s? and the tests. We follow their suggestion and, in subsequent results,
¢ = —22.5 is used to detrend the data when constructing the tests and when estimating
the autoregression (10) to construct s2.

In our simulations and empirical applications, we consider three data dependent
methods to select the order of the autoregression. The first is the standard Bayesian
Information Criterion (BIC). We follow the recommendation of Ng and Perron (2001)
by confining the search for the best value of & in a range [0, knax]. Also, all regressions
are estimated using the same number of effective observations, 7* = T — kpax. The
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Fig. 1. Gaussian local power envelope and the local asymptotic power functions of the tests.

BIC is then defined as kyic = argmincr ;. | {log(s%,) + (In(T*)k)/T*} with 52, =
7*1 Ezrzkmax +1 €3 with é4 obtained from (10) estimated from 7 = ks + 1 to 7. We
also consider the Modified Akaike Information Criterion (MAIC), advocated by Ng
and Perron (2001), defined by kmaic = argming g, 4 {log(s2,) + (2(<r(k) + k))/T*},
where Tr(k) = (sgk)’ll;(z) Zf:kmx“ ¥4,_, with by obtained from (10). As shown in Ng
and Perron (2001), the MAIC works as well as standard information criteria when the
extent of correlation is mild but provides unit root tests having better finite sample size
with a negative MA component. We also consider the sequential ¢-test, denoted ¢-sig, for
the significance of the last lag, considered in Ng and Perron (1995), with a two-tailed
10% size. When using an information criterion, we set kmax = int[10  (7/100)(1/4)]
and for the #-sig method, we set kmax = int[4 % (7/100)(1/4)]. Note that once the order
k is selected, at k* say, s* is constructed using all possible observations, i.e. estimating
(10) from t =k*+1to T.
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6.2. Critical values with data-dependent methods to select k

While the asymptotic distribution is a good approximation to the finite sample dis-
tribution for any of the test considered when k is fixed, significant differences can
occur when using a data-dependent method to select &, especially in the context of
tests involving breaks at unknown dates (e.g., Perron, 1997). We present in Tables 2
and 3, for both Models I and II, the finite sample critical values of the tests when
using either of the three data-dependent methods to select k. Two sample sizes are
considered, 7 = 100 and 200. These were obtained from simulations with 1000 repli-
cations from the data-generating process defined by (1) with d; =0, « =1 and v, ~
iid. N(0,1).

The results show substantial differences, especially when using the method ?-sig
which yields finite sample critical values much smaller than the asymptotic ones (hence,
using the latter would imply liberal size distortions). When using the MAIC, the result
is opposite, namely finite sample critical values that are higher than the asymptotic ones
(hence, using the latter would imply conservative tests). With the BIC, the difference
are not so large but still important. For these reasons, we recommend the use of these
finite sample critical values “adjusted for the effect of using a data-dependent method to
select k7. The simulations and empirical applications below make use of these instead
of the asymptotic ones.

6.3. Size and power of the tests

We now consider the size and power of the tests in finite samples using the various
data-dependent methods to select the truncation lag described above. Our simulations
are based on 1000 replications of the DGP defined by (1) with d,=0. We consider pure
MA(1) processes, i.e. with v;=(1+46L)e; and pure AR(1) processes, i.e. (1 —pL)v,=e¢;,
where e, ~ i.i.d. N(0,1). For both the MA(1) and AR(1) cases, we consider 0 and p
in the range [ — 0.8,0.8]. We consider the sample sizes 7= 100 and 200. The power
is evaluated at @ =1+ ¢/T for ¢ = —22.5 which implies that the asymptotic power is
50%. All results presented are for 5% nominal size tests.

The results for the case where the break point is chosen by minimizing the tests
are presented in Table 2 for 7 = 100 and Table 3 for 7 = 200. With i.i.d. errors,
as expected, the power of the tests when the sequential z-sig is used to select k is
low. With the MAIC or BIC, the power is indeed close to the asymptotic value of
50%. For the ADFO'S test, the power is high for all methods to choose k. Given these
results, we shall not discuss further the behavior of the tests with the sequential ¢-sig
method.

Consider now the case where the errors have a negative MA component. For all tests,
the use of the BIC to select k£ implies tests with severe size distortions with exact sizes
above 90% with T =100 (80% with T'=200) when the MA component is —0.8 and
about 40% with 7 =100 (23% with 7 =200) when it is —0.4. On the other hand,
the MAIC allows the M and the PSS tests to have much less size distortions.
The exact size is about 33% with 7 =100 (10% with 7 = 200) when the coefficient
is —0.8 and about 14% with 7' =100 (9% with 7 =200) when it is —0.4. But even
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Table 2

Size and power; choosing 7 minimizing the tests; Model I; T = 100 (¢ = —22.5 when constructing s for
the MOLS and P?LS tests; 5% nominal size tests)

Criteria ~ Size Power
MZ, MSB MZ  Pr  ADF MZ, MSB MZ Pr  ADF
iid. BIC 0.051 0.051 0.051 0.050 0.050 0.348 0319 0.347 0375 0.462
MAIC  0.050 0.051 0.050 0.050 0.050 0.481 0.484 0.468 0.486 0.459
t-sig 0.050 0.051 0.051 0.051 0.051 0.131 0.131 0.130 0.153 0.421
Moving-average processes
0=-08 BIC 0930 0931 0930 0.922 0969 1.000 1.000 1.000 0.999 1.000
MAIC 0334 0334 0329 0286 0.353 0.778 0.783 0.776  0.669  0.809
t-sig 0.074 0.074 0.074 0.071 0.717 0.293 0293 0.295 0250 0.938
0=-04 BIC 0391 0.385 0385 0.368 0447 0.874 0873 0.874 0.865 0.903
MAIC 0.145 0.146 0.141 0.138 0.124 0.506 0.505 0.497 0475 0.461
t-sig 0.025 0.025 0.025 0.026 0228 0.096 0.096 0.096 0.100 0.683
0=04 BIC 0226 0.224 0227 0.201 0.076 0.696 0.687 0.698 0.683 0.494
MAIC  0.109 0.108 0.098 0.066 0.017 0.166 0.169 0.160 0.162 0.100
t-sig 0.051 0.053 0.051 0.056 0.058 0.157 0.157 0.158 0.199 0.378
0=0.8 BIC 0.481 0482 0478 0.364 0.107 0.703 0.699 0.707 0.679 0.400
MAIC 0.185 0.191 0.176 0.091 0.011 0336 0.337 0327 0301 0.084
t-sig 0.074 0.076  0.074 0.081 0.052 0.233 0231 0.232 0269 0.215
Autoregressive processes
p=-08 BIC 0.010 0.010 0.010 0.007 0.041 0.030 0.029 0.031 0.026 0410
MAIC  0.003 0.002 0.003 0.002 0.043 0.015 0.017 0.015 0.016 0.359
t-sig 0.016 0.016 0.015 0.016 0.043 0.054 0.054 0.054 0.067 0.384
p=-04 BIC 0.129 0.120 0.128 0.115 0.135 0475 0.469 0476 0.465 0.549
MAIC  0.064 0.063 0.063 0.063 0.059 0360 0.365 0356 0.374 0.396
t-sig 0.030 0.030 0.030 0.035 0.071 0.116 0.116 0.116 0.134 0.420
p=04 BIC 0.146 0.146 0.146 0.112 0.038 0496 0477 0499 0.502 0.275
MAIC  0.122  0.131 0.113 0.083 0.022 0.122 0.124 0.116 0.083 0.058
t-sig 0.057 0.058 0.057 0.057 0.047 0.147 0.146 0.147 0.162 0.273
p=0.38 BIC 0290 0.298 0278 0.183 0.060 0.346 0341 0.343 0331 0.107
MAIC 0342 0360 0321 0204 0.074 0404 0415 0390 0.355 0.141
t-sig 0.136 0.139 0.134 0.084 0.064 0.108 0.108 0.107 0.119 0.118

when using the MAIC, the ADFS'S test still suffers from high size distortions (with
0 = —0.8, the size is 18% when 7 =200).

When the errors have a positive moving average coefficient, the MSGLS tests and
the PELS tests are liberal, while the ADFSLS test has the correct size (especially with
T =200). With a negative autoregressive coefficient, the M5 tests and the PSS test
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Table 3
Size and power; choosing 7 minimizing the tests; Model I; T =200 (¢ = —22.5 when constructing s for
the MOLS and P?LS tests; 5% nominal size tests)

Criteria ~ Size Power

MZ, MSB MZ, Pr ADF  MZ, MSB MZ, Pr ADF

iid. BIC 0.051 0.051 0.050 0.051 0.051 0.512 0494 0.505 0.488 0.501
MAIC  0.050 0.050 0.051 0.050 0.051 0.495 0.492 0.505 0.482 0476
t-sig 0.051 0.05s1 0.051 0.050 0.051 0.235 0.230 0.239 0.289 0.430

Moving-average processes

0=-08 BIC 0.814 0.809 0814 0.783 0860 0.992 0991 0.992 0.989 0.997
MAIC  0.102 0.099 0.104 0.076 0.178 0.366 0366 0365 0272 0.510
t-sig 0278 0.277 0277 0.296 0.539 0.655 0.655 0.656 0.628 0.931

0=-04 BIC 0.239 0.230 0.235 0.218 0.225 0.817 0.808 0.815 0.797 0.820
MAIC  0.091 0.091 0.094 0.074 0.074 0.453 0458 0460 0418 0.427
t-sig 0.034 0.034 0.035 0.043 0.110 0.297 0.287 0.295 0342 0.605

0=04 BIC 0.144 0.144 0.141 0.130 0.089 0.702 0.687 0.698 0.673  0.552
MAIC  0.102 0.104 0.101 0.083 0.046 0514 0.511 0510 0.468 0.356
t-sig 0.068 0.067 0.069 0.072 0.050 0.329 0324 0.331 0380 0.401

0=0.8 BIC 0296 0290 0291 0.241 0.076 0.694 0.683 0.693 0.665 0.392
MAIC  0.181 0.182 0.181 0.120 0.027 0.447 0.445 0453 0382 0.155
t-sig 0.149 0.151 0.146 0.156 0.064 0.515 0509 0.517 0.550 0.313

Autoregressive processes

p=—-08 BIC 0.006 0.006 0.006 0.006 0.045 0.045 0.037 0.044 0.040 0.463
MAIC  0.001 0.001 0.001 0.000 0.047 0.033 0.033 0.035 0.032 0.395
t-sig 0.016 0.016 0.016 0.014 0.046 0.061 0.059 0.061 0.068 0.411

p=-04 BIC 0.052  0.049 0.049 0.037 0.048 0444 0424 0434 0417 0458
MAIC  0.047 0.045 0.046 0.036 0.045 0.400 0.403 0.408 0.381 0.425
t-sig 0.034 0.034 0.033 0.041 0.043 0201 0.194 0.199 0228 0.418

p=04 BIC 0.106 0.105 0.104 0.090 0.041 0.585 0562 0.582 0.560 0.411
MAIC  0.105 0.103 0.108 0.083 0.054 0.494 0493 0.506 0465 0.356
t-sig 0.068 0.068 0.067 0.065 0.044 0.267 0263 0.268 0320 0.367

p=038 BIC 0.146 0.141 0.138 0.106 0.057 0405 0394 0393 0371 0.229
MAIC  0.164 0.175 0.156 0.108 0.062 0399 0397 0400 0.369 0.229
t-sig 0.091 0.094 0.091 0.070 0.053 0.212 0.204 0.211 0.228 0.206

are very conservative and, hence, show basically no power. The ADF has the correct
size and power is good. When the autoregressive coefficient is positive, the MGLS tests
and the PELS test are liberal. The ADFSLS has better size but no power.

The results show that the ADFSS with k chosen using the MAIC has better overall
properties unless there is a negative MA component in the errors, in which case the
MSLS and the PSS tests are superior.
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Table 4
Size and power; choosing 7 maximizing |tﬁ»2 |; Model I; T =100 (¢ = —22.5 when constructing s> for the

MOLS and P?Ls tests; 5% nominal size tests)

Criteria Size Power
MZ, MSB Mz, ADF MZ, MSB Mz, ADF
ii.d. BIC 0.050 0.051 0.051 0.051 0411 0.414 0.402 0.478
MAIC 0.051 0.050 0.050 0.050 0.503 0.475 0.499 0.465
t-sig 0.051 0.051 0.051 0.051 0.150 0.151 0.154 0.447

Moving-average processes

0=-028 BIC 0.928 0.930 0.926 0.966 1.000 1.000 1.000 1.000
MAIC 0.289 0.286 0.289 0.304 0.669 0.669 0.669 0.698
t-sig 0.070 0.070 0.070 0.689 0.250 0.250 0.250 0.925
0=-04 BIC 0.399 0.405 0.397 0.430 0.870 0.870 0.870 0.895
MAIC 0.138 0.131 0.136 0.113 0.479 0.466 0.475 0.433
t-sig 0.025 0.025 0.025 0.206 0.099 0.099 0.100 0.668
0=04 BIC 0.216 0.225 0.211 0.072 0.707 0.711 0.703 0.494
MAIC 0.064 0.065 0.066 0.010 0.156 0.139 0.161 0.107
t-sig 0.053 0.053 0.054 0.055 0.195 0.199 0.195 0.389
0=028 BIC 0.390 0.397 0.380 0.089 0.683 0.686 0.682 0.386
MAIC 0.089 0.088 0.087 0.008 0.297 0.281 0.294 0.091
t-sig 0.079 0.080 0.078 0.045 0.260 0.262 0.263 0.212

Autoregressive processes

p=-08 BIC 0.006 0.006 0.006 0.041 0.028 0.028 0.027 0.398
MAIC 0.002 0.003 0.002 0.041 0.015 0.017 0.016 0.335
t-sig 0.016 0.016 0.016 0.040 0.062 0.062 0.062 0.377
p=-—04 BIC 0.121 0.120 0.121 0.128 0.474 0.475 0.468 0.546
MAIC 0.063 0.057 0.063 0.053 0.368 0.352 0.370 0.391
t-sig 0.032 0.035 0.033 0.066 0.127 0.128 0.127 0.415
p=04 BIC 0.132 0.136 0.127 0.033 0.525 0.530 0.520 0.287
MAIC 0.078 0.084 0.080 0.014 0.080 0.077 0.079 0.047
t-sig 0.055 0.056 0.054 0.040 0.156 0.158 0.157 0.281
p=038 BIC 0.206 0.217 0.197 0.037 0.353 0.356 0.344 0.108
MAIC 0.225 0.240 0.210 0.048 0.372 0.362 0.365 0.127
t-sig 0.087 0.091 0.087 0.042 0.117 0.119 0.118 0.114

The results for the case where the break is selected by maximizing the absolute
value of the f-statistic on the coefficient of the change in slope are in Table 4 for
T=100 and Table 5 for 7=200. They show properties with basically similar qualitative
features with size distortions being slightly smaller.
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Table 5
Size and power; choosing 7 maximizing |tﬁ»2 |; Model I; T =200 (¢ = —22.5 when constructing s> for the

MOLS and P?Ls tests; 5% nominal size tests)

Criteria Size Power
MZ, MSB Mz, ADF MZ, MSB Mz, ADF
ii.d. BIC 0.051 0.051 0.051 0.051 0.518 0.504 0.513 0.520
MAIC 0.051 0.050 0.051 0.050 0.505 0.484 0.515 0.478
t-sig 0.051 0.050 0.051 0.051 0.275 0.267 0.279 0.483

Moving-average processes

0=-028 BIC 0.796 0.793 0.796 0.856 0.991 0.989 0.991 0.997
MAIC 0.076 0.072 0.079 0.139 0.277 0.272 0.281 0.422
t-sig 0.290 0.286 0.288 0.538 0.625 0.620 0.624 0915
0=-04 BIC 0.226 0.220 0.224 0.223 0.822 0.808 0.818 0.826
MAIC 0.079 0.077 0.081 0.068 0.436 0.424 0.438 0.406
t-sig 0.038 0.037 0.040 0.116 0.325 0.318 0.327 0.633
0=04 BIC 0.142 0.138 0.138 0.088 0.703 0.683 0.696 0.567
MAIC 0.094 0.092 0.094 0.042 0.479 0.472 0.481 0.342
t-sig 0.068 0.070 0.069 0.057 0.365 0.351 0.364 0.422
0=028 BIC 0.261 0.256 0.249 0.070 0.684 0.669 0.681 0.400
MAIC 0.132 0.128 0.128 0.018 0.403 0.388 0.407 0.148
t-sig 0.148 0.147 0.146 0.069 0.544 0.535 0.542 0.350

Autoregressive processes

p=-08 BIC 0.006 0.005 0.006 0.046 0.045 0.041 0.045 0.471
MAIC 0.000 0.000 0.000 0.037 0.034 0.031 0.035 0.376
t-sig 0.014 0.014 0.015 0.051 0.061 0.062 0.062 0.428
p=-—04 BIC 0.047 0.045 0.042 0.046 0.454 0.426 0.448 0.477
MAIC 0.039 0.036 0.041 0.043 0.399 0.387 0.412 0.421
t-sig 0.037 0.035 0.035 0.052 0.214 0.200 0.214 0.449
p=04 BIC 0.101 0.095 0.096 0.041 0.594 0.563 0.584 0.427
MAIC 0.087 0.083 0.088 0.048 0.480 0.462 0.490 0.353
t-sig 0.065 0.064 0.063 0.043 0.308 0.298 0.308 0.407
p=038 BIC 0.119 0.116 0.110 0.046 0.400 0.381 0.384 0.229
MAIC 0.118 0.128 0.121 0.053 0.382 0.364 0.387 0.224
t-sig 0.070 0.067 0.066 0.043 0.218 0.212 0.215 0.227

7. Empirical applications

Among the macroeconomic time series considered by Nelson and Plosser (1982),
Perron (1989) argued that two of them were likely affected by a significant change
in slope and intercept for the samples analyzed, namely the Real Wages and Stock
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Fig. 2. Logarithm of real wages (1900—1970).
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Fig. 3. Logarithm of common stock prices (1871-1970).

Prices series. The series are presented in Figs. 2 and 3. We re-evaluate the claim made
by Perron (1989) that these series are trend-stationary if allowance is made for such
a change in slope and intercept using our new tests. We applied the MZCLS, PGLS
and ADFO'S tests using the BIC and MAIC criteria to select the autoregressive order
(imposing a minimal value of 1).

The results are presented in Table 6 for the case where the break date is selected
minimizing the test. Using the BIC to select &, all tests point to a strong rejection at the
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Table 6
Empirical results for the real wages and stock prices series choosing the break point minimizing the tests

Serie T  Criteria MZ, k Tg Mz, k Ty Pr k Tg ADF k Tp a

Stock prices 100 BIC —484° 1 1941 —49% 1 1941 83% 1 1931 —5.1° 1 1937 0.666
MAIC —477* 1 1937 —4.8 1 1937 125¢ 1 1931 —5.1* 1 1937 0.666

Real wages 71 BIC —384¢ 1 1938 —43° 1 1938 103° 1 1940 —4.6° 1 1938 0.619
MAIC —384* 1 1938 —43* 1 1938 103> 1 1940 —4.6° 1 1938 0.619

Notes: (1) For the applications, we impose a minimal value & = 1; (2) the superscripts a, b, ¢ and d
denote significance levels at the 1.0%, 2.5%, 5.0%, and 10.0%, respectively.

Table 7
Empirical results for the real wages and stock prices series choosing the break point maximizing |tﬁ2\

Serie T Criteria MZ, MZ, ADF k Tg o

Stock prices 100 BIC —31.9° —3.9b —4.1° 1 1931 0.753
MAIC —21.24 —3.24 —32 1 1931 0.793

Real wages 71 BIC —27.7° —3.6° —3.8 1 1933 0.697
MAIC —27.7* —3.6% —3.8° 1 1933 0.697

Notes: (1) For the applications, we impose a minimal value k£ = 1; (2) the superscripts a, b, ¢ and d
denote significance levels at the 1.0%, 2.5%, 5.0%, and 10.0%, respectively.

2.5% significance level for the Stock Prices series with the break date selected between
1931 and 1941 depending on the specification used. With the MAIC to select k, there
is a rejection at the 1% level (except with the test PELS). For the Real Wages series,
there is a rejection at least at the 1% or 2.5% significance level using the criterion
MAIC to select k and at the 5% level using the BIC. The break date is selected at 1938
or 1940 depending on the specification used. The estimated trend function is plotted
in Figs. 2 and 3 using 75 = 1937 for the Stock Prices series and 75 = 1938 for the
Real Wages series.

Table 7 presents the results of the tests when the break date is selected by maximizing
the absolute value of the f-statistic on the coefficient of the slope change. For Stock
Prices, the break date selected is 1931 and there is a rejection at the 2.5% or 5%
significance level using BIC but there is little evidence against the unit root using the
MAIC. For the Real Wages series, the break date selected is 1933. The tests show a
rejection at least at the 5% significance level (except for the ADFSLS test using BIC
to select the autoregressive order).

8. Conclusions

We considered tests for the null hypothesis of a unit root in the presence of a
one time change in the trend function and followed Elliott et al. (1996) and Dufour
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and King (1991) by detrending the data using a local to unity GLS approach. The
extensions of the ADF and the Py as well as of the various M tests suggested by
Perron and Ng (1996) were studied. We also investigated the properties of the tests
when the break point is selected either by minimizing the tests or by maximizing the
absolute value of the f-statistic on the coefficient of the change in slope. All tests
have a local asymptotic power function that lies close to the Gaussian power envelope
though our simulations reveal that, in finite sample, the latter method yields tests with
less power. Hence, for applications we recommend using either the ADFO'S or the
MCS or PSS tests with the break point selected by minimizing the tests. The main
difference among the tests is that the 4ADFSS has worse size distortions in the negative
MA case but better power in the negative AR case; the MS and P$S tests have good
size overall but very little power in the negative AR case. The choice between the two
depends on the investigator’s assessment of the likely importance of one or the other
class of processes in the data considered. Our experiments also suggest that the use of
the MAIC to select the autoregressive truncations lag leads to tests with better overall
properties.
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Appendix A.
Throughout, we use the following lemma which is by now standard.

Lemma A.1. Let {u,} be a near-integrated series generated by (2). Then, we have:
(@) T~"Puy = oWo(r); (0) T2 w = o [} We(r)dr; (¢) T2X0, 2 =
& [y W2 dr () T S0 w100 = 0{ fy Welr)dW(r) 47} with y=(0>~62)/20”.

We start with results concerning the limit of the estimates of the coefficients of the
trend function obtained from (3). For Model I, we have

Lemma A.2. Suppose that y, is generated by (1) with o.=1+4 ¢/T and {z} is given
by (4). Let 1}(5) be the GLS estimates, from minimizing (3), of the coefficients
of the trend function obtained using & =1+ ¢/T. Then, with terms as defined in
Theorem 1:

A1 — w = vy,



P. Perron, G. Rodriguez|Journal of Econometrics 115 (2003) 1-27 21
T2 (B1 = B1) = o(aby + 7aby) = abs,
T'2(Bs = B2) = 0(habi + ab2) = oba.
Proof of Lemma A.2. In matrix notation, we have

Y(0) =y =[(Az — Tz )(Az —eT ™'z )] ™!

X[(Az — T 'z ) (Au— T 'u_y)), (A1)
where
Az =(z1,20 — 21,...,21 — Z1—1),
z_1=(0,z1,22,...,27—1),
Au= (uy,up — ty,...,ur — Ur—_1),
u_y =0,uy,up,...,ur—_1).

Now define the scaling matrix Y7 = diag(1, T'/?, T'/?), we can write expression (A.1)
as

Tr(J(8) — ) = I'r(8) ' ¥r(5), (A2)
where

Ir(d)=1;"[(Az —eT 'z ) (Az — eT 'z )] 7,
and

Pr(0)= 17 '[(Az — T 'z ) (Au— T 'u_y)].

We first consider the limit of each element of the matrix I'7(6) denoted I';; (i, j=1,2,3).
We let Az;) and z_y(;) be the ith element of the vectors Az and z_;, respectively. We
have

Iy = (Azgy — ET 7 2o11) (Azary — €T '2q1y) = 1,

T =T""2(Azy — eT7'2_11)) (Az2y — 6T '2_12)) = O,

iy =T (Azy — 77" 20101)) (Azy — 6T 'z213)) = 0,

Iy =T""Azp) — T 'z2102)) (Azay — T 'z_10) = 1 — ¢+ /3 =a,

Iyy = T7(Az) — ET7'212)) (Azz) — eT 7'z 13))
=1-0—C+E0—(342)0 + (G42)0° + (&%/3)(1 — &) = m,
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33 =T Y (Azz) — T 'z2103)) (Azs) — 6T 'z213))
=1 —-0—-E+280 -6 -6+ +(@3)1-8)=d.

We next consider the limit of each element of the vector ¥7(J), denoted ¥; (i=1,2,3).
We have

v, = (AZ(]) - ET712,1(1))I(AM — C_Tilufl) = U1,
lpz = T_I/Z(AZ(Q) — C_T_IZ_I(z)),(Au — 5T_]u_1)
1
=0 [Wc(l)(l —&)+ 52/ ch(r)dr] = ob,
0
lP3 = T_I/Z(AZ@) — C_T_]Z,1(3))/(Au — c_T_]u,l)
1
=0 [Wc(l)(l —i406)+ & / W.(r)(r — 8)dr — Wc(é)] = ob,.
0

Hence, using the symmetry of I'7(d),

—1

1 0 0 vy
TrW(d)—y)= |0 a m aby | . O
0 m d ob;

The proof of the lemma follows upon solving for the inverse. For Model II, we have

Lemma A.3. Suppose that y, is generated by (1) with o.=1+¢/T and {z} is given
by (5). Let 1/;(5) be the GLS estimates, from minimizing (3), of the coefficients of
the trend function obtained using & =1+ ¢/T. Then, the result of Lemma A2 still
apply with the addition that [i, — @ = limr_,o Vyrsj41 = V.

The proof of Lemma A.3 is basically the same as that of Lemma A.2 and, hence,
omitted.

Proof of Theorem 1. The proof uses the results of Lemmas A.2 and A.3. We show
the proof only for Model I and for the MZSS(5) test, the proof for the other Model
and tests follows analogously. We first have

T7'5% =T Yyr — (i + BT + pa(T — T5))}?

=T Yur — [(fo — 1)+ (Br — )T + (B — B )T — TO]}>.
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After some algebra, we obtain: T’luzT = @ W(1)% 2T ur(fy — ) = 0,
27 ur(Br = BT = 26%bs We(1),
27 ur(fo — P )(T — T6) = 26°baWe(1)(1 — 6),
2771 (i — w)(Br = BT = 0,
T7'(B1 — B ) T* = o?b3,
277 (i — )P — P )T — T0) = 0,
277" (1 — BOT(B2 — P2 )T — T3) = 26°b3ba(1 — 3),
T'(By — Po)(T — T6)? = a*b(1 — d).
Using these results, we have
7' = {2,607 - 20 21,0},
where ¥1(1,6) = W.(1) — b3, and
V2(1,8) = ba(1 = O)[W(1) — by — (1/2)(1 — 5)by].

Consider now the term 272 327 32, defined by

T T
27723 72 =212 {y — [ + pit + p21(¢ > TO)(t — TN}
t=1

t=1

T
=277 fu — [ — ) + (B — o)t

=1
+ (B2 — B)1(t > TO)(t — TO)]}>.

After some algebra, we obtain

r 1
2772 Zuf = 267 / W (r) dr,
=1 0
T
4T72(ﬁ1 - #I)Zut = Oa
=1
r 1
AT (B — B> tu = 402/ rbyW.(r)dr,
t=1 0

T 1
AT2(By— B2) D 1t > TO)(t — To)u, = 402/ baWo(r)(r — ) dr,

=1 0

23

(A3)
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27Ny — m)* =0,

T
AT (f — p)(Br = B Dt =0,

t=1

T 1
272 (B — B £ = 202/ b2 dr,
=1 0

T
AT (f — )P — B2) D 1t > To)(t — T6) = 0,

t=1

T 1
AT2(By — BO)(Ba — )Y _t1(t > TO)(t — T5) = 402/5 b3bar(r — 3)dr,
t=1

T 1
2T (By — Bo)* Y 1t > To)(t — T0)* = 262/ bi(r — ) dr.
=1

o

Using these results we have
r 1 1
2772 3 = 207 / v, 6y dr — 2/ v, o) dry. (A4)
pury 0 5

Using (A.3), (A4) and the fact that s> is a consistent estimate of g2, the proof is
complete. [

Proof of Theorem 2. We first give the proof for Model 1. Defining
Mry(c,é,0) = (u”'z")(z"'z") " ("'u"),

we have S(&, 6)=u*"u* — Mr(c, ¢, 6) and S(1)=u'"u' — My(c,0,5). Using the fact that
=0, 4+ T (¢ — &y

for t=2,...,T and u? =v|, we have

T
S"PFHS(c,8,0) = My(c,0,8) — Mr(c,,8) — 26T~ w1,
t=2
T

+(@ —=28) T2 i — T 'uMu' +0,(1). (A.5)
t=2

Note that ="' S0 wyv, = o [y W(r)dW(r) and T2 X0, 2, = o>,
W.(r)* dr. Consider now the limit of My(c,¢,9). Using the scaling matrix Dy =
diag(1,T='2,T=12), we have My(c,é,0) = (u*'z*Dr)(Drz*'z*Dr)~ (Drz*u*). The
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first term is given by

T
Dru'z* = | T72Y (0 + (¢ = T 'u (=T 'ét + 1) + 0,(1)

T
i+ T (e = &g — T v+ (¢ — T 'uy ]
=2
t=2

T
T2 N (w4 (e = DT "uy)(~T7'at + 1+ 6¢)
L t=Tp+1 J

and its limit is

vy/o

1
W(1)+(c—5)/ W.(r)dr
0
1 1
—C dW(r) —(c—¢)¢ wW.(r)d
c/or r)—(c c)c/or(r)r

1
(1+6¢) ([W(l)— W(é)]—|—(c—c')/6 Wc(r)dr>

1 1
fc'/(S rdW(r)—(c— c')c'/(3 rW.(r) dr_

The term D7z*'z*Dr is given by

T
1+ > (=¢/T)(—&/T + 1)

t=2

T
1+> (=¢gry? 172
t=2

T

D (=E/T)(—&T + 1+ 6¢)

t=Tp+1

712

T
1+ (=T + 1)

t=2

T—l

T
70 )" (=&/T + 1)(=&/T + 1 + 6¢)
t=Tp+1
T
=0 N (=éT +1+6¢)

t=Tp+1
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and its limit is
1 0 0
ZB—c+1 (1 =0)1—¢)+&Q2+ 8 —39)/6
(1 =83 =1 —6*) (1 +6¢) + (1 — d)(1 + 6¢)*

Simple algebra shows that Mr(c,¢,d) = v% +aoZM (¢,¢,0) and the result of the theorem
follows using (A.5). The proof for Model II is entirely analogous and, hence, omitted.
The result stated in (16) follows using the fact that S(&, §) = u*u® — My(c, ¢, ) which
depends on 0 only through M7(c,¢,d) which enters with a negative sign, hence taking
the supremum instead of the infimum. [
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