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1. Introduction

Both the statistics and econometrics literature contain a vast amount of work
on issues related to structural change (see, e.g., the surveys by Krishnaiah and
Miao, 1988; Bhattacharya, 1994 as well as the monograph by Csérgé and Horvath,
1997). The econometric literature has witnessed recently an upsurge of interest in
extending procedures to various models with an unknown change point. With
respect to the problem of testing for structural change, recent contributions include
Andrews (1993) and Andrews and Ploberger (1994). Issues about the distributional
properties of the estimates, in particular those of the break date, have also
been considered by Bai (1994, 1997). These testing and inference issues have
been addressed in the context of multiple structural changes by Bai and Perron
(1998, 2003).

Most of the work in this literature has concentrated on the case where the
regressors and the errors are stationary. Issues related to structural change are also
important in the context of trending regressors and non-stationary time series
following the work of Perron (1989), in particular. In that paper, it was argued that
inference about unit roots are affected by changes in the intercept and slope of the
trend function of the time series. In the literature that ensued, many different
procedures have been suggested pertaining to the unit root problem but surprisingly
little work have addressed the problem of estimating the break dates and forming
confidence intervals. The aim of this paper is to fill this gap by analyzing the
consistency, rate of convergence and limiting distributions of parameter estimates in
models where the trend function exhibit a slope change at some unknown date and
the errors can be either stationary or have a unit root.

Work related to this problem include Feder (1975) who considers estimating the
joint points of polynomial type segmented regressions. Closely related to our work is
the study of Bai et al. (1998) who analyze the limiting distribution of an estimated
break for non-stationary type series with a slope change. The analysis is, however,
quite different and more restrictive insofar as inference about a change in a linear
trend is concerned (see Remark 3 below). Our results, in particular, allows different
specifications concerning the role of an intercept shift. Other contributions include
Chu and White (1992) who provide a test for a change in a trend function. The
problem of testing for a change in the trend function of a series allowing the errors to
be stationary or integrated has also been addressed by Perron (1991) and Vogelsang
(1997). Of related interest are also the studies of Hansen (1992) and Hansen and
Johansen (1999) who build on the work of Nyblom (1989) to study structural break
in integrated variables. Lumsdaine and Papell (1997) consider unit root tests
allowing for two structural changes in the trend function. Inoue (1999) presents a test
to establish the cointegrating rank of a system of variables in the presence of a trend
break at an unknown date. Seo (1998) derived tests for structural breaks within a
cointegrated vector autoregressive system, though his study does not allow for a
break in the trend function. Finally, Hansen (2003) considers multiple breaks in any
parameter of a cointegrated vector autoregressive system, though he assumes the
break dates to be known.
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The issues to be investigated are best motivated using real data series. To that
effect, we consider an historical data set of (log) real per capita GDP series from
1870 to 1986 for 10 different countries: Australia, Canada, Denmark, France,
Germany, Italy, Norway, Sweden, the United Kingdom and the United States.' The
series are presented in Fig. 1 where the dotted line is a fitted trend function obtained
by regressing the series on a constant, a trend, an intercept shift and a slope shift
where the break date is selected by minimizing the sum of squared residuals from the
regression (see Model II in Section 2). From this figure it seems clear that most series
are characterized by at least one (and in most cases only one) major shift in the slope
of the trend function (with perhaps the exception of the United States). At the same
time as the shift in slope occurs there is a clear tendency, for most countries, to have
a level shift. This level shift is, however, of different relative importance across
counties, being strongest for France and weakest for Norway and Sweden. Also, the
dates of the breaks are not common across countries. They occur at the time of
World War II for France, Germany and Italy; at the beginning of the 1930s for
Australia and around the time of World War I for Sweden and the United Kingdom.
Of interest to characterize the nature of these series is whether the noise component
can be viewed as stationary or integrated (i.e., whether the series have a unit root or
not). Using tests that allow for a change in intercept and slope at an unknown date,
Perron (1992) concludes that the unit root is rejected at the 5% level for Australia,
Canada, Denmark, France, Germany, the United Kingdom and the United States.
No rejection of the unit root was possible for Italy, Norway and Sweden.

The questions that arise from these real GDP series are the following: what are the
properties of the estimated break dates obtained by minimizing the sum of squared
residuals from a simple regression on the deterministic components? Are they
consistent, what is the rate of convergence and the limiting distribution? Do the
results differ if one assumes the noise component to be stationary or to have an
autoregressive unit root? Are the estimates still consistent if a unit root is present?
How do these compare with those obtained in a context where both the regressors
and the errors are assumed to be stationary? How should one treat the level shift?
Should we discard it when the shift appears small and if so does that change the
properties of the estimated break dates and other parameters? In general, what is the
effect of a level shift on the precision of the estimated break date? Can a large level
shift improve the rate of convergence? If so, what kind of modelling device is needed?

These and other issues will be addressed in this paper whose structure is as follows.
Section 2 first describes the models considered, the assumptions made on the various

'This data set is the same as used by Kormendi and Meguire (1990) and Perron (1992) and was obtained
through the Journal of Money, Credit and Banking editorial office. All series are real GDP except for the
United States for which real GNP is used. For the United States, the series is real GNP from the National
Income and Products Accounts for the period 1929-1986, spliced to Romer’s (1989) estimates for the
period 1870-1928. For the United Kingdom, the series is real GDP from Feinstein (1972) for the period
1870-1947 spliced to the International Financial Statistics (IFS) series of the IMF for the period
1948-1986. For the remaining countries, the series are indices of annual real GDP from Maddison (1982)
spliced to the postwar IFS data. The population series used are from the same sources. A logarithmic
transformation is applied.
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Fig. 1. Annual log per capita gross domestic product (GDP): 1870-1986. The fitted trend function is
obtained by regressing the series on a constant, a trend, an intercept shift and a slope shift where the break
date is selected by minimizing the sum of squared residuals from the regression (see Model II).

components and how the estimates are obtained. Three models are considered: a
joint broken trend (no level shift), a local disjoint broken trend (appropriate in the
case when the level shift is relatively small), and a global disjoint broken trend
(appropriate when the level shift is relatively large). In all cases, we consider two
assumptions on the noise component, namely that it is either stationary or is
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integrated of order one. Section 3 is the main body of the paper where for the six
scenarios considered we derive the consistency and rate of convergence of the
estimates of the break dates (or break fractions) and the limiting distributions of
these estimates as well as those of the other parameters. Section 4 presents simulation
results to show that our asymptotic results are good approximations to the finite
sample distributions and to illustrate when one should include a level shift as a
regressor. Section 5 offers intuitive explanations for some results that appear
surprising at first, in particular the fact that including a level shift regressor when not
needed can actually reduce the rate of convergence of the estimate of the break
fraction and induce a bimodal distribution. Section 6 presents empirical results for
the real per capita GDP series discussed above and Section 7 offers brief concluding
remarks. All derivations are included in a mathematical appendix.

2. The models considered
2.1. Deterministic and stochastic trends

Throughout, it is assumed that some variable of interest, y,, is the sum of some
systematic part d; and a random component, u,, i.e.

y[ Zd[+u[.

The models analyzed differ according to the assumptions made about both
components. For u,;, we specify E(#;) =0 and alternatively one of the following
two assumptions:

Assumption 1. u, ~ I(0). More specifically u, is such that 7!/ ZZEZ] u, = aWi(r)
where ¢ = lim7_, oo T’IE(ZIT= ) u,)* exists and is strictly positive. Here “="" denotes
weak convergence in distribution (under the sup metric) and W (r) is the unit Wiener
process.

Assumption 2. u, ~ I(1). More specifically u, = >_!

j—1¢ where the sequence ¢ is
assumed to be 7(0) as defined in Assumption 1.

Remark 1. There are many sets of sufficient conditions to guarantee that the weak
convergence result stated in Assumption 1 holds. One that is fairly general is that
used in Phillips and Perron (1988), namely (a) sup, E|u,|"™ < oo for some y>2 and
n>0 and (b) {u}7° is strong mixing with mixing numbers o, that
satisfy |” oc,l,fz/ " < 00. Alternatively, we can assume that u, is a linear process such
that u; = Zfio cie;_; where {e;, #;_1} is a martingale difference sequence with % ,_; the
filtration to which e, is adapted. Also Y= i|¢;| < oo (see Phillips and Solo, 1992). Either
sets of conditions include the popular stationary and invertible ARMA processes.

For the systematic component d;, we consider three cases. The first specifies that d,
is a first-order linear trend with a one time change in slope such that the trend
function is joined at the time of break. The second specifies that d, is a first-order
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linear trend with a one time change in intercept and slope such that without an
intercept change, the trend function is joined at the time of break. The third
specification is similar except that the trend function is not restricted to be joined at
the time of break (in the absence of a change in intercept). The time of break is
denoted T, and we define the break fraction as 2= T;/T. Hence, we have six
different models labelled as follows: I.a-joint broken trend with /(1) errors; I.b-joint
broken trend with 7(0) errors; Il.a-local disjoint broken trend with I(1) errors; II.b-
local disjoint broken trend with 7(0) errors; IIl.a-global disjoint broken trend with
I(1) errors; and III.b-global disjoint broken trend with 7(0) errors. We start by
specifying more precisely the data generating process (DGP) for each model.

2.1.1. Models I.a and Lb: joint broken trend with I(1) or 1(0) errors
For the first two models, d, is specified by

di=w + Byt + BBy, (1
where B; is a dummy variable for the slope change defined by
0 if t<T,
' {z— T, if t>Tj.

Here, the slope coefficient (or the rate of growth when a logarithmic transform is
applied) changes from f, to f, + ff, at the time point 7';. However, the trend
function is continuous at 7';. For this reason, we refer to this specification as a “‘joint
broken trend”’.

2.1.2. Models Il.a and ILb: local disjoint broken trend with I(1) or 1(0) errors
For these two models, d, is specified by

di=p + Bt + 1, C + BBy, (2
where C, is a dummy variable for the level shift defined by

0 if t<Ty,
C = .
1 if t>T,.

Note that y;, and f3, capture the change in the intercept and slope coefficients. At the
break point 7', the slope changes by 5, and the level shifts by u,, which is negligible
compared to the level of the series u; + f§;7T, hence the label “local disjoint
segmented trend”.

Remark 2. As pointed out by Hatanaka and Yamada (1999) and others, when the
error term is an [(1) process, the shift in the intercept cannot be identified.
Intuitively, it is impossible to distinguish a permanent shift in the intercept from a
permanent shock to the process (the I(1) error). Later, we provide a rigorous
discussion about this identification issue. More surprisingly, we will show that even
when the error term is an 7(0) process, the intercept shift cannot be identified, either.
An intuitive explanation will be provided later.
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2.1.3. Models IIl.a and IILb: global disjoint broken trend with I(1) or 1(0) errors

If one wants to model a permanent shift in the level of the series such that the
trend function is discontinuous at the break date even asymptotically, we can specify
the DGP as

di = + Byt + 1, Co + By BY, (3)
where
(0 if<T),
S
t ift>Ty.

We label this model as a “‘global disjoint segmented trend” since, in contrast to the
previous “local disjoint segmented trend”’, the implied relative (to the overall level of
the trend function) level shift at the break date converges to 3,/ #0 as T — oo,
since dr,41 —dr, = By +up + B T1.

Note that, in practice, using Model II or III yields exactly the same results for the
estimates of the parameters 7', y;, f; and f5,. Nevertheless, as we shall see, the two
specifications yield drastically different asymptotic results, in particular pertaining to
the rate of convergence and the asymptotic distribution of the estimated break date.
As our simulations will highlight, limiting results obtained from model II (local
disjoint trend) will provide good approximations to the finite sample distributions
when the shift in level is small while those from model III will do so when the shift in
level is large. Hence, both asymptotic frameworks are complementary. These issues
are discussed in details in Section 4.

Remark 3. A special case of the general model considered by Bai et al. (1998) is that
of Model III with 1(0) errors, with or without restricting y, = 0. They also consider
an asymptotic framework, whereby the coefficient f3, shrinks to zero at some suitable
rate. In the following, all results are obtained for fixed coefficients.

Remark 4. The DGP specified by Models II and III can be generalized to encompass
both as special cases by extending Model II allowing u, to be a function of the
sample size, i.e. y, = kT* for some x>0 and «>0. Model II obtains when a =0
while we recover Model I1I with « = 1. It turns out that the results we shall derive for
Model II.a holds more generally when o< 1/2 while those derived for Model IIl.a
hold when o> 1/2. When the errors are 1(0), the results for Model I111.b applies for
all values of o>0. Hence, we shall continue with the classification described above
and discuss in various remarks how the results extend to the more general case. Note,
however, that Model III is not quite a special case since the regressors are not the
same. Nevertheless, the general conclusions will be the same, in particular for the
estimate of the break date.

2.2. The estimation method and a key inequality

All specifications discussed above can be expressed in matrix notation as

Y=Xry+ U,
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where Y =[y,....y7, U =[u,...,url, X/T =[x(T),....x(T1)7), ¢V =
(14, B> 1y, Bp) and where, for Models I, x(Tl)t [1,¢,B;], for Models II,
x(Th), =[1,t,Cy, B/], and for Models IIL, x(T), = 1,1, C,,Bflj]. Note that the matrix
X7, depends on the postulated value of the break date 7';. The parameters are
assumed to be obtained using a global least-squares criterion. In particular, we have
the following estimate for the break date:

T, = arg n}in Y'(1-Prp)Y,
1

where Pr, is the projection matrix constructed using X7, ie., Pr =
X TI(X Xr,)” X’ . Denoting by X 7 the matrix X constructed using the
least- squares estlmate of the break date 77, the least- squares estimate of the
coefficients 7y is

A —1 v
P =X X)X, Y

and the resulting sum of squared residuals is, for an estimated break fraction
A=T/T,

T T
SSR(A) = i1y Z —x(T\))? = Y'(I = P;)Y
=1 t=1

where  Pj. 1s the projection matrix associated with X; ., ie. Pj =
X (X7 L X T1) X !

The true values of the unknown coefficients will be denoted with a 0 superscript,
e 0 = (u, l,ub,ﬁb) 79 20 = TO/T XTo is the matrix of regressors constructed
using the true value T(l’ for the break date, and PTo is the associated projection
matrix, i.e. Ppo = To(X OXTO) X’ . So the tru¢ data generating process is
assumed to be :

Y = X0+ U.
1

Our aim is to derive the limit distribution of (;1 — 2% and (5 —9°) for the six cases
described above assuming that there exists at least a shift in slope. To that effect, we
make the following assumption on the true coefficients.

Assumption 3. /32750 and 2% € (0, 1).

This assumption basically ensures that we have a one time break in the systematic
part and that the pre and post break samples are not asymptotically negligible which
is a standard assumption needed to derive any useful asymptotic result. Note that in
this asymptotic framework, the break date T0 increases as 7 increases. Hence, one
cannot properly consider the issue of whether the estimate 7' is consistent for 77.
Accordingly, we derive all consistency and distributional results in terms of the
estimate of the break fraction 4= T/T for A’ which is a fixed quantity as T
increases. We then use the resulting limit distributions to provide approximations to
the finite sample distributions of (7'} — T?).
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2.3. A key inequality

We now discuss a key inequality that will be used extensively to derive the various
limiting results. From the properties of projections, we have for all T,

SSR(Z)<SSR(1"),
or

Y(I-P;)Y<Y( - Pr)Y.

Since ¥ = X Toy + U, the above inequality implies that
¢ 0(PT0 P; )XTO«/ + 29" x7 O(PT? P; U + U’(PT? — P;)U<0
for all T. Note that ProX 70 = X0 and X7 (I — P; ) = 0, hence we can rewrite the
1 1 1 1 1
above inequality as follows:
(X0 = X3 = P )X g9 = X7 )7
+ Zyo’(XT? - X)) —Pp)U+ U/(PT(I) — P; )U<O. 4)

This is the key inequality that we shall use repeatedly when deriving the asymptotic
properties for the different models. Finally, it is worth noting that

arg rr}in[SSR(Tl)] = arg rr}in[SSR(Tl) — SSR(T?)]
1 1
+ ZVO/(XTO - Xr,)U - Pr)U+ U/(PTo — Pr)Ul

This will be employed to derive the asymptotic distribution of the least-squares
estimate of the break fraction, 1 = T, /T.

3. Asymptotic properties
3.1. Consistency

We first consider the issue of the consistency of the estimated break fraction. We
show that 2 is consistent for /% in all models. To prove this, we show that, in
inequality (4), the first (non-negative) term would asymptotically dominate the
second and third terms (1 e., the first term grows at a faster rate than the other two) if
7 does not converge to 4°. Hence, the inequality cannot hold asymptotically if 7 does
not converge to A°. To this end, we first prove the following lemma. Note that here
and throughout the text, we use the label O(7*) and O,(7) in its strict sense, i.e.
meaning that the variables are not o(7) and o,(7).

Lemma 1. Define
(XX) = “/(XT(I) —Xr)U - PTI)(XT? - Xr)y,



74 P. Perron, X. Zhu | Journal of Econometrics 129 (2005) 65-119

(XU) = y/(XT(l) - XT])/(I_PTI)Ua

(UU) = U'(Pyg — Pr)U.

Under Assumptions 1-3, we have that uniformly over all generic T\ € [nT,(1 — n)T]
for some arbitrarily small © such that )° € [, 1 — 7]:>

1. In Model Ia (joint broken trend with I(1) errors),
(XX) =|T, — TSPO(T), (XU)=|T, — T|O(T*?) and
(UU) =T, — TY0,(T).

2. In Model 1.b (joint broken trend with 1(0) errors),
(XX) =|T, — TSPO(T), (XU) =T, — TO(T"?) and
(UU) =T, — TYO(T).

3. In Model 1l.a (local disjoint broken trend with I(1) errors),
(XX) =|T, — T°PO(1), (XU) =T, — TY*O(T"?) and
(UU) = T, — TY|0,(T).

4. In Model I1.b (local disjoint broken trend with 1(0) errors),
(XX) =|T, — TPO(1), (XU) =T, — T**0,(1) and
(UU) =T, = T'"20(T7'1?).

5. In Model IIL.a (global disjoint broken trend with I(1) errors),
XX)=|T, — T%|O(T?), (XU)|T) — T90,(T>/?) and
(UU)<IT\ = THI0(T).

6. In Model II1.b (global disjoint broken trend with 1(0) errors),
(XX) = |Ty = TYIO(T?),  (XU)<|T1 — T1|0y(T) and
WU)IT) = T}IOp(T7172).

’This trimming is assumed to ensure the invertibility of X ’T] X7, in the projection matrix. Alternatively,
one could simply drop the regressors C, and B, to calculate SSR when 7'; = 0 or 7. This trimming is just a
technical device used for simplicity. In practice, we need not use a trimming since T will equaltoO0or T
with zero probability given that we assume a break exists.
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Note that the term (XX) is always non-negative since it is quadratic and (/ — an)
is positive semi-definite. Given the above results, it is easy to enquire about
the consistency of 4. For example, in Model 1, if 1-> 2%, then (XX) = O(T?), (XU) =
Op(T5/2) and (UU)=Oy(T). Therefore for large enough 7, with some
positive probability, the positive term (XX) dominates the other two terms (XU)
and (UU) such that inequality (4) will not hold with probability 1. Since we know
that the inequality (4) is true for all 7, we have a contradiction and, hence, this
implies that A—>p/L The consistency of 7 to 2% is summarized in the following
theorem.

Theorem 2. Under Assumptions 1-3, in Models 1-111, ) converges to 2° in probability.

Remark 5. For the generalized Model II with u) = k7™, consistency holds as well.
3.2. Rate of convergence

Having investigated the issue of convergence of the estimate of the break fraction,
we can then derive the convergence rates which are summarized in the following
Theorem.

Theorem 3. Under Assumptions 1-3, the rates of convergence of 7 are (with I(1) errors
for Models-a and 1(0) errors for Models-b):

1. In Models I.a and Ila i==0 NVin 12,
2. In Model Ib, ). — 2’ = O (T—*/z)

3. In Model ILb, j.— 2° = Oy(T~ l)

4. In Models IIl.a and IILb, |;L — 20 = op(T7).

Remark 6. In Model ILb, (1 — 2°) is Op(T~") while it is O,(7~>?) in Model Lb,
hence the break fraction converges at a faster rate when the intercept shift regressor
is absent. This is an important and rather surprising result. Later, we will show in
details how allowing for an intercept shift may contaminate how precisely the break
date is estimated.

Remark 7. Consider the generalized Model ILa with u) = k7T”. When a<1/2, the
result is the same as for Model II.a; when o> 1/2, we have (A - = op(T_za_‘) and
the qualitative conclusions are the same as for Model II1.a. When the errors are 1(0),
things are different. We have (1 — 2°) = op(T‘z‘“_l) for all &>0.

3.3. Limiting distribution of the estimate of the break date

Having considered the issue of convergence of the estimated break fraction to its
true value and the rate at which it does converge, we can now consider the problem
of deriving its limiting distribution. Note, however, that this can only be done for
those cases for which it was possible to obtain a given rate of convergence.
Accordingly, this section omits Model III from the analysis. Of particular interest,
our results show that the estimated break date has a Normal asymptotic distribution
in Model I while for Models II the limiting distribution is a complicated function of
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two-sided random processes which can, nevertheless, be simulated to obtain
appropriate confidence intervals. The following Theorem summarizes the main
results obtained whose proofs can be found in the appendix.

Theorem 4. Under Assumptions 1-3, we have (with 1(1) errors for Model.a and 1(0)
errors for Model.b):

1. In Model ILa, f(xl — 2)—9N(0, 20'2/(15(51,) );
2. In Model Lb, T*(j. — 1)—4N(0, 402/ xog — OB
3. For Model IlLa, define = [, W(r)dr, fo rW(r)dr,

flo (r—iO)W(r)dr] & =10,0, W()O) f,o w(r)dr],

[0 W(r)dr,

b= jo (32 = 2r20) (2O 1dW (1), &4 = on r— 1)(3r—2/10 —1)/(1 = 29dw (),
o4 __6_ 2 6
70 02 70 2
_ 6 12 _ 6 __12_
[ (20)? (293
@ = 2 6 4 1-2,0 )
2 __6 __ 4 6 _ A=A
}.0 (10)2 10(17;\'0) (10)2(17/10)2
6 _ 1 g 12" 30292 -320+1
L (10)2 (AO)3 (/10)2(1—10)2 ().0)3(1—/10)3 ]
r__4 12 _ 2 12 T
(;\'0)2 (10)3 (;~0)2 (10)3
1 36 1 36
O TG0t (193 (04
= 2 12 2,01 123093041
@O A9 (02 (1-19)? @03 0=y
_ 12 36 12 30023041 36 400600744101
D N N @ (=1 _

Also define Z*(m) as follows: Z*(0) =0, Z*(m)
Z>(m) for m>0, with

Zi(m) = (B))*ImI* /3 + mPapés + ma*[2E,Q1 €, — & &),
= (B Iml* /3 + mPaf)és + ma*[2E,Q1E) — €],

Then, NT() — 1)—mS, = arg min,, Z*(m).
4. For Model ILb, define a stochastic process S*(m) on the set of integers as follows:
S*(0) = 0, S*(m) = S1(m) for m<0 and S*(m) = S2(m) for m>0, with

= Zi(m) for m<0 and Z*(m) =

m<0,

Zy(m) m>0.

0 0
Do+ Bk =2 Y )+ Bplou, m

k=m-+1 fe=m+1

Si(m) = —1,-2,...,

m

So(m) = Z(ub+ﬁbk) +2 Z(,ub—i-ﬁbk)uk, m=12,....
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If {u;} is strictly stationary with a continuous distribution, S* is a two-sided random
walk with drift, and T(7. — 2)—9m = arg min,, S*(m).

Remark 8. Consider the generalized Model Il.a with u) = x7”. When a<1/2, the
limit distribution is the same as for Model II.a; when o = 1/2, it is slightly different
due to the presence of an additional terms.

These results show interesting qualitative differences across models. First, note
that for Models I.a and 1.b, the limiting distributions of the break date do no depend
on the structure of the errors (apart from the variance term o> needed to properly
scale the distribution). In particular, the results remain the same irrespective of the
nature of the serial correlation. This is in stark contrast to results obtained in a
stationary context in which case the limiting distribution of the estimated break date,
in this fixed shift case, not only depends on the properties of the residuals but in
particular on their exact distribution in finite samples (see, e.g., Bai, 1997). This
feature in the stationary case, has led to the development of asymptotic distributions
obtained under the so-called “‘shrinking shifts asymptotic experiment” to get rid of
the dependence of the limiting distribution on the exact distribution of the errors
(and other regressors). Our results show that in the non-stationary trending case,
there is no need to resort to such alternative asymptotic approximations.

Models I.a and I.b show further interesting differences. First, when the errors are
I(1), the limiting distribution is invariant to the location of the break. In contrast,
when the errors are 7(0), the limiting distribution depends on the location of the
break in such a way that (given other parameter values) the variance is smaller the
closer the break is to the middle of the sample. In both cases, as expected, the
variance decreases as the shift in slope increases. The simple limiting distributions
obtained make it fairly easy to construct confidence intervals.

For Models I1.a and II.b which incorporate a level shift, the limiting distributions
obtained are strikingly different from those for Models I.a and I.b and are similar in
structure to those obtained in the stationary case. Here, the limiting distributions are
expressed as particular functions of a two sided random process involving many
nuisance parameters. However, when the errors are I(1), it does not depend on the
exact distribution of these errors. Hence, confidence intervals can be computed using
consistent estimates of the various nuisance parameters and simulations of the
various functionals of the Weiner process to approximate the distribution. When the
errors are 1(0), it is still possible to use simulations to compute the confidence
intervals but the limiting distribution depends on the exact distribution of the errors
making the result less attractive in practice. In this case, it is possible to get rid of the
dependence of the limiting distribution on the exact distribution of the errors by
adopting an asymptotic framework whereby the shift is shrinking as the sample size
increases (see Bai et al., 1998).

Comparing the results for Models I and II (with either (1) or 7(0) errors), we find
that the level shift plays an important role in the limiting distribution of the
estimated break date. Suppose that the data generating process specifies no level
shift, i.e. 1 = 0. In Model I, no level shift is allowed in the regression while in Model
IT it is allowed via the regressor C;. Our results show that introducing such an
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irrelevant regressor changes the rate of convergence of the estimated break date and
its asymptotic distribution. We return to this important issue in a subsequent section
with a detailed explanation.

Note that the level shift coefficient u) does not enter into the limiting distribution
of the estimated break date in Model I1.a. The intuition for this feature is that as the
sample size increases, the magnitude of the level shift, relative to the level of the trend
function, becomes negligible and in the limit its effect is masked by the variation in
the errors which are I(1).> Hence, we can expect limiting results obtained from
Model I1.a to be adequate approximations in finite samples when the level shift ,ug is
relatively small and that the quality of the approximation would deteriorate as the
level shift increases.* For breaking trend function with large level shifts and (1)
errors, it would then seem more appropriate to use limiting results from Model I11.a
where the importance of the level shift does not vanish as the sample size increases. A
problem, however, is that in this case it was not possible to establish a rate of
convergence of the break fraction 4. Accordingly, no limiting distribution is available
to provide a confidence interval. Hence, in the case of Model IIl.a, to obtain an
asymptotic approximation that is influenced by the level shift u), we consider using
an asymptotic expansion of the distribution obtained for Model Il.a that retains
higher order terms affected by the level shift ug and the sample size 7. This
expansion, derived in the appendix is described in the following Theorem.

Theorem 5. For Model I1.a (I(1) errors), using terms defined in Theorem 4, define a
stochastic process V*n; T, /lo,ug,ﬁg, ag) on the set of integers as follows:
V*(0) = 0,V*(n) = V1(n) for n<0 and V*(n) = Va(n) for n>0, with

0 0
Vi T,00 15, B 0) = > [ + BpkI” + 268,72 > [1f + Byk]
k=n+1 k=n+1

+ na? T2E,Q1 &, — & Q¢],

n

Valm T,00, 1, B 0) = > 11 + Bokl’ +20& T2 Y [y + k]
k=1 k=1

+na? TREDE, — EQ¢1].

Then under Assumptions 2-3, we have the following approximation to the finite sample
distribution of Ty: Ty — T ~ arg min, V*(n; T, °, 1, B3, ).

Note that this approximation still does not depend on the finite sample
distribution of the errors but only on various nuisance parameters which can be
estimated. Hence, it is possible to simulate the confidence interval. It is important to
note that now not only the slope change [32 but also the level shift u) affect the stated
distribution. Simulations to be presented subsequently show that this expansion
provides an excellent approximation to the finite sample distribution.

In Model ILb, the level shift also becomes small relative to the overall level of the trend function but it
still has an effect on the asymptotic distribution since the errors are 7(0) and do not mask its effect.
“These assertions are corroborated by simulation experiments reported in a later section of the paper.
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3.4. The limit distribution of the other parameters

We now turn to the limiting distributions of the other parameter estimates
involved in each model, namely, (i, f,,f,) and [, for Models II, and III. A
standard result in the stationary case (see, e.g., Bai, 1997 or Bai and Perron, 1998) is
that the limiting distribution of the parameters of the model (other than the
break date) is the same whether one uses the estimated break date or its true
value. To investigate whether or not such an equivalence holds with trend
and/or I(1) errors, we derive the limiting distributions assuming first that the break
date is estimated (by minimizing the sum of squared residuals) and then assuming it
is fixed at some known true value, in which case the estimates are denoted by
(fiy, By, Bp) and fi,. The results, derived in the appendix, are summarized in the
following theorem.

Theorem 6. Under Assumptions 1-3, we have that:

1(a). In Model La, the limiting distribution of % (using the estimated T1) is

_ N 2 40 1 1
T2y — ) 0 IR R
~ d 1 6 6
TP - ) | >N| 0]~ 5
~ 1 6 6
T'2(B, — By) 0 0 750 5000

1(b). In Model ILa, the limiting distribution of 7 (assuming a known break
date T(l)) is

T_l/z(ﬂl - :u(l))
T'2(B, — BY))
T'2(B, — BY)

1,041 1 @204 1 302

0 10 30 10 70 20 70201y

d 20\2_ 4,0 20\2, 40 0\2_ 40
2 1 (A7) =2"+1 3 2(A0) +A0+1 3 210 —=1"=2
= _1 3 _ 320 )~ =2
N 0,0 10 70 10 (29)2 20 (29)2(20-1)

0 1 302 3 2(09%2-20—2 3
20 ;000_1) 20 (19)2(10-1) 1029)2(29-1)2

2(a). In Model Lb, the limiting distribution of % (using the estimated T1) is

T2y — uf) 0 o Ty @y

o d 6 12 12

T3/2(/31 _ ﬁ?) — N 0 ,0'2 07 0y 00y
T32(B, — g° 0 6 _ 12 309231041
(ﬁb ﬁb) uo)z (10)3 (10)3(] _/10)3
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2(b). In Model Lb, the limiting distribution of 7 (assuming

3(a).

3(b).

4(a).

4(b).
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date TY) is

a known break

243 31 3
T]/z(ﬂl _ :u?) 0 70 00)2 ORI
- d -0 50 ;0
3/2 0 21 2142 327+1 2,°+1
T/ (Br= Py | =N 100 300y @y P
T3/2(ﬁb - ﬁg) 0 27041

3
(92(1-19

3
WP@-n  @Oa=29?

In Model ILa, the limiting distribution of % (using the estimated T\) is

T2y — )
T'2(B, — BY)

T2y, — @) — Bp(Ty — T /T
T'2(B, — BY)

= g2

[y w(r)dr
fol rW(r)dr
[ W) dr
f;o (r=2Yw@r)dr

This implies that the marginal limit distribution of [i,, fil and Bb is the same as in
Model L.a and that [, is asymptotically unidentified since

TV [y — 1) — BT — TH] = & + &y,

where & and &4 are random variables defined in Theorem 4.3.
In Model Ila, the limiting distribution of 7 (assuming a known break
date TV) is

1/ 2 50 1 1 50 1
T2, — u?) 0 54~ Tt 10

= _ 1 _6_ _ 1 _ 6
T2, —B) | « N 0] , 10 570 10 5,0
T2, — 10 g o]’ |10 _1 2 0

(1 — 1) 30/ 10 15

5 1 6 6
T'2(B, — By) 0 v T 0 s

For Model I1.b, the marginal limiting distribution of [, [3 | and Bb is the same as
in Model Lb. Also, Ju, is asymptotically unidentified and fu, — u) = /ngfs,, with
myy, defined in Theorem 4.4

In Model ILb, the limiting distribution of 7 (assuming a known break
date TY) is

T2, — uf)
TR =B) | o
TV, — 1)
3By — By)
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r4 __6_ 2 _6 7
0 N (9)? 0 2
__6_ 12 __6 12
N 0 s (192 (193 202 03
,0
iy = AR e
~ ) (47=D2 (0?2 (20-1)
0 _6 _ _ 12 e 14200 3(A9)2 32041
L@y (@)’ P01 O3 A=0)7

5. In Model Illa, the limiting distributions of 9 (using the estimated f"l) and 7§
(assuming a known break date T (1)) are the same and given by

2 10 1 2 10 1
T2y — i 0 E}I o _Ei o
R I I U Y B A 7
_ ~ b 2 70 11 2 8°+1
T2y, — ) 0 AW B e
1/2cp _ po 0 1 6 6 6
T =By — By) 0 TS50 s s00-0)

6. In Model IILb, the limiting distributions of % (using the estimated T:) and 7
(assuming a known break date TY) are the same and given by

T2 (1 — )
2B, — BY)
T2 (j, — )
T 2B, — BY)

r 4 __6_ _4 _6 7
0 /10 (/10)2 )'() ()0 )2
__6_ 12 _6 _ 12
O 5 (20)2 (/10)3 ()v0)2 (/10)3
—N 0 ad _ 4 6 4 402022041 400232041
20 (/10)2 10(1_10)3 (/10)2(1—/10)3
0 _6 _12 g 40202 -30+1 3(A9)2-31941
L (10)2 (/10)3 (/10)2(1—/10)3 (110)3(1—/10)3 |

Remark 9. Consider the generalized Model I1.a (I(1) errors) with u) = kT”. When
o< 1/2, the result is the same as for Model Il.a; when o> 1/2, they are the same as
for Model IIl.a. When the errors are 1(0), things are different and the results for
Model II1.b applies for all o> 0.

Interestingly, except for the unidentified intercept shift y,, the other parameters,
iy, By and B, share the same limiting distribution in Models L.a, Il.a and I1l.a. A
similar feature holds across Models I.b, I1.b and III.b. The important implication of
this result is that if one is mainly interested in making asymptotic inference on these
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three parameters, the exact model specification does not matter (of course, except for
the fact that we need the condition that y, = 0 for Model I.a and 1.b). However, the
model specification does matter for asymptotic inference on the break date and the
intercept shift.

As we discussed earlier, allowing for a level shift can possibly affect how good an
estimate 7' is for the break date in Models I.a and IL.b. On the other hand, we see
the “feedback” effect of contaminated identification on the limiting distribution for
. For example, in Model IL.b, [, is asymptotically linearly correlated with T in the
sense that the limiting distribution of ji, is proportional to the limiting distribution of
T, the proportionality factor being the change in slope [52. We provide some
intuition for this result in the next section. .

It is of some interest to note that it is possible to estimate fi; and f; more precisely
by estimating the break date rather than imposing a known fixed break date even if
the latter correspond to the true break date. An example can be obtained by looking
at the results for model I.a and comparing parts 1(a) and 1(b) of the Theorem. We
have var(i;) = (1/10)2° + (1/30)>(2/15)2° = var(ir,) and var(f,) — var(ffl) =3(1 -
9220 — 1)/10(2°)%), the sign of which depends on 2°.

4. Simulation experiments

The aim of the simulation experiments we present is to provide answers to the
following questions: (1) What are the important features of the distributions of the
estimates?; (2) How adequate are the asymptotic distributions obtained as
approximations to the finite sample distributions?; (3) For a time series with a
given magnitude for the slope change and level shift, which model should be used to
carry inference?

4.1. Finite sample versus asymptotics

In the first group of simulations (Figs. 2—6), we show that the limiting distributions
derived are indeed very good approximations to the finite sample distributions. To
that effect, we focus on the three estimates, 7 (break date), B, (slope change) and
(level shift). All simulation experiments involve 2000 replications and we present
results for the sample sizes 7' = 200 and 800.

To assess the quality of the approximation, we compare the asymptotic and finite
sample probability density functions (pdf). To obtain the finite sample pdf, we use
the 2000 simulated statistics and construct an empirical pdf using a non-parametric
kernel density smoothing method. The limiting pdf can be obtained directly in cases

N = 2000 and we use the standard normal distribution as the kernel function. Since the estimates of the
break date are discrete integers, the cross-validation method for choosing the optimal bandwidth does not
work well in this case. As a rule of thumb, we simply let /z, = 0.36, where 6, is the estimated standard
deviation of a given sample of statistics {X;},_; _n-
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Fig. 2. Finite sample versus asymptotic distributions in models I.a and Il.a: ug = 0. The graphs plot the empirical finite sample probability density functions
(pdf) (T = 200 and 800) against the limiting pdf for the estimates of the break date, 7';, and the slope change, [ib, in Models I.a and Il.a. The statistics are
normalized as follows: (fl - T(f)/ﬁ for the break date and ﬁ([}b — /fg)/a for the slope break. The finite sample distributions are obtained using u, = Z/'.:l &
and g ~ N(0,6%) with 2000 replications. The parameters of the models are set to 2° = 0.5, ud = 1.72, u) = 0, ) = 0.03, 2 = —0.02, ¢ = 0.01. For the
asymptotic distributions, Theorems 4.1 and 6.1(a) are used for Model I.a and Theorems 4.3 and 6.3(a) are used for Model II.a. When the limiting distributions

are non-Normal, we use 5000 simulated values to construct the pdf.
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Fig. 3. Finite sample versus asymptotic distributions in Models I.b and II.b: ,ug = 0. The graphs plot the empirical finite sample probability density functions
(pdf) (T = 200 and 800) against the limiting pdf for the estimates of the break date, 7', and the slope change, fib, in Models I.b and II.b. The statistics are
normalized as follows: (f"l - T(l))ﬁ for the break date in Model I.b but 7' — T(l) in Model I1.b; and T3/2(f)’b — ﬁg)/a for the slope break in both models. The
finite sample distributions are obtained using u, ~ N(0, g2) with 2000 replications. The parameters of the models are set to A = 0.5, W=172, 1 =0,
/3? =0.03, ﬁg = —0.02, 6> = 0.1. For the asymptotic distributions, Theorems 4.2 and 6.2(a) are used for Model I.b and Theorems 4.4 and 6.4(a) are used for
Model I1.b. When the limiting distributions are non-normal, we use 5000 simulated values to construct the pdf.
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Fig. 4. Unidentified intercept shift in Model I1.a and IL.b: y) = 0. The graphs plot the empirical finite sample probability density functions (pdf) (T = 200 and
800) against the limiting pdf for the estimates of the unidentified intercept shift, fi,, in Models Il.a and II.b. The finite sample distributions are obtained using
u = Z}:] g and & ~ N(0, 0.01%) with 2000 replications in Model II.a while they are obtained using u, ~ N(0,0.1) in Model IL.b. The parameters of the models
= —0.02. Panel (a) plots (&, — ug)/ﬁ in Model Il.a for T = 200 and 800; Panel (b) plots fi, — ;12 in Model

aresetto 2 = 0.5, 1 = 1.72, 1) = 0, f7 = 0.03, )
I1.b for T = 200 and 800 as well as the limiting distribution fi, — u2—>d/32m1°\°,. We use 5000 simulated values to construct the pdf of mfy, according to Theorem

44.
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Fig. 5. Finite sample versus expanded asymptotic distributions in Model ILa: u) #0. In these graphs, we consider the effect of a non-zero intercept shift on the
empirical finite sample distributions of the estimated break date in Model II.a. And we want to examine how well the expanded asymptotic distributions
approximate the finite sample distributions in this case. The finite sample distributions are obtained using u, =
The parameters of the models are set to A° = 0.5, ,u? =1.72, /f? =0.03, £ = —0.02, ¢ = 0.01. We use 5000 simulated values to construct the pdf of the expanded
asymptotic distribution of 7' according to Theorem 5. In Panel (a), we compare the empirical finite sample pdf for (7', — T9)/~/T against the pdf of the
asymptotic expansion in the case where 7' = 200 and ;12 = 0.05; in panel (b), we consider the case where 7" = 800 and M?, = 0.05; in panel (c), we only examine
the pdfs of the asymptotic expansion for fixed sample size T = 200 but varying y; while in panel (d), we fix g = 0.05 but vary the sample size.

Z;:l ¢ and & ~ N(0, %) with 2000 replications.
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Fig. 6. Finite sample versus asymptotic distributions in Model ILb: p) #0. In these graphs, we consider
the effect of a non-zero intercept shift on the empirical finite sample distributions of the estimated break
date in Model I1.b. And we want to examine how well the asymptotic distributions approximate the finite
sample distributions in this case. The statistics for the break date is normalized as T, — T9. The finite
sample distributions are obtained using u, ~ N(0, ¢*) with 2000 replications. The parameters of the models
are set to 2° = 0.5, ,u[l) =1.72, ﬁ? =0.03, ﬁg = —0.02, 62 = 0.1. We use 5000 simulated values to construct
the pdf of the asymptotic distribution of 7' according to Theorem 4.4. In Panel (a), where W) =-0.1, we
compare the finite sample distributions for 7 = 200 and 800 against the limiting distribution; in Panel (b),
we let ,ug = 0.3; in Panel (c), we compare the limiting distributions for T - T? with varying ,u?,.
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where the limiting distribution is Normal. For the other cases, it can be obtained by
simulation and a similar kernel smoothing method (7'; in Models Il.a and ILb, for
examples).

We first consider the case where the DGP is given by

v, =1+ BVt + BLB, + us, (5)

where u, = Z/t:l e; with e; ~ i.i.d. N(0, 6?), i.e. the sequence u; is a random walk. We
recall that B, = 1(z> T9)(t — T%) with T = J°T, hence, the series y, is characterized
by a joined segmented trend with no level shift at the time of the break. We set the
various parameters at the following values: A° = 0.5, W =1.72, ﬁ(l) =0.03, ﬁg =
—0.02 and ¢ = 0.01.

Fig. 2 presents the finite sample and asymptotic pdf of the normalized estimate of
the break date (T, =T ?)/ﬁ and the normalized estimate of the slope change
VT(By — ,82) /o when these are obtained from the regression corresponding to model
La,ie.

yz=ﬁ1+B11+ﬁbBr+flt (6)

and from the regression corresponding to Model Il.a, i.c.

y,:,&1+,&bC1+[}1t+BbB,+ﬁ,, (7

where we recall that C, = 1(¢> T). The results show that the asymptotic distribution
provides a good approximation when the regression from Model I.a is used (which is
well specified). When the regression from Model Il.a is used (which incorporates an
unnecessary level shift regressor), the approximation for the estimate of the slope
change is still very good. However, for the estimate of the break date, the limiting
distribution exhibits a slight bimodal pattern which is not present in the finite sample
distribution. Nevertheless, for 7' = 800, the approximation is quite satisfactory.

Fig. 3 presents a similar set of results but now the errors are /(0), i.e., the DGP is
still (5) but with u, ~ i.i.d. N(0, ¢?) and ¢ = 0.1. The asymptotic distributions used
are those corresponding to Models I.b and II.b. When the estimates are constructed
from (6), see the top panel, the finite sample distributions of 7'/ 2(f”1 — T(l)) and
T32(B, — B9)/o are close to that of a Normal and indeed well approximated by the
asymptotic distributions for both estimates. The results, in the bottom panel are for
estimates constructed from the regression (7) using now (7, — T ?) with no scaling.
Here, the results are strikingly different. For the estimate of the break date, the
distribution is clearly bimodal. The asymptotic approximation is good when T =
800 but less so when 7' = 200 (though the same qualitative shape emerges). For the
slope change, the finite sample distribution is skewed to the right, but again when
T = 800, it is close to the asymptotic distribution.

Fig. 4 presents results pertaining to the distribution of the estimate of the level
shift fi,. The DGP is given by (5) where u, ~ I(1) in the left panel, i.e. u, = E;:l e
with e; ~i.i.d. N(0, 6?) (corresponding to Model Il.a) and u, ~ I(0) in the right
panel, i.e. u, ~ ii.d. N(0, ¢?) (corresponding to Model I1.b). The slope change is set
to [32 = —0.02, and ¢ = 0.01 when the errors are /(1) and ¢ = 0.1 when the errors are
1(0) (the value of the other parameters are as stated above). The regression used is



P. Perron, X. Zhu | Journal of Econometrics 129 (2005) 65-119 89

(7). When the errors are I(1) (left panel) we only plot the finite sample distributions
which show little changes between 7" = 200 and 800. In the right panel, with 7(0)
errors, the distributions are clearly bimodal and the asymptotic distribution is a good
approximation. This bimodal feature parallels that found for the estimate of the
break, a feature we explain in more detail below.

Figs. 5 and 6 consider the case where the DGP specifies a non-zero level shift in,
ie.

v =1 + W Ci + Bt + BB, + u, (8)

and the regression used is (7). In Fig. 5, the errors are I(1), i.e. u, = Z]’.zl e; with
ej ~ i.i.d. N(0,6%) (corresponding to Model II.a) with the slope change set to [32 =
—0.02 and ¢ =0.01. The aim is to assess the extent to which the asymptotic
expansion given by Theorem 5 provides a better (and adequate) approximation
to the finite sample distribution of the estimated break date compared to the
standard limiting distribution obtained in Theorem 4 (part 3). The base case uses the
value ) = 0.05. Panels (a) and (b) show that this expansion provides a very
good approximation to the finite sample distribution for both 7= 200 and 800,
even though the distributions change substantially when changing the sample size.
Panel (d) compares the asymptotic expansion with the standard asymptotic
distribution (from Theorem 4.3). The results show that the latter provides a poor
approximation even when 7" = 800. The results in Panels (a), (b) and (d) show how
the expansion of Theorem 5 provides a much better approximation than the
standard limiting distribution. Finally, panel (c) shows how, for a given sample size
set at 7" = 200, the distribution provided by the expansion is substantially affected by
changes in the level shift coefficient ,ug. Since the standard asymptotic distribution is
not affected by this parameter, this is further evidence of the usefulness of the
asymptotic expansion.

Fig. 6 presents similar results for the case where the errors are 1(0), i.e. u, ~ i.i.d.
N(0,6?%) (corresponding to Model II.b). Here, we compare the finite sample
distribution of the estimated break date with its asymptotic counterpart stated in
Theorem 4 (part 4). Panel (a) considers the value uf = —0.1, in which case the results
show strong bimodality (the right mode being more important) and that the
asymptotic distribution is a good approximation. When ,ug = 0.3, the asymptotic
approximation is even better and the left mode now clearly dominates. Panel (c)
shows the behavior of the asymptotic distribution for different values of the level
shift ug. What transpires from the results is that when | ,u2| is small, the distribution is
bimodal with two modes that are important (and more symmetric as u gets closer
to 0). When u increases (positive values), the left mode becomes more important
and is more centered around 0 as ,ug increases. The effect is opposite when ,u?)
decreases (negative values), the right mode becoming more important. We provide
some explanations for this feature below. Note that when the level shift is very big (in
absolute value), the distribution is more centered around the true value (the second
mode becoming negligible). Hence, large level shifts help to better identify the true
break date.
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4.2. Model selection

A feature of importance that transpires from the theory and the simulations
reported above is that the inclusion of a level shift regressor has a substantial effect
on the properties of the estimate of the break date as well as other parameters. In the
next set of simulations, our aim is to see in which cases it is advisable to use a
regression with or without a level shift.

The data generating process is again given by (8) with the parameter values 1’ =
0.5, 10 = 1.72, B0 =0.03, ﬁg = —0.02 and ¢ = 0.01. Table 1 considers the case with
I(1) errors while Table 2 the case with 7(0) errors (in which case we use 6> = 0.1). We
use 10 different values of 4 ranging from —0.3 to 0.5. We report the mean squared

Table 1

Simulation analysis of mean squared errors using Model I.a and Il.a

Sample size  Intercept shift ~ Model L.a Model II.a

T] ﬂl /}1 [}b f] .&l Bl n&‘b Bb

T =200 W=-03 136.8 122 13.1 323 0.0 13.8 IL5 255 227
u)=-0.1 27.6 132 122 230 82 133 121 69.6 233
W) =-0.05 13.0 134 120 227 108 133 122 69.9 233
) =—0.02 85 135 119 227 100 133 121 543 234
wW=0 77 13,6 11.8 227 9.1 134 120 443 233
w) =0.02 8.6 13.8 11.6 227 9.6 135 11.9 46.5 233
) =0.05 134 140 114 227 108 137 117 62.7 234
) =0.1 28.8 145 11.1 228 104 138 11.6 81.6 233
W =03 1455 240 169 303 00 138 ILS 255 227
wW=05 289.2 659 478 621 0.0 138 IL5 255 227

T =800 wW=-03 2229 483 3.1 59 205 496 3.0 198.0 5.8
) =-0.1 51.8 494 3.0 5.8 432  49.1 3.1 2672 5.9
W) =-0.05 341 497 3.0 58 385 493 3.1 2107 5.9
W) =-0.02 29.2  50.0 3.0 58  36.0 495 3.0  180.2 5.9
wW=0 282 50.1 3.0 58 350 496 3.0 169.6 5.9
1) =0.02 29.1 50.3 3.0 5.8 350 497 3.0 1724 5.9
) =0.05 341 504 3.0 58 370 499 3.0 1918 5.9
wW=0.1 51.8  50.8 3.0 58 432 502 3.0 2536 5.8
W =03 2243 527 29 58 214 504 3.0 233.1 5.8
wW=05 526.7  58.5 3.1 6.1 20 504 3.0 113.6 5.8

In this simulation study, we examine the model selection problem by considering the mean squared errors
(MSE) of different estimates in Model I.a and Model I1.a for different intercept shifts. The underlying true
parameters used in simulation are: A = 0.5, W =172, ﬁ? =0.03, ﬁg = —0.02, ¢ = 0.01 and replication
number 2000. Two sample sizes are considered, 7= 200 and 800. The data is generated by y, =
1+ B+ 10CO + BOBY + u, where u, =3, es and e ~ N(0,6%). For Model La, the estimates are
obtained from the least squares regression y, = ji; + /)’1 t+ [},,B, + 4, and for Model IL.a they are obtained
from the regression y, = fi; + ,Blt + ubC, + [ibB, + #,. We normalize the MSE of [i, and [5,, by multiplying
107, and the MSE of [Jl and ,ub by multiplying 10*.
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Table 2
Simulation analysis of mean squared errors using Model I.b and I1.b
Sample size  Intercept shift Model 1.b Model I1.b
T, Iy B i T Iy B s By
T =200 W =-03 156.6 459 180.5 370.7 1004 47.4 1984 7334 301.8
W) =-0.1 447 431 149.0 2435 1719 50.5 2257 8962 3745
i) =—0.05 31.7 427 1440 2358 1746 50.1 220.2 847.5 4033
W) =—0.02 274 423 1382 233.8 1713 493 209.5 819.8 4093
wW=0 26.8 42.1 1353 2337 173.6 488 203.5 816.0 4150
W) =0.02 28.7 41.7 1325 2341 1729 48.1 1957 807.7 4l4.6
i) =0.05 333 41.0 1254 2358 170.2 47.6 187.5 807.8 410.2
W =0.1 48.3 398 1140 2419 1709 464 172.6 8553 3894
=03 1657 457 1569 3514 1158 437 1450 7984 321.0
w) =05 319.6  84.6 4593 737.6 19.7 423 1324 203.5 301.0
T =800 W) =-03 198.7  10.5 2.1 42 68.7 10.3 2.0 3340 3.8
W) =-0.1 289 102 1.9 3.6 1524 10.6 22 658.6 4.0
i) =—0.05 114 102 1.9 3.6 1420 10.6 22 602.1 4.1
W) =—0.02 6.4 102 1.9 3.6 1365 10.6 2.1 5754 4.1
wW=0 55 10.2 1.9 3.6 1349 10.5 2.1 5708 4.1
,uh =0.02 64 102 1.9 3.6 1327 10.5 2.1 560.9 4.1
1) = 0.05 11.5 10.1 1.8 3.6 137.0 104 2.1 578.8 4.1
W =0.1 294 10.0 1.8 3.6 1452 104 2.1 6173 4.1
=03 2019 104 2.1 4.1 84.8 10.2 1.9 3972 3.8
w) =05 5042  15.6 5.0 7.1 7.8 10.1 1.9 53.1 3.8

In this simulation study, we examine the model selection problem by considering the mean squared errors
(MSE) of different estimates in Model I.b and Model I1.b for different intercept shifts. The underlying true
parameters used in simulation are: A° = 0.5, W =172, ﬂ? =0.03, /32 = —0.02, 6> = 0.1 and replication
number 2000. Two sample sizes are considered, 7 =200 and 800. The data is generated by y, =
,ul + Blt + 1w, CO + ﬁbBO + u, where up ~ N(0, 6%). For Model Lb, the estimates are obtained from the least
squares regression Y= B+ [)’lt + ,B,,B[ + I, and for Model ILb they are obtained from the regression
y, = + ﬂ] t+ [y Ci+ ﬁhB, + i;. We normalize the MSE of ﬁl and ﬁ,, by multiplying 10%, and the MSE of
1) and g by multiplying 104,

errors (MSE) of the parameter estimates obtained from regression (6) corresponding
to Model I and regression (7) corresponding to Model 1I. What transpires from the
result is that when the true level shift is small, it is better to exclude the level shift
regressor. The MSE of the parameter estimates are then reduced. The reduction is
especially pronounced when the errors are /(0) to the extent that one is better off
including the level shift regressor only for large values of ,ug, say greater than 0.3 in
absolute value. The practical implementation of the choice of an appropriate
model is an open question. The difficulty lies in the fact that with an estimated break
date, the estimate [y, is not asymptotically identified. Hence, one cannot construct a
valid pre-test procedure or use the confidence interval of [, to map a confidence
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interval for the estimated break date. Visual inspection should be a useful starting
point.

5. Contamination and “feedback” effects between level shifts and estimated break
dates

Our theoretical and simulation results showed some surprising features related to
the effect of the inclusion of a level shift regressor (whether the true DGP specifies
such a level shift or not) on the estimate of the break date. In particular, including
such a level shift regressor reduces the rate of convergence of the estimated break
fraction when the errors are 71(0) and induces bimodality in the distribution of this
estimate (both in finite samples and asymptotically). In this section, we provide
intuitive explanations for these features.

Consider the simplified example depicted in Fig. 7. Suppose the break occurs at T?
and there is no level shift at the break date. In the estimation, we allow the possibility
of a level shift by incorporating the regressor C,. Suppose that, by random chance,
the realization of y,o_, is the data point b instead of the data point a while all other
data points are on 'the trend lines. Then the estimated break date (obtained by
minimizing the sum of squared residuals) will be T? — 1 instead of T? and the
associated estimate of the intercept shift at the estimated break date is the distance
between a and b. Note that the same argument holds on the other side, i.e. with the
realization at the data point d instead of e and all other points on the trend lines, one
would estimate the break date at T(l) + 1. Hence, including a level shift regressor
induces a kind of “contamination effect’”” with respect to how precisely we estimate
the break date. In a sense, the point of intersection of the segmented trend becomes
random since the level shift regressor can accommodate random departures from the

Yt

-1 70 T0+1

Fig. 7. Identification: contamination and feedback effects.
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trend lines around the true break date. This effect remains even in the presence of
small level shifts, i.e. small enough relative to the magnitude of the random
deviations around the true trend lines. It also remains if the sample size is large and,
hence, induces a reduction in the rate of convergence of the estimated break fraction.
Moreover, using our simplified example, it is easy to see the following relation
between the estimate of the level shift, the slope change and the estimated break date,
namely that i, — u) = ﬁg(f] — T(])). This is similar to the limiting result derived in
Theorem 6 (part 4.a). Hence the “contaminated” estimate 7' also influences the
estimate fi,. We call this a “feedback” effect. This “feedback” effect makes ,ug a
parameter that cannot be identified.

Following the same line of argument, it is easy to understand why the distribution
of the estimate of the break date is bimodal when the true level shift is small. Indeed,
with purely random deviations around the true trend function, we have less chances
of estimating a break at the true value and more at either sides since the level shift
regressor can categorize random deviations as level shifts with an estimated break
date before or after the true one. By not incorporating a level shift regressor such a
“contamination effect” disappears and it becomes easier to estimate the break date
more precisely, hence the faster rate of convergence. If the true level shift is positive
but not too large, the horizontal trend line in Fig. 7 shifts up so that there are less
chances that a level shift regressor can accommodate a random departure from the
trend line on the left side of the true break date. Hence, the left mode becomes less
important (and vice versa with a negative level shift). As the level shift becomes very
large, random deviations around the trend lines become negligible compared to the
magnitude of the level shift. Hence, the level shift regressor will actually then reflect
the true shift that occurs. The “contamination effect’” disappears and the break date
becomes easier to identify. The situation then corresponds to Model III where the
rate of convergence is now faster.

6. Empirical applications

We now return to the (log) real per capita GDP series discussed in the
introduction. We present estimates and confidence intervals for the break dates (7)
and the slope change (f,) for both cases where a level shift regressors is included or
not. To assess whether to use the results corresponding to /(0) or I(1) errors we
categorize the error structures for different countries according to the unit root tests
reported in Perron (1992). Hence, the noise component is treated as 7(0) for
Australia, Canada, Denmark, France, Germany, the United Kingdom and the
United States. It is treated as /(1) for Italy, Norway and Sweden.

The estimation results are reported in Table 3. The results under the heading
“Model I are obtained using the regression y, = fi; + ¢+ B,B; + #; and the
results under the heading “Model II” are obtained from the regression y, =
oy + 4, Cy + Byt + ByB; + ii;. The confidence intervals for the estimates from Model I
are simply computed from the normal asymptotic distribution stated in Theorem 4 (1
and 2). For Model II, we use 5000 replications (using the expansion of Theorem 5 for
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Table 3
Empirical results for the log real per capita GDP series (1870-1986)

Break date, T

Country Error Model 1 Model I1
structure
Break date  90% Confidence Break date  90% Confidence
interval interval
Australia 1(0) 1934 1930 1938 1929 1926 1943
Canada 1936 1924 1948 1930 1928 1951
Denmark 1948 1942 1954 1939 1938 1949
France 1950 1945 1955 1943 1943 1948
Germany 1948 1943 1953 1945 1941 1964
UK 1934 1928 1940 1919 1919 1919
USA 1934 1893 1975 1940 1927 1952
Italy I(1) 1947 1934 1960 1943 1932 1975
Norway 1925 1913 1937 1925 1914 1944
Sweden 1920 1896 1944 1916 1902 1959
Slope change, Z?b
Country Error Model 1 Model 11
structure

Slope 95% Confidence Slope 95% Confidence

change interval change interval
Australia 1(0) 0.0203 0.0174 0.0233 0.0199 0.0170 0.0229
Canada 0.0137 0.0076  0.0199 0.0133 0.0084 0.0181
Denmark 0.0146 0.0108 0.0184 0.0142 0.0118 0.0167
France 0.0290 0.0217  0.0362 0.0307 0.0264 0.0350
Germany 0.0271 0.0205  0.0337 0.0300 0.0230 0.0370
UK 0.0114 0.0089 0.0140 0.0082 0.0063 0.0102
USA 0.0026 —0.0013  0.0065 0.0001 —0.0048 0.0050
Italy I(1) 0.0323 0.0059  0.0587 0.0336 0.0127 0.0546
Norway 0.0192 0.0046  0.0337 0.0192 0.0046 0.0337
Sweden 0.0082 —0.0037  0.0201 0.0076 —0.0071 0.0223

For Model I, the estimates are obtained from the regresswn Ye=iu+ ﬂlt + [ihB, + u; while for Model 11
they are obtained from the regression y, = fi; + /3 N ¢+ ﬁbB, + u,. We categorize the error structures
as 1(0) or I(1) according to the unit root tests reported in Perron (1992). Five thousand simulated values
are used to estimate the 90% confidence intervals for 7 in Models ILa and ILb.

I(1) errors and, using Theorem 4, part 4 assuming Normal errors for the case
with 7(0) errors). To estimate the parameter ¢, we first calculated the fitted
residual #, using the OLS estimates of the break date and the other parameters
If the error term is assumed to be I(1), then 6°>=7T" lzt 2(Au,) +
2T~ 12_2 w(j, m)zl_] 11 AlyAdl,_; where w(j,m) is the quadratic spectral kernel
and the bandwidth m is selected using Andrews (1991) method assuming an AR(1)
approximation for Az,. If the error term is assumed to be 7(0), the same method is



P. Perron, X. Zhu | Journal of Econometrics 129 (2005) 65-119 95

used to construct 67 with #, instead of A#,. In the case of Model ILb, the limit
distribution also depends on the exact distribution of the errors u,, which accordingly
needs to be specified. To that effect, we assume that u, is a linear process that can be
approximated by an autoregressive model. We estimate an AR(p) with p selected
using the BIC (Bayesian information criterion). We assume Normality for the errors,
and given the estimates for the autoregressive parameters and the variance of the
residuals, we simulate a realization for the errors.

The results clearly show interesting patterns in accordance with our theoretical
results. Consider the case of Australia and Germany for which the estimated level
shift is small. Our theoretical results indicated that more precise estimates could be
obtained by not including the level shift regressor (i.e., using Model I). The
confidence intervals obtained for the break dates and slope changes clearly indicates
this. Consider the case of Australia. Using Model I, the break date is estimated at
1934 and the confidence interval is (1930, 1938) which is rather small. Using Model
IT with a level shift the estimated break date is 1929 and the confidence interval is
now (1926, 1943), indeed much larger. The same holds for Germany.

The results also show that including the level shift regressor can lead to better
estimates when the true level shift is large. This is illustrated by looking at the results
for France (see Fig. 1 where the large level shift is evident). Using Model I, the break
date is estimated at 1950 and the confidence interval is (1945, 1955); using Model 11
with a level shift the estimated break date is 1943 and the confidence interval is now
(1943, 1948) indeed smaller. The same feature holds for the United Kingdom in
which case the 90% confidence interval from Model I1.b includes only the year 1919.

The effect of having (1) errors is also clear from the results. Indeed, whether using
Model I or II, the confidence interval for the break dates are quite large for Italy,
Norway and Sweden in accordance with our theoretical results. Finally, the results
for the United States show very wide confidence intervals. This should not be
surprising in view of the fact that Fig. 1 suggests that a slope change is likely not to
have occurred.

7. Conclusion

We considered asymptotic distributions in the context of a breaking trend function
with I(1) or I(0) errors. Our results show interesting qualitative differences from
those that are obtained in a stationary context. First, the rate of convergence and the
ensuing asymptotic distribution of the estimated break date can be quite different.
Second, we have uncovered how the inclusion or exclusion of a level shift regressor
can change the results in important ways. The presence of a level shift in the data
generating process also has important qualitative effects. We have shown that
our limiting results, in particular the limiting distributions derived, are good
approximations in finite samples and can accordingly be useful tools for inference.
When the standard asymptotic distribution was found to be a poor approximation,
we provided an asymptotic expansion that delivers very accurate results. The
usual caveat applies in that these conclusions are drawn from a limited set of
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simulation experiments, and it is always possible that they do generalize to cases not
considered.

Our analysis has implications for unit root tests that allow for a change in the
trend function at some unknown date (see Perron, 1997; Zivot and Andrews, 1992;
Vogelsang and Perron, 1998, among others). The standard practice is to choose the
break date by minimizing the unit root ¢-statistic. It is natural to consider choosing
the break date by minimizing the sum of squared residuals in the types of regressions
that we analyzed. It is possible then to use our asymptotic results to derive the
limiting distribution of the ensuing unit root tests. This is the object of ongoing
research.
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Appendix A

In this appendix, we prove results model by model. Since we use almost identical
strategies to derive all the asymptotic properties, we only give detailed proofs for
Model I.a and we outline the main differences and derive the relevant results with
less details for the other models. In most cases, the argument of symmetry will apply.
So we simply assume, without loss of generality, that 7'y =T (or T, >T? for any
generic potential break date 7';). In cases where the symmetry argument does not
hold, we treat both cases (7 > T? and T < T(l)) separately. Throughout, we use “—"’
to denote the uniform convergence of a sequence of non-random elements, “—,”
convergence in probability, “—% convergence in distribution, and “=" weak
convergence in the space D[0, 1] under the Skorohod metric. Throughout, we let
A =T,/T for some generic 7.

A.1. Model I.a—joint broken trend with I1(1) errors

Here, X =[,t,B] with 1=(1,...,1) and t=(1,...,T). Define
(ip(1),....,75(T)) and 1, = (15(1),. ..., 1,(T)) where,

=~

b

0 if 1<1<TY,
if 7/>TY, WwO)=S (t—THNT) - T if T9<1<T),
1 if T, <t<T,

0 if 1<¢<TY,

if 7, =19 70 = 1(0) =
1=T B =u) {1 if TO</<T.
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It follows that (X 0 — XTl)y0 = ﬂg(Tl - T(l))ib. Note that 7,([7r]) converges to a
continuous function' J3,(r) over [0, 1] such that

0 if 0<r<2?,
if A>7°, fi,(0 =13 (r=2/(G.=2) if X<r<),
1 if A<r<l,

0 if 0<r<A?,
1 if 2°<r<l.

it2=2 f,00=f, = {

A.1.1. Consistency
Proof of Lemma 1.a. Note that
(XX) =" (X0 = X7)(I = Pr))(X 70 = X7 = (T1 = T (BT, = P )iy

It suffices to show that 7,(1 — Pr )i, is O(T) uniformly over all generic T €
[zT,(1 —n)T]. Note that 7,(1 — Pr,)i, is the sum of squared residuals from a
regression of 7, on [1,t, B]. Denote it as SSR7. Now consider the continuous time
least-squares projection of the function f3 (r) on [L,r,fp(r)], where fp(r)=
1(r=2)(r — A). Denote the resulting sum of squared residuals by SSR,, and the
estimated coefficients as & = (@, ﬁ, z&). From the definition of a Riemann integral,
T7'SSR7 — SSR,.. Now

1 A A
SSRo = /0 () — & — B — f 51 dr.

If & = =0, we obviously have SSR,, >0. Otherwise, we have

min(2,A%)

min(4,2%) R R R
SSR,. > / (o, (r) = & — Br— Ui p(r))* dr = / (& + pry* dr>0.
0 0

The last inequality follows since both 4 and A° are bounded away from zero. Hence,
SSR4 >0 and SSRy = O(T). Also, SSR, <oco. Now consider the term (XU). We
have

(XU) =" (X0 = X1,) (I = Pr)U = (T1 = TOBi,(I — Pr))U,

hence it suffices to show that 7,(/ — Pr,)U = Op(T3/2) overall Ty € [«T,(1 — n)T].
Define f° Tb (r) as the projection residual of a least-squares regression of f; (r) on a
constant, r and f z(r). According to the pro;l)erties of projections and the results for
the term (XX) above, folf;kb(r) dr=0and [ (f;“b(r))2 dr = O(1) uniformly over all .
By the continuous mapping theorem, we have that uniformly over all 4,

1
T30 — Pr)U =0 / Sy (OW(r)dr
0
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where W(r) is a standard Weiner process. Define F' :‘; (r)= f(; f Tb (r)ds, then
/ /i (MW (r)dr = / W(r)dF% " (1)

1 1
— VOFE () — / FE () dW() = - / FE (W),

It is easy to show that E(f0 F3 (ndw(rn) =0 and Var(f0 Fi (ndw(r) =
fo (F3, (r))*dr = O(1)>0 uniformly over . Hence, fof W (r)dr Is Op(1) and
3, —-Pr)U=0 (T3/2) uniformly over A € [n, 1 — =]

Consider now the term (UU). Let Dy = diag(T, T3, T*). We have the decomposi-
tion,

U’(PT? - Pr)U

-1
= U(Xp9 - Xr)D;'? <DT1/2X’T?XT?DT1/2) D}I/ZX’T(I,U

+U'X7, D7 (D72 X X7, D7 P DR A Xy — X’T?XT?)D}I/z

x(D}l/zX’oX o D7 D Py U

TO

+ U/XT,DTI/Z(DTI/ZX’TIXT, D72 DT (X g = X1, U

We shall make use of the following results which are standard 773/23[
U = afol wydr, TP = afol rW(r)dr, T_S/zz,T:TIH (t—THu, =
o [[r = DWE)dr, T3 (0= T — [[r =27 dr, T (= Tt~
f;(r — A)rdr, and T‘zz,T:Tl+l (t—-T)) — fj(r — A)dr. Letting Br, be a vector of
dimension 7" with th entry given by 1(z> T)(t — T), it is easy to show that:

1. D7'* XY X7, D7"*and D} X' X 1o D7/ are O(1) uniformly in 7.
1 1

2. D}I/ZX’ U and U/XToD "2 are Op(T) uniformly in 1.

3. For the term U(X 70~ X7,)Dy /, note that the first two columns
in X 0~ X7, are zero and the third column is BTo Br, and, uni-
formly in 2,

T
T-3/2 U'(Byo — Br,) = 7732 Z (= THhu + TAT =T Y u
=19 =T1+1

= (T — TV)O,(1).

4. For the term D}l/z(X’TlXT] — X’T?XT?)D}I/Z, all the elements of (X7 X7, —
X ’TOX T?) are zero except those associated with Br, or BT?. For these
1
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nonzero terms,

T
B\oBro — By Br, = Z =T+ Y (T -T)HQt—-T, - T
: =19 =T +1
=T\ — T{IO(T?),
Ty T
Blot—Brt=Y (t—T\)i+(T—T) >  t=|T—TOT?),
: =T =T+l
T
01— Bri=>"(t=T)+ (T =TT = T\) = |T, - TYO(T).
t=T‘l’
Hence, D7'*(XY X7, — X/T?XT?)D}I/Z =Ty — TOlO(T ).

The conclusion of the lemma follows from the above four results. We can now
prove Theorem 2 (Model 1.a) using a contradiction argument. Define

(XX) ="K 70 = X3V = Py )X 0 = X7 0",
(X0) = yo’(XT(l) - X; ) = P;)U,

(U0) = U'(Pyg = P7)U.

Suppose that . /10 then from Lemma 1, (XX) = O(T?), (XU) = p(T5/2) and
(U0) = Op(T). Therefore for large enough 7, with some positive probability, the
positive term (X X) dominates the others such that the inequality (X X) + 2(X U) +
(U U)<O cannot hold with probability 1. Since we know that the above inequality is
true for all 7, we have a contradiction which implies that 2—,A°.

A.1.2. Rate of convergence

Proof of Theorem 3.1. Consider the set V() = {|T| — T?| <¢eT}. From the result of
Theorem 2, Pr(T; € V(¢)) > 1 as T — oo. Hence, we need only examine the
behavior of the sum of squared residuals SSR(7';) for those break dates 7'; that
satisfy |1 — T0| <e¢eT. Now consider the set

Ve(e) =T : |T) — T <eT and |T) — T%|>CT"?}.

Note that ¥V ¢(g) C V(¢). Since SSR(7'1) < SSR(TY) with probability 1, it is enough to
show that for each #, there exists a number C >0 such that

Pr(T mm {S(Tl) — S(TO)}<0> <n. (A.1)

Establishing (A.l) implies that a minimum cannot be achieved over V ¢(¢) and that
| T, — T?|<CT1/ 2 must hold with an arbitrarily large probability. Now (A.1) is
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equivalent to
Pr( min {[(XX) —2(XU) + (UD)]} <0) <.
T] € Vc(s)

We can normalize these three terms by dividing them by |7 — T9|7%/2. Using
Lemma 1 and the fact that on the set V¢(¢) we have |T) — T(l)|<£T and |T| —
T?| > CT"'?, we have
(XX)
T, — TN

(wu)

|T3/2 = Op(1)5

>aC + op(1), —
P T, — 79

(xU)
- ron - O

where a is a positive constant. Hence, given any small ¢, we can choose a C large
enough so that (A.1) is satisfied.
A.1.3. Limiting distribution of the estimated break

Proof of Theorem 4.1. Define the set D(C) ={T; :|T| — T?l <+/TC} for positive
number C, and my = |T| — T?l/ﬁ. To derive the limiting distribution, we analyze

: _ 2
arg Tlrlelg(lc)[SSR(Tl) SSR(T)]/T".
For T, € D(C), we have |T| — T°| = O(T"/?). Hence, (XX) = |T| — T??O(T) =

O(T?), (XU)=|T\ - TYOT**) =0y(T? and (UU)=|T,— T|O(T) =
O,(T3/?). Then,

arg min[SSR(T'1) — SSR(T)] /T?
= arg min[(XX) + (XU) + (UU)] /T?
= arg min[(XX)/ T2 +(XU)/T? + 0,(1)]

and we only need to consider the first two terms. Note that on the set D(C), |4 —
2% = O(T~'/?). Using this fact, we can derive the following results that will be used
subsequently:

1 =07
1 3 >
-1/2 -1/2 _ 1292042
A O I T S
1=:02  (1=-1920+2) (1-203
2 6 3

and the inverse is (D}l/zX’Tl XTID;I/Z)’1 =2." +o(1) with

(A0+3) 30941 3

2 (07 (0% (1-19)
>l — 3%+ 334%41) _322%+
@« = @ @’ A’ (1-2%

3 32°+41)

3 3
(92(1-29) CO3a=19 (W0 1-193
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Also,

)2

T (B — Br) X7, D7 = [1 YL A %}mr +o(1).

Using the results above,

’ -1
7! (BT? - BT1> X7, D7 (D}I/ZX/TlXTlD}I/Z)

;0 _;0 0_
- [_IT 3(122; : 231(02:1_;0))}1717 o). (A-2)
Hence,
-2 / , iy (1-"H4 -2
T (BT(])—BTI)XTI(XTIXTI) XTI(BT(])—BTI)Z —4 mT+O(])
(A.3)
and
T‘z(BT(]) — BTI)/(BT? —Br)=(- Omr + o(1). (A.4)
Using (A.3) and (A.4), we obtain
) =292
Tﬁz(BT(l) — BTl) (1 — PTI)(BT(I) — BTI) = |:(4):| mr + 0(1)
Now
Tl T
T(Br—Br)YU=T72 %  (=Thu+T2 > (T1—Thu
=T%+1 1=T+1
T
=T Y (T — THu + op(1)
=T%+1
T
=mrT > u+o0p(1) (A.5)
=T0+1
and
7'p7' X, U

’

T T T
T2 u, TP w T2 Y (1= Tou
=1 t=1 t=T1+1

=1 =T9+1

T T T !
T332 u, T2, T? S (t— T, + op(l)] ] (A.6)
=1
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From (A.2), (A.5) and (A.6)
T2 (X 0 = X1,)(I = Pr)U

_ o i s S 3=l
et 2 T3/2 210 T5/2
1

3020 = 1) Lioroan (0= T
22001 = 19 T2

1 1_/10 1 31_"0 1
=G{AO W) dr+— /OW(r)dr—%/o rW(r)dr

3220 1) !

1
= ofymr / L W dr+op(1),
7

Bomr 4 op(1)

where W*(r) is the residuals function from a continuous time least-squares regression
of W(r) on {1,r, 1(r>2")(r — 2°)}. Given the above results

nip = arg min [(XX)/ T? + (XU)/T? + op(1)]

(1 )

1
= arg mln [ m(fY)? + 2amr(fY) /0 W*(r)dr} + op(1)

by the continuous mapping theorem. Note that the objective function does not
change if 7} — 79 <0. Hence,

T—1)_ 4 [ W) dr
JT 20 =20

% _
my =

Now since my € D(C) implies that A is in the set {|i—/10|<CT_1/2} and A €

[7, 1 — ] if we consider the minimization over [r, 1 — =], the result remains valid.
Now, f)o W*(r)dr is Normally distributed with mean 0 and tedious algebra shows

that its variance is (1° ) (1 — 2% /120. Hence, we have the equivalent result +/7(4 —
40)—>9N(0, 207 /[15(8)°]).
A.1.4. The other parameters
Proof of Theorem 6.1. We have

5 / v ly _ / N\l yr 0 / S\ ly

/—(XleTl) Xle—(XTlXT]) XleT?y +(Xf"1XT|) XfIU

—1/2) y=1/2 11 —1/2y~1 y—1/2
="+ D A0 Py X7 DET DL X (e — X7 0"

—1/2,—1/2 —1/2\—1p—1/2
+ D07 Py xy 07 DT P U
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Hence,
T7'D* (5 —) = (D}I/ZX%le, D}l/z)_l[T"D}l/zX}l (X70 = X7)°
+77'D;'°x; Ul
Note that
7'\ X, (Xpo =X 0+ T—‘D;l/zx;l U

T T° _
/30 1 — lD I/ZX/ A T_l/2+T_1DT1/2X’T1U

VT
4
i iy wr)dr
1 0
= —6/0 W*(r)dr % +o fol rW(r)dr
456 [ =W dr

Tedious calculation shows that this limiting functional is equal to
s B =20+ 2000 = AW ) + [ 25 (r = Do = ) dW ()
ol [ [ =200 + 20 — 2

I &5 8)2 [3r + 2°0r = 2 dW () + [0 200 — 1)(r = 22 dW ()

-0

WAL — 1) = 20 dW(r)

We can show that it has a multivariate Normal distribution N(0, 2;) with

—6(A%2 47,049 1009343002 +820+24  (1-2%2%(=9(%)%+2020+24)
30 120 120
3, = o2 | =100 430024820424 —2004 -0 +200% 42048 (1=202(=3(°)3+1010+16)
120 60 120
(1=292(=9(29)24+20/0424)  (1-29)2(=3(19)3+102°+16) (1=29%(8+91%)
120 120 60

Since (D7'"*X7, X3, D7 2715050 we have T7'DY( — 10)—4N(0, 212,21

with 2 12;,2 dS deﬁned in Theorem 6.1.a. Suppose now that the true break date
T0 is known (in which case the least-squares estimate is denoted 7). In this case, we
have

7=7"+ D7 (D“/ZX’ OXTOD“”) DX U.

Since
[y w(rdr
T*ID;I/zx/T? U= Jyrw(r)dr
[olr = 2)W(r)dr



104 P. Perron, X. Zhu | Journal of Econometrics 129 (2005) 65-119

which has a Normal distribution with variance-covariance matrix X. defined by

1 s M

3 24

5 2 1 043 0 5 2

34 s B = m Y =52+ 5 |-
G+20-0OHU=10% 1 ;043 0NS 5 50 4 2 7 50 0yd

24 12(4) _120(’1 —u% 15 0t +E)(1_)”)

The limiting distribution of 7-'DY(7 —1°) is then N(0, 2;'5.5;") with ;'
as defined in Theorem 6.1.b.

A.2. Model I.b—joint broken trend with 1(0) errors

A.2.1. Asymptotics for break date

The proof for consistency and rate of convergence is similar to Model I.a, so we
omit a detailed proof and focus on the limiting distribution. Since the (XX) term is
same as Model I.a, we only need to consider the terms (XU) and (UU). We have
T'2,U = [ dW(r),

—1 2~ —1/2, 5—1/2 —1/2\— 10 3029 301

UXr D= [ [0 awe) fyrdw@) [h(r—2)dw)).
Now define my = VT(T) — T?), then
(XU) = fy(Byg = Br))(I = Pr)U = T~ PRimriy(I — Pr)U
| Jy AW )
= Bmro| [ awe - [25 250 BT awe)
A Siolr = 2%y dw(r)

+ op(1)
[ 70 50 042 0 0
A — (A7) =3r+3r 244
= p° dw +/ ioidW
ﬁbmrﬂ_/o = 0+ [0
+ op(1).

Hence, (XU) = ﬂngO'C + op(1) where { ~ N(0, 20 = /10)/4). Consider now the
term (UU),

-1
(UU) — U/ (XT(I) _ XT1>D;~1/2 (DTl/zX/T(l)XT(l)DTI/2> D;I/ZX/T?U

1
+ U'x 7,07 (07 X7, D7) ;1/2<X’T1XT1 —X/TOXT?>D;1/2
1
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U

<D—1/2X,0XTUD—1/2> Dy TO

+ U’XTID}W <D—1/2X, XTID—l/z) —1/2

(XTo -Xr)U.
Since U is 1(0), U'(X 7 — X7)D;'? =T — T90,(T"), D}I/ZX’T?U =0,(1),

—1)2

U’XTID_]/z—Op(I) and as in Model la, D7 X’T?XT?D}]ﬂ:O(l) and

1/2

D}l/z(X’TIXT1 - X’T?XT?)D} =T, — T9O(T™"). Given these results, we have

) =17, - T?|Op(T_1) which is dominated by (XU) asymptotically. Using the
same arguments as for Model I.a, we then obtain

' 4ot 4¢?
T3/2 - 10 disz O’— .
G = ( i“(l—i“)(ﬁ?)z)

A.2.2. The other parameters
As in Model I.a, we have

1/2 /4 —-1/2 O ~—1/2\— —1/2 v —1/2 v/
D26 — 9% = (D7 X3, Xy X077y / X5 (X g0 = X300 + D7 / X} U]

Note that
DX, (X0 = X7 +D_1/2X’f1U
1/2 ~ — —-1/2
= BT - THD7 X 3,772+ D7 Py U
1-2° fy dw(r)
—4a( 1-(29)? 1
= m 2 +o Jo rdW(r)
-2’ 1 0
2 fio(r_i)dW(r)
—2943092+6r—6r2°
0 0?
— 0-/0 (10)3722(;;)))22710+3r dW(}")
GG = 1) +3r(1 = 1) 1
3 1+/ 72r
| —1+440
+o / 24320 -2r10—4r2 | AW/ (r).
70 —140

22"+ 4r
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Tedious calculations show that this limiting functional has a N(0, 62X ) distribution
with

4-30 44302420 4-72942(1°2+(%)
20 2,0 20
S, = 4—4(20)2 40 3-3(292 30293 +44° —9G92+4+6(22)3 +(20)* +6—44°
20 320 610
4=7042002 4093 90292 +6(1°)3 +(20)* +6—4.0 3-8046(.9)2 (0
2/L0 640 340

Hence, the limiting distribution of DlT/z(f)—yO) is N(0,6%2,'2,2,") with

312,21 as stated in Theorem 6.2.a. When the break date is assumed known,
we have

D;/z(f_ VO) _ (D}I/ZX’ oX DTl/z) DT1/2 v,

T()

where

UX,0D7 2 = o[ [LaW0) firdw () fo(r—2%) dw)]

which is Normally distributed with mean zero and variance ¢>%, with

1 1 L=204+100%
L=l 4 % E- 3200
AR VO R L WAR TV M S A GO R (Vo)

Hence DIT/z(f —99—9N(0,0%2,'2,2,") as defined in Theorem 6.2.b.
A.3. Model IlL.a: local disjoint broken trend with I(1) errors

A.3.1. Asymptotics for break date

The proofs for consistency and the rate of convergence are similar to those of
Model I.a. Hence, we again concentrate on the limiting distribution. In the
following, we therefore work on the set D(C) = {T'; : |T| — T?I </TC} for positive
number C, which implies that A = 7', /T is such that |1 — = O(T~'/?). Note that
X =[1t,C,B] and (X ;o — XTl)y ;é(BTo - BTI)B,7 in th1s type of model, hence we
need to apply a new 'transformation 'on (XX) and (XU). Since (T — TO)(I —
Pr,)Cr, =0, we have

- PTl)(XT? - X7 0"
= (I = Pr)(Co = Cr)y + (Byg — Br — (T = THCr,)].
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When T > T?,

Cro—Cr, =1 if 79+ 1<¢<T; and 0 otherwise,
1

BT(I)—BTI—(Tl—T?)Cflzt—T? if 79+ 1<¢<T; and 0 otherwise,

while when T <TY,
CT? - Cr, =-1 if Ty +1<t< T? and 0 otherwise,

Bry = Br, —(T\ - TOCr, = —(t—TY) if T)+1<t<T) and 0 otherwise.

We shall use the following notation. For T9> T,

70
1
g(T\=TH= > [+Be—T],
t=T1+1
T
2
m(T = TH= Y [ +pB—T))]
t=T1+1
and for T)< T},
T
T =T =3 [+ B - T,
=T9+1
(T =THh= Y [w+B(-T9]"
=T)+1
Letn=T;— T and k = t — T{, then
0 0
Forn<0, gi(m= Y +MkL, mm= D [u+ Bkl
k=n+1 k=n+1

n

Forn>0, g¢y(m) =Y [+ fpkl, ha(m) =D [k} + Bkl
k=1 k=1

Henceforth, we suppress the argument 7;— 79 and simply use the
short-hand notation g,, g, i and hy. Let Dy = diag(T, T*, T, T?), we can show
that if 7> T9,

VO/(XT? - Xr)U - Pr, )(XT? - X7,)°
=[(Cro = Crpy + (Byg — Br, — (T1 = T7) Cr )]
x(I — PTI)[(CT? — Cr)u)
+ (Byg — Br, = (T1 = THCr)f)]
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T
>+ B —THP

=T9+1

T,
—1/2 —1/2 —1/2\—
ST+ B = IO D7 (D7 Xy X D7)
t:T‘l)+l
T

xD7'2 N () [ + it — TY)).

r:T‘l’-H

Note that ZQT?H (1) + Bt — T = hy and
T

ST+ B — TOIN(T) D

=T9+1
T
=T 3" W +Be—THIL /T 0 0]
=T9+1
T)-T9
=T7"0,[1 19T 0 0] +T77'2 3" [ +pk][0 K/T 0 0]
k=1

ST "Plgpl[1 1T 0 0]+l T AIT1 = T1/T = Oy(1go| T~'7?).

The last step is due to the fact that | T — T0|/T—> 0. Based on this result and the
fact that (D VX X D7) = 0p(), 2" (X g0 = X1 Pr (X gy = X1, =
Op(g3T~ ") = 0,(h2) because |2=20 = O(T’l/z) Therefore, we have (XX) hy +
op(hy) for Ty > T9 and we can similarly show that (XX) = h; + op(hy) for Ty < 7.
This implies that (XX) = |T| — T{PO(1) if ) is fixed, which proves Lemma 1.3.

Next we consider (XU) treating the two cases T > T and T9 < T. We start with
the following results: (1) (D 1/2)(’ X1,Dr 1/2) = Q; + o(1) where

4 __6_ 2 _6
20 0y 70 02
- % l()2% - g ] — %
%) () ) 0y
=1 , 4 612 (A.7)
2 @2 Pa-0) P0-0)
_6 _ _ 12 1-229 12 392 -329+1
L (10)2 (10)3 (20)2(17;'0)2 (10)3 1— )0)3
and
1 0 (1=29)
I ! -0 0
1 1 1= (1=2220%42)
Q?l — 2 3 2 6

0 1-(29)? 0 (1=19?2
-2 == 1= ==

1=292%  (1-1920042)  (1-29)? (1-79)3
2 6 2 3
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) T’ID}I/zX’Tl U = &, where

[ wr)dr Ji (= rdw(r)
¢ = fol rW(r)dr _ fol % dw(r)
o fowmydr | |2 A=2dwe) + [h( - ndw)
S =iwerdr] | PO Gy 4 fh OO G

(A.8)
(3) When T?< T, define u, = Uro + v, we have

T Tl*T(l)
T2+ By = Tl = T2 (uh + Bk upo + v)
=T0+1 k=1

0
T,-T9

=T Pgpurg + T2 % Gy + kv
k=1

= o-W(/lO)gz + 0p(9)-
(4) When TY< Ty,
T

_ —1/2
TN [+ Bl — TY)x(Th), D7
=T9+1

=T"'g:[1 1° 0 0]+ 0p(g:/T).

Using the above results, we have when T(])< T,

“/o/(XT? —Xr)U —Pr)U

T,
= Y W+ BT

Z:T(l)+1

T
— | >0 W+ B — TN DF
=T9+1

— - -1 -
8 (DTI/ZX/TIXT]DTI/Z) DTI/ZX/T1 U
= 7' [WG = [1 20 0 0] +op(D)]

= T"%g,0&; + 0p(T'?g,),
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where ¢&; = ff[(gﬂ —2r2%) /(2% 1dW(r) ~ N(0,22°/15). As in results (3) and
(4) above, we can show that when T' ? >T,
T?

T2 3 g+ Byt = THlur = e W(2)g; + 0p(g1)
1=T1+1

TO

1
TN g+ By = TOTYDF =T g1 2 1 01+0y(T gy,

t=T1+1

Hence, when T(f >T,

“/OI(XT? - X7)UI —-Pr)U
0

=— > g+ B =T

f:T1+1

i 0, 0 0 ' =172 —1/2 —12\ " 12 4
+ | S W+ B~ TOI(T,D; (DT Xy X7,07"%) Py U
t=T1+1
=T'"g6[-WE)+[1 0 1 0]i&]+ on(Tg))
=T"2g,6¢, + Op(T1/2g])a

where & = [o[(r — D3r — 22° = 1)/(1 = 2°’1dW(r) ~ N(0,2(1 — .°)/15). There-
fore,

(XU) = '] 5 1 ni<hi (1) .
géy it TO>T T

This implies that (XU) = |T; — T9/20,(1). Last consider (UU). We have
U'(Py = Pr)U
= U(Xp - XTI)D;l/2(D}1/2X/T?XT?D}1/2)‘1D;l/z WU
+U'X7, D7 (072 X X0, D7 ' D7 A Xy — X’T?XT?)D;I/z
><(D}l/zX’T?XT?D}l/z)“D}l/zX’T? U

+ U X, D7 207X X1, D7) D A (X g — X)) UL



P. Perron, X. Zhu | Journal of Econometrics 129 (2005) 65-119 111

Note that
T720'(Cpy = Cr, ) = (T1 = THIWG) + 0p(1)]

1
732y (BT? - BTI) = (T -1 {/)0 W(r)dr+ op(1)].

Hence U'(Xpo — X7)D;'? = (T, = TO[6&, + 0p(1)]  where &, =[0,0, W(i"),
f;o W(r)dr]. For the second term, we have D;I/Z(X/TIXT1 — X/T(I)XT(I))D;I/2 =

—(Ty — THT' 2, with

0 0 1 1-2°

0 17('0)2

5= 0 0 p) TA
1 70 1 1-°

(L S Sy A (s

So the second term is equivalent in large samples to —(7'; — T?)Toz[é’l Q¢ 4 op(1)]
where

r__4_ 12 __2_ _ 12 7]

(/10)2 (10)3 ()'0)2 (10)3
12 _ 36 12 36
4 4 (20)3 ()~0)4 (10)3 (/10)4
Q=07 2,0 = 212 2001 12 3(%2-320+1
@y @0 (O (1-19) @Oy @01y
Y 36 12 309232941 36 40036020 +420-1

@y @O @O @0-1y 0 O-ny? i

Collecting these results, (UU) = (T — T\)To*[2E,Q1&) — & Q&) + 0p(1)]. This
implies that (UU) = |T| — T?|Op(T). We can now prove Theorem 5, concerning
the asymptotic expansion. Define a stochastic process V*(n; T, 2°, 1, /32, o) on the set
of integers as follows: V*(0) =0, V*(n) = V(n) for n<0 and V*(n) = V,(n) for
n>0, with

0 0
2
Vi T,20, 15, B.0) = > [+ Bok]” +20&, T2 > [uh + Bok]
k=n+1 k=n+1

+ na® T2E,Q1 &, — & 2,611,

n

Va(n: T, 20, 1. B, 0) = > [ + Bk + 208 T2 ™ [ + BIK]
k=1 k=1

+na? TREDE, — & Qx¢1].
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Then the finite sample distribution of (7 — T(l)) can be approximated by (7 —
T(])) ~ arg minn V*(na T: /105 #29 ﬂgs G)'

We now consider the standard limiting distribution. Define my = (T} — T (1))/ JT.
We can show that both /; and £, are asymptotically equivalent to 7/ 2([32)2|m7|3 /3
and both g, and g, are asymptotically equivalent to Tm?’f) /2, therefore

T732(XX) = (B)*Imr|* /3 + op(1),

5 of &+ op(l) if m>0,
i

2T32(XU) =
X0 &4 +op(1) if m<0,

T732(UU) = mpa[28,Q1&) — E1Q2¢1]+ op(1).

Define Z*(m; 2°, B}, o) as follows: Z*(0) = 0, Z*(m) = Z,(m) for m<0 and Z*(m) =
Z,(m) for m>0, with

Zi(m; 20, By, 0) = (B Imrl* /3 + mEafés + mra® 28521 &) — E1Q¢ ] + op(1),
Zy(m; 20, B, 0) = (B Imrl? /3 + myaByés + mra?[28,Q21E) — & Q28 ] + op(1).

By the continuous mapping theorem, we have my = (T —
7%)/v/T—% arg min,, Z*(m; 2°, B3, 0).

A.3.2. The other parameters
Following the proof in Model I.a, we have

DG — 4"
(D}I/ZX’ Xz DT D Xy (X0 = X700+ 7-'D;'2x}; U]
[ =01 [ hwode ]
A 1-(20)2 1
T, — 7% | —— rW(r)dr
=Ql 2 1 1 2 . +o fol +0p(1)
VT (12 [l W(r)dr
=" 1 0
i 2 | [o(r =20 W(r)dr | |
0 Fweydr ]
1
010 rW(r)dr
= T\ - T + 00 o + op(1).
VT |1 [ wydr
0 b= W) dr

Therefore, the limiting distribution of ji, depends on the limiting distribution of
T, — T? while the limiting distribution of the other parameters do not. It is easy to
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show that
o w(rydr 0 e e 1y S
o rw(rdr of | -% s o
7 o W(r)dr Mol -5 -4 3 0
A 3 1 S
1 6 6
f;o(r — W (r)dr 0 10 50 0 SA=00

from which the results stated in Theorem 6.3.a follow.
A.4. Model ILb: local disjoint broken trend with I(0) errors

A.4.1. Asymptotics for break date

Again, we only cover the main arguments of the proof for the limiting
distribution. From the result for the rate of convergence, the following pertains to
the set D(C) = {T : |T| — T9| < C} and accordingly we have |1 — 1’| = O(T!) for
A=T,/T. From the analysis for Model II.a, we know that (XX) = h; + op(h;) for
T1<T9 and (XX) = hy + op(/y) for Ty > T. Next, consider the term (XU). First if
T,> T?, then

Ty
WX g0 = Xr)U = PrU =3 [+ Bt = Tl
=T%41
& 1/2
— | > 1+ By — TOIN(T DT
=T9+1

-1

x (D7 Xy, Xr,07'?) D X U
Note that, (1) Z,T;T?H[u% + Byt — T, = Op(IT) — TP (2) ZzT:lT?ﬂ[ﬂg +

it — TOI(T ), D7 = 0,(1T1 — TYPT/2); and (3) D™'2X, U = Oy(1). Since
we look in a set where | T — T(l)l <Cand 1= =0T, yo’(XT(l) —Xr,)Pr,Uis
dominated by yO/(XT? — Xr7,)'U asymptotically, and (XU)=|T; — T?|3/20p(1).
Consider the case T? > T for (XU),

7
WXgo = Xr)U = PrpU= — > [my+ it = T]u
f:T1+1
n
+ 1Y )+ B — TN, D7
l=T1+1

—1/2 —1/2\— -1/2
(D72 X X7, D7 D72y UL
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Again we can show that y"(X 0 — X7,) Py, U is dominated by y”(X ;0 — Xr1,)'U
1 1
asymptotically. Therefore,

ol + By = Tl + 0p(h) i Ty>T1,
XU)=40 if Ty =19,
70 .
=32l + Byt = THlus + 0p(1) if T1 <TY.
Last, consider (UU). Note that

max{7T ,T?}

T‘l/zU’(CT? —Cr)=T"'7? > u =TT - TY'20,(1)
r=min{T,T9}+1

T*3/2U’(BT? — Br) =T — TV T7'Ou(1).

Hence, U’(XT? - XTI)D}I/2 = |T) — TY'20,(T~"/?). Then following the same

arguments as for Model L.b, (UU) = |T| — T?|1/2OP(T_1/2). Following Bai (1997),
we define a stochastic process S*(m) on the set of integers as follows: S*(0) = 0,
S*m) = Si(m) for m<0 and S*(m) = S»(m) for m>0, with

0 0
Sim)y= > (uy+ k)’ =2 > @+ e, m=—-1,-2,...,

k=m+1 k=m+1

Salm) =" () + Bk +2 > (uh + Bokue, m=1,2,... .
k=1 k=1

Under the assumption that {u,} is strictly stationary and has a continuous
distribution, the rest of the proof is similar to that of Bai (1997, p. 562) and, hence,
omitted.

A.4.2. The other parameters
Similar to Model Il.a, we have

1/2 /4 —1/2 v —-1/2\— —1/2 v —1/2 v
D*G =" = 07Xy X4 D7 7DT XY (X = X0 + D7 PX U]

10 Jo dW(r)
=02 fl rdW(r)
= | BT, - TOHTV| ? N 01
1—4 Lo dW(r)
(B 1 10
2 | [or =20 dW(r) | |

+ op(1)



P. Perron, X. Zhu | Journal of Econometrics 129 (2005) 65-119 115

0 [ Jy AW
. 0 Lrdw
= pUT, — THT'? + oy folr ) + op(1).
1 [0 dW (r)
0 | [ =20 dw( |

The results of Theorem 6.4.a follow using (A.7) and (A.8).

A.5. Model IIl.a—disjoint broken trend with 1(1) errors

A.5.1. Asymptotics for break date A
Note that in Model III, the regressors are [1,t, C, B¥]. Assuming again that
T,>TY,
[0000] if t<7?
(T, —x(T), =S [0014 if T9+1<i<T,
[0000] ifr=T)+1.
First consider the term (XX). We have

T
WX g0 = X1 X po = X1 = > (8’7 + 280t + (1)’]
=T%+1
1

=T\ - T}I0(T?)
"(Xq0 = X7, Pr (X 70 — X7,);°
/ ’ —1/2, —1/2 —1/2\=1p—1/2
=9"(X 9 = X1, X1, D7 (D7 X7, X7, D77 D7 P X (X g = X7, 0"

It is obvious that D}l/zX’T] XTID}l/2 = O(1). The first two rows of D,

Xr, )y are zero while the last two rows are

1/2
/ X/TI(XT? —

—1/25~T1 0
TPt | [T, = TOO(T12)

_ T - :
T2 e Bt BT — TO(T"/?)

Hence yO/(XT? — XTI)/PTI(XT(I) — X7, )0 =T\ — T)PO(T). Therefore (XX)=
|y — TYO(T?) + Ty — T{PO(T).
Then consider (XU). Let Dy = diag(T, T>, T, T*). We have

Ty
W Xqo = Xr)U= ) [+ Bru] <I Ty = THOK(T?)
=T%+1
1
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(X g9 = X7,)Pr,U

D12 pl2 —1)2 —1)2

=" (X790 = X7,) X7, Dy

1/2

(D7 XY X7, D7) D7 X U

—1/2 —1)2

Since Dy ""X'p U =OW(T), Dy "X X7 Dy'"=0(1) and 0’(XT0—XT1)XT1
D;'? =T, - T0|0(T1/2) we have ¥(Xp0—X7,)Pr,U<|T ~ T910,(T%?).
Therefore (XU)<|T| — T910,(T/?).

Last, consider (UU). Since Dil/zX/ U= O, (T), D71/2X/ U = Oy(1),
D_I/ZX’ 0XToD_l/z_O(l) D_I/ZX’ OXToD_l/z_O(l) the first two rows of

D;]/Z(X;w() XTI) U are zero while the last two rows of D 1/2()(To —Xr,)U are
equal to ' :
_ T
T 1/2E,=IT? U <17y — 7004
—3/2 T ST AEp
r Zt:TOJrl fuy

Moreover, it is easy to show that DTl/z(X’TlXTl —X’TOXT?)DT”2 =T, —
1

T?|O(T_1). Therefore, U/(PT(I) - Pr)U<|T| - T?|Op(T). This proves Lemma 1.5.

Consider the issue of consistency. From Lemma 1, the term (XX) dominates
whatever the order of |7 — T(l)|. Hence, minimizing SSR(7"}) is equivalent to
minimizing (XX). Since the latter is positive, it must converge to 0 to ensure that
inequality (4) is satisfied. Accordingly, (XX) = o,(1), and |4 — 2= op(T*3).

A.5.2. The other parameters
We have

7' DYG - ")
~1/2 12\ " [t =172 —1py—1/2
— (DT X, X4 D7 /) [T DX (e = X 00+ T D7 Py U
—1y=1/2y Y.y . g0 —1/2y _
Note that 77 Dy " X% (X 70 — X )y” = [T — T7|0(T™ /%) = 0p(1), hence we have
1 1 1
—1n-1/2 0 —1n-1/2 _ =1 n-1/2
T7'D7' XY (X0 = X307 + T7' D72} U = T7'D7 X, U+ 0p(1)

1 1 1 1 !
= o'|:/0 W(r) dr,/o rW(r)dr, AO w(r)dr, AO rW(r) dr}

which is Normally distributed with variance—covariance matrix ¢°%, and

1 5 2-30924+(29)3 5+3(29)* —8(1%)3
3 24 6 24
5 2 5+(20)*—6(20) 4410 —5(29)3
s = 24 15 24 30
97| 2230924003 54004 —6(29)? 1-3(9)2+2029)3 54929y —8(10)3 —6(10)?
6 24 3 24

543094 =829 4+G05—59%  549(19)*—8(19)3—6(10)2 2430195 -5(20)3
24 30 24 5
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Note that this implies that the distribution of j is independent of the limiting
distribution of 7| — T?. Now,

1 0 1-(1%?
1 T A=
1/2 1/2 3 : —17(2)'0)2 =y 7(;0)3
D, "X X3 DT> X, = A9
e I I L) S WU SV, A.9)
L 5 | 5
=092 1200 1=09?  1=0%
2 3 2 3
and
-1/2 —1/2y-1 —1
(D X%“IXleT ) _)pzh
ro4 __6_ 4 6 -
20 (192 70 02
__6_ 12 _0 _ 12
@@ 00y 00
B I 40022041 40023041 (A.10)
70 (W92 D170y U207
6 _ 12 g4u0P-304 302 -310+1
L (192 A9)3 02— O a-0y |

Therefore, T _lDlT/ 2()7 —9%) is asymptotically Normally distributed with zero mean
and variance-covariance matrix 62X, '¥, ;! which is as stated in Theorem 6.5.

A.6. Model II1.b—disjoint broken trend with 1(0) errors

A.6.1. Asymptotics for break date
Model II1.b is same as IIl.a except that the error term u, is 1(0), hence again
(XX) = |T, — TYO(T?) + |T; — T??O(T). Now consider (XU), we have

T
W Xgo = Xr)U= Y [wyu+ Pyru] <|Th = THIOK(T),
=T%+1
1

y"/(XTo - Xr,)Pr, U

="(X o = X1, X1, 077 (DX X0, D7'P) D) U

Since D_]/2

X)) X1, D7 =T = TNO(T'?),  we  have  §"(Xp9 - X7,)Pr,US|T) -
T90,(T"?). Therefore (XU)<|T1 — T910,(T).
Last consider the term (UU). Since Dfl/zX’ U =0,(), Dil/2 XU = Opy(1),
1
DTI/ZX’ ()XTODTI/Z_O(I) DTI/ZX’ XTIDTI/Z—O(l) the first two rows of
_l/z(XTo—XTl) U are zero while the last two rows of D l/2(XT0—XT1) U

X U=0,(1), DXy X7, D7'>=0,(1) and (X g0
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are equal to
_ T
T 1/22 :1T0 U

s <ITy = THOK(T1/?).
Z, T°+1

Moreover, it is easy to show that DTI/Z( /TlXTl —X/TOXTO)DTI/2=|T1_
1 1

T?|O(T_1). Therefore, (UU)K|T; — T?|OP(T_1/2). This proves Lemma 1.6. The
remaining steps to show that |2 -0 = op(T_3) are exactly as for Model IIl.a.

A.6.2. The other parameters
We have

1/2/n —1/2 v —-1/2\— —1/2 v —1/2 v
DG =% = (07 xy X5 D7 A7 D7 X (g = X 0" + D7y U

Note that D71/2X% (XT() - X4 W =T, — T?|O(T1/2) = 0p(1), hence we have

D‘l/zx’fl(XTo X; 0"+ D7 X U= D“/QX’f] U+ op(1)
[ dw) ]
1
rdW(r)
=0 Jy ~ N(0,0°Z))
[ dw(r)
f}o rdw(r) |

with %) defined by (A.9). Hence, D}/*(h —1*)—IN(0, ;") with ;! defined by
(A.10). The distribution of $ is independent of the limiting distribution of 7'} — TO
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