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Abstract 

We consider the model 2 ,  = 4,Z:_, + 4,Z;, + a, where I$,, 4, are real 
coefficients, not necessarily equal, and the a,'s are a sequence of i.i.d. random 
variables with mean 0. Necessary and sufficient conditions on the 4 ' s  are given 
for stationarity of the process. Least squares estimators of the 4 ' s  are derived 
and, under mild regularity conditions, are shown to be consistent and asymptoti- 
cally normal. An hypothesis test is given to differentiate between an A R ( ~ )(the 
case 4, = 4,) and this threshold model. The asymptotic behavior of the test 
statistic is derived. Small-sample behavior of the estimators and the hypothesis 
test are studied via simulated data. 

NON-LINEAR TIME SERIES; TAR MODELS; AUTOREGRESSIVE MODELS; MARKOV 

CHAINS 

1. Introduction 

The study of non-linear time series models has recently received a great deal 
of attention (e.g. see Jones (1978), Priestley (1980), and Tong and Lim (1980)). 
One class of non-linear models which appears to be particularly useful is the 
class of threshold autoregressive (TAR) models introduced by Tong (1978) and 
discussed comprehensively in Tong and Lim (1980). Several examples are given 
by these authors which show that TAR models provide better fits than linear 
models. In addition, TAR models are shown to exhibit strictly non-linear behavior 
(e.g. limit cycles) which linear models cannot duplicate. 

In Tong and Lim (1980), the problem of model identification and model fitting 
was considered and the methods of Klimko and Nelson (1978) were suggested to 
obtain sampling properties for the parameter estimators. In addition, only 
sufficient conditions were established for the ergodicity of the TAR model. 

The present paper deals with these issues for the simplest of the TAR models, 
namely 

(1.1) Zl = #J,Z:-,+ #J2Z;-,+ an t = 1,2, .  .., 
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A threshold AR ( I )  model 27 1 

where x' = max (x, 0) and x-  = min (x, 0). Equivalently, (1.1) may be written 

where 

and I ( A )is the indicator function for the set A. In both (1.1) and (1.2) above, we 
take and 4~~to be real constants and assume that {a,; t 2 1) is a sequence of 
independent, identically distributed (i.i.d) random variables, each having a 
strictly positive density, f ( . ), on R, and mean 0. 

Figures 1.1-1.3 show realizations of 250 observations from series (1.1), with 
(+,, 42) taking values (0.9,0.5), (0.1, - 10.0) and ( - 0.4, -2.0) respectively. In all 
three realizations, the distribution of the {a,) is taken to be N(0,l). 

Figure 1.1 

4, =0.9, 4, = 0.5 


Figure 1.2 

4,= 0.1, 4, = - 10.0 


Figure 1.3 

4,= -0.4, 4, = -2.0 
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We note that even if the at's are symmetrically distributed, the marginal 
stationary distribution for Z, (when it exists) will be symmetric about 0 if and 
only if 4, = 42.Hence, we could also refer to (1.1) as an asymmetric autoregres- 
sive model. The analogous asymmetric moving average model was considered by 
Wecker (1977) in an attempt to describe the behavior of industrial prices. 

In Section 2, we obtain necessary and sufficient conditions on 41and 42for the 
process defined by (1.1) to be ergodic. These conditions are seen to be much 
broader than the sufficient conditions obtained by Tong and Lim (1980) for the 
TAR and by Jones (1978) for the non-linear autoregressive process (1.2) (see also 
Remark 2 in Section 2). 

In Sectign 3, we assume that E(I a, 12") < m, for some 6 > 0. This allows us to 
establish the consistency of the least squares estimators for 4Iand 42as well as 
for the estimator for a2= E(a:). In addition, a central limit theorem is shown to 
hold for the estimators of 4Iand 42.An hypothesis test, to test whether 4I= 42,  
is developed in Section 4. The asymptotic distribution of the associated test 
statistic is also obtained. Finally, in Section 5, we study, via simulation, the 
general behavior of model (1.1) and the small-sample performance of the 
parameter estimators and of the hypothesis test when the error terms, {a,}, are 
normally distributed. 

2. Ergodicity 

We note that {Z,;t 2 0), as defined in (1.1) is a Markov chain with state space 
(R, B) ,  where B is the Borel a-algebra on the real numbers R. The transition 
density is given by 

(2.1) p(x, y ) = f ( y  -41x ' -+zx) .  

If p is Lebesgue measure on R, then {Z,;t 2 0} is p-irreducible and aperiodic 
(see Orey (1971) for the relevant definitions). 

The following theorem gives necessary and sufficient conditions on the 
parameters 4I and 42for the process {Zt} to be ergodic. 

Theorem 2.1. The process {Zt , t 2 0}, defined by (1 .I), is ergodic if and only if 
4, and 42satisfy 

(2.2) 1 4 2 < 1  and 4 1 ~ 2 < 1 .  

The region of ergodicity described by (2.2) is illustrated in Figure 2.1 below. 
The proof of Theorem 2.1 is divided into the following four lemmas, the first 

of which proves the sufficiency of Condition (2.2). 

Lemma 2.1. If 4, and 42satisfy (2.2), then the process {Z, ; t 2 0) is ergodic. 
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REGION 1 

REGION 11 

4 ,4*=1 j 
Figure 2.1 

Proof. Defining the transition function for the Markov chain {Zt}by 

then it is easy to show that the transition law {P(x,. )} is strongly continuous (see 
Tweedie (1975), p. 393). The result of the lemma will follow from Theorem 4.2 of 
Tweedie (1975) if we can find a compact set K C 93, having positive Lebesgue 
measure, and a non-negative measurable function g on R such that 

(i) SRp(x, ~ ) g ( y ) d y  5 g(x)- 1, X EK,  
(ii) $RP(x, y)g(y)dy = A (x)5 R <a,x E K,  for some fixed R >0. 
From (2.2) it is possible to find positive constants a and b such that 

1> > - (ab- ' )  and 1 > 4z> - ( b a ' ) .  Then, by choosing 

it can be shown that there is an M >O such that Conditions (i) and (ii) hold for 
K = [ - M , M ] .  

The proof of the necessity of (2.2) in Theorem 2.1 is divided into three 
lemmas. These lemmas, labelled 2.2-2.4 below, prove the non-ergodicity of the 
process ( 2 , ;t 2 0 )  for values of 41and 42which lie in regions I ,  11, and Il l  
(shown in Figure 2.1) respectively. 
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Lemma 2.2. If 11 or +2 2 1 (Region I in Figure 2.1) then the process { Z f )  
is not ergodic. 

Proof. Without loss of generality we consider the case 1 1 .  Assume first 
that > 1. Then for Z-l>0, E(Z ' 1  z , -~)= +,Z-,.Thus for any 1< q < and 
z-1>0, 

by Markov's inequality. Choose M >0 such that c =2~ ( I  al  1)[(q - 1)M]-I < 1. 
Then, whenever Zl>M, (2.3) implies that 

which in turn implies that 

2 (1- c [2-I(q + l)]-I)(l- c )  = (1-@)(I - c ) ,  

where p = 2 (q  + I)-' < 1. Continuing in this manner, we have, whenever Z1> 
M, 

-> (1- c)ll(l-@)-

for all t. Consequently for any ZoE W, 

Hence, {Z,)is not ergodic for > 1. 
If 4,= 1, then, given Z1>0, Z, =Z,-l+ a,, t > 1, is a random walk until the 

first time 2,< O .  However, for such a random walk, E ( T  IZ 1 ) = m  where 
T = inf {t>0 :Z, E ( - m, 0)). Since P ( Z 1>0 IZo)>0 for any ZoE R, Theorem 7 
of Tweedie (1974) implies that (2,)is not ergodic. 

Lemma 2.3. If <0 and > 1 (Region I1 in Figure 2.1), then the 
process {Z,)is not ergodic. 

Proof. Again, without loss of generality we consider only the case < -1 
and 4142> 1. The proof is similar to that for Lemma 2.2 except that we show 
that the Markov chain {Z2,;t 2 0 )  has the property that, for any ZoE W, 

(2.4) P(Z2,+m ( Zo)>0.  

In particular, it can be shown that for 1 < 17 < there is an M >0 such that 
Z2>M implies 
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In addition, whenever Z1-2>0, E(I  Z, -E(2,I Z14)) 1 Z1-2)5 6 < CQ for t 2 2. By 
choosing M large enough so that (2.5) holds and 25[(7/ - 1 ) ~ ] - ' <  1, an 
argument similar to that used in the proof of Lemma 2.1 implies that (2.4) holds. 
Since the chain {Z2,) is not ergodic, neither is (2,). 

Lemma 2.4. If <0 and = 1 (Region 111 in Figure 2.1), then the 
process {Z,) is not ergodic. 

Proof. For definiteness, let 415 - 1, - B 5 +2 <0, and 4142= 1. Then, for 
Z 2 < 0  and t 2 2 ,  

But, for t = 3,5,7,.  . ., the right side of (2.6) can be written as Z,-2+ y,, where 
{y2j+l;j 2 1) is an i.i.d. sequence of zero-mean random variables. Define the 
random walk {Y, ;t 2 1) by Yl = Z1and 

Consider the stopping times 

T (Z)  = inf {t >0 :Z:z,+lE (0, m)) 

and 

T(Y) = inf { t  >0 : Y,+]E (0, m)). 

Now (2.6) implies that {T(Y) > n) c{T(Z) > n) whenever Z1<0. Since the 
process {Y,;t 5 T(Y)) is a random walk and E(yl )  =0, 

whenever Z1<0. The result follows. 

Remarks. 
1. In terms of the Markov chain {Z,), the results of Lemmas 2.1-2.4 imply the 

following: 
(a) The chain is positive recurrent when (2.2) holds. 
(b) The chain is transient for and 42in the interior of Regions I or I1 (see 

Figure 2.1). 
(c) For and +2 in Region 111 or on the boundary of Region I (Figure 2.1), 

Lemmas 2.4 and 2.2 show that the process is not positive recurrent; we 
conjecture that it is null recurrent in these cases. 

2. Jones (1978) obtained a sufficient condition for the ergodicity of models of 
the form (1.2) with h ( .) continuous and a, absolutely continuous. Subsequently, 
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Tong and Lim (1980) applied this condition to their TAR. In both cases, sufficient 
conditions for ergodicity are derived from Corollary 5.2 in Tweedie (1975). 
However, in our case, (2.2) represents a much larger region of ergodicity than 
the region I 4,I< 1 and 1 421 < 1 which would result if Corollary 5.2 in Tweedie 
(1975) were applied to our model (1.1). 

3. The sufficiency of (2.2) may be easily shown to apply for any error term 
distribution such that E(I  a, I") <m, some 0 < a < 1, by taking 

in Lemma 2.1. 
When (2.2) holds, Theorem 2.1 implies the existence of an invariant probabil- 

ity distribution for { Z , ) .Additionally, we obtain the following result, which will 
be used in Sections 3 and 4 and the proof of which appears in Appendix 1. 

Theorem 2.2. Assume E(I a, 12") <w for some 5 >0. Then if 4, and 42 
satisfy (2.2), the invariant probability distribution for the chain { Z , )  has a finite 
second moment. 

Remark. By using methods similar to those in the proof of Theorem 2.2, we 
can show that if E(I  a, I b " )  <w, for some 5 >0 and any 0 5 b Im, then the 
invariant probability distribution for the chain { Z , )has moments of order 6 or 
less. 

We are now able to consider estimators for the parameters 4Iand 42and the 
properties of these estimators. 

3. Estimation of model parameters 

In this section, we assume that the error sequence { a , )has a finite absolute 
moment of order 2 + 5, for some 5 >0, so that the stationary distribution for { Z 1 )  
has a finite second moment. Let u 2  denote the common variance of the error 
terms. In what follows we shall also take Z to be a random variable, having as its 
distribution the invariant probability distribution for {Z , ) ,and will denote ( z? )~  
and (z:)~ by zZkandZTk.  The least squares estimators for the parameters + I  

and 42are 

and the corresponding natural estimator of u Z  is 
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We note that d l ,d 2and k 2are also the maximum likelihood estimators for d l ,  
d2 ,and k 2 ,respectively, under the assumption of a normal error distribution. 

The next two theorems establish consistency and asymptotic normality, for the 
estimators in (3.1)-(3.3), when the process {Z , )is ergodic. 

Theorem 3.1. If +I and satisfy (2.2) then d l ,  d z ,  and k 2 are consistent +2 

estimators of 42,and a 2 ,  respectively. 

Proof. We first note that (3.1) and (3.2) may be rewritten as 

and 

Since the Markov chain {Z,)is ergodic, it is strong mixing. This implies that {zTk) 
is strong mixing for any power k as is {Z:-I a,}.  Hence these latter processes are 
also ergodic. Using Hannan (1970) (Theorem 2, p. 203) we obtain, as n +m, 

and 

so that d l+ +Ia.s. as n +a. Similarly, d2+ d 2  a s .  as n +x 

From (3.3), we obtain 

and so, by the above results, 6% u2a s .  as n +a. 

Theorem 3.2. If +, and satisfy (2.2). then 

lim P ( ( ~ E( z '~ ) ) "~($~  ( ~ ~ - ~ ) ) " ' ( 4 ~  = @(x)@(y) ,.-* - $0 5 XU, ( n ~  - 42)5 y u )  

where a(.)is the standard normal distribution function. 

Proof. Let 5, and t2ER and consider 

5 1 ( n ~ ( ~ ' 2 ) ) 1 ' 2 ( $ I- - 4').q51)+ 5 2 ( n ~ ( ~ - 2 ) ) 1 " ( d 2  
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This is asymptotically equivalent to 

(3.6) 	 n-'IZ2
n 

($l~:-la, + $2Z1-1al), 
1 = 1  

where $I = and $Z (z -~)"~.However,/ E ( z ' ~ ) ~ ' ~  = t 2 / ~  

{$lZ:-lal + $~Zl -~a , ,t 2 1) 

is a martingale difference sequence satisfying the conditions of Theorem 23.1 in 
Billingsley (1968). Consequently, (3.6) converges in law to an N(0, a:) distribu-
tion where a: = a'((: + 5:). This implies the result. 

4. 	A hypothesis test for the equality of 4Iand 42 

Suppose we wish to test the null hypothesis 

Ho: 41 = 42= 4 
versus the alternative hypothesis 

Assuming the error terms {a,) to be normally distributed, a rejection region 
for the likelihood ratio test is given by 

(4.1) 	 A < C,= [&2/&~]'n-1)12 c > 0, 

where 

& k = n - ' g ( z , - & ~ , - , ) '1=1 with , = I  ,= I& = ~ ~ ~ z ~ - ~ / ~ z ; - ~  

and e2is given by (3.3). 
Asymptotically, the distribution of -21n A is independent of the distribution 

of the {a,)provided that E(I a, 12") < m, for some 6 > 0, as the following shows. 
From (4.1) we have that 

NOW, by Theorem 3.2, under Ho,as n jm 

33 


[ f i ( & 1 -  +I), *42 - 4211 - [Yl?y 2 1  
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where Y,, Y2 are i.i.d. N(0, 2 a 2 / E ( ~ ' ) )random variables and 5is convergence 
in distribution. This implies that 

From (4.2), a Taylor series expansion shows that -21n A is asymptotically 
equivalent, under Ho, to 

This last quantity converges in law to (Yl - which has ,y2Y ~ ) ~ E ( z ~ ) / ~ ~ ~  a 
distribution with one degree of freedom. Hence we conclude that P(- 21n A 5 x )  
converges in law to a ,y2 distribution function with one degree of freedom, as 
n -+m, under the null hypothesis. 

5. Small-sample properties 

Simulations of model (1.1) were run to determine the small-sample properties 
of the estimators defined in Section 3 and the hypothesis test defined in Section 
4. In all simulations, the distribution of the {a,}was taken to be N(0,l). For $,, 
4~~ip the interior of Regions I and I1 of Figure 2.1, the transient nature of the 
process was readily apparent as diverging sample values caused machine 
overflows in every instance tested. For in Region 111, the hyperbolic 
boundary of the region of ergodicity, or on the boundary of Region I, no such 
overflows occurred. This behavior is similar to that of an A R ( ~ )  process when 
14 / > 1 and / + / = 1, respectively. 

Selected results from the simulation are tabulated in Tables 5.1 and 5.2. The 
parameter values for $, and 42represented in these tables lie in the region of 
ergodicity and in Region 111 of Figure 2.1. For each $,, <PI pair, 1000 simulations 
were run, first with 50 observations (Table 5.1) and again with 100 observations 
(Table 5.2). The sample values generated by each simulation were used to obtain 
estimators for $,, ~ $ 3 ~and a2via (3.1)-(3.3) and -21n A was calculated from (4.1). 
The quantities recorded in Tables 5.1 and 5.2 (see Appendix 2 for the 
computational formulas) are: 

M(&) - average c$, for 1000 simulations, j = 1,2, 


SE($,) - standard error of 6, for 1000 simulations, j = 1,2, 




TABLE5.1 
Simulation results based on 1000simulations of 50 observations each 

4I 4 2  ~ ( 4 , )  S E ( ~ , )  ~ ( 4 , )  SE(&,) MESE($,) S E S E ( ~ , )  MESE(&,) SESE(&,) M(G) SE(+) POI a 5  

0.9 0.5 0.838 0.127 -0.132 12.119 0.090 0.039 0.665 9.447 0.954 0.192 0.069 0.248 
0.9 -0.5 0.860 0.085 -0.943 3.909 0.072 0.021 0.777 3.585 0.959 0.197 0.678 0.861 
0.9 
0.1 
0.1 
0.1 

-0.1 
-0.1 

*-0.1 

-10.0 
0.5 

-0.5 
- 10.0 

0.5 
-0.5 

-10.0 

0.894 
0.039 
0.087 
0.101 

-0.144 
-0.102 
-0.098 

0.034 
0.259 
0.167 
0.031 
0.268 
0.175 
0.007 

-10.134 
0.451 

-0.510 
-0.992 

0.462 
-0.508 
-9.996 

1.817 
0.182 
0.248 
0.317 
0.160 
0.224 
0.052 

0.033 
0.237 
0.166 
0.029 
0.259 
0.171 
0.003 

0.010 
0.051 
0.018 
0.005 
0.059 
0.018 
0.003 

1.224 
0.159 
0.232 
0.294 
0.151 
0.213 
0.030 

1.842 
0.031 
0.034 
0.056 
0.025 
0.027 
0.032 

0.952 
0.953 
0.965 
0.962 
0.967 
0.961 
0.959 

0.202 
0.197 
0.202 
0.204 
0.199 
0.204 
0.197 

0.971 
0.101 
0.283 
1.000 
0.228 
0.117 
1.000 

0.984 
0.248 
0.516 
1.000 
0.470 
0.289 
1.000 

9 
P 
-0 
m
4 
;a

2 
-0.9 
-0.9 

0.5 
-0.5 

-0.930 
-0.880 

0.328 
0.169 

0.474 
-0.484 

0.135 
0.143 

0.307 
0.163 

0.068 
0.024 

0.125 
0.134 

0.015 
0.018 

0.968 
0.959 

0.196 
0.193 

0.943 
0.211 

0.984 
0.461 

0 
m 
P 

0.9 0.9 0.714 0.562 0.673 1.113 0.190 0.448 0.206 0.746 0.950 0.199 0.010 0.067 t 
0.5 

-0.5 
0.5 

-0.5 
0.436 

-0.499 
0.202 
0.182 

0.440 
-0.492 

0.209 
0.168 

0.183 
0.173 

0.047 
0.020 

0.184 
0.173 

0.049 
0.021 

0.967 
0.956 

0.196 
0.195 

0.014 
0.009 

0.067 
0.047 

%z u 
-0.9 

*-0.2 
-0.9 
-5.0 

-0.877 
-0.196 

0.105 
0.011 

-0.878 
-4.997 

0.101 
0.044 

0.092 
0.006 

0.024 
0.006 

0.093 
0.028 

0.024 
0.029 

0.958 
0.951 

0.204 
0.202 

0.013 
1.000 

0.065 
1.000 9 

K 
-0.2 
-0.19 

-4.9 
-5.0 

-0,190 
-0.180 

0.019 
0.022 

-4.891 
-4.991 

0.077 
0.096 

0.013 
0.016 

0.008 
0.008 

0.064 
0.081 

0.038 
0.039 

0.966 
0.958 

0.193 
0.203 

1.000 
1.000 

1.000 
1.000 s 

r 
2 

* Simulations for 4, and 4, in Region 111, Figure 2.1 < 
0 

? 
8 
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MESE($~)- average estimated standard error of for 1000 simulations, 
j = 1,2, 

SESE($,) - standard error of the estimated standard error of for 1OOO 
simulations, j = 1,2, 

~ ( 6 )  - average 6 for 1000 simulations 

SE(&) - standard error of 6 for 1OOO simulations, 
~Ol(p05)- sample power of the hypothesis test at the 0.01 (0.05) level of 

significance. 
In the course of 1OOO simulations of series of length 50 with c$~ =0.9, at least 

one series consisted of only non-negative values. In theory, this presents no 
problem as one would fit an A R ( ~ )  to estimate the ARto such a series using 
coefficient ($, would be set to 0). However, for the purpose of simulation, this 
causes MESE(&) and SESE($~) to be infinite. To avoid this problem, our results in 
Table 5.1, corresponding to simulations with + I  =0.9, were obtained by using 
1000 simulations for which there were both positive and negative observations. 
We note that this situation did not occur for the longer series represented in 
Table 5.2. 

Among the properties observed in Tables 5.1 and 5.2 are the following: 
1. In general, and d2exhibit better overall performance when 4Iand 42 

are both negative. This may be a result of a fairly even distribution of positive 
and negative observations occurring for the negative values of + I  and +2 tested. 

2. As ~ $ 4 4 ~ )  1, while remains fixed, the parameterapproaches 
estimates for 42(41) become unstable. This is not true as the parameter values 
approach the hyperbolic lower boundary of the region of ergodicity. In fact, as 
the last three entries in each table indicate, the behavior of the parameter 
estimators $I and $2 is better when 4, and 42are on that lower boundary than 
when r$l and c $ ~  are near the boundary but in the ergodic region. One possible 
explanation for this phenomenon may be that, for relatively short series, values 
of + I  and 42in Region I11 of Figure 2.1 result in a greater separation of negative 
and positive observations, a situation which generally seems to result in more 
accurate estimation. 

3. On average, the expected standard error, MESE(. ), tends to underestimate 
the corresponding sample standard error, SE( .). 

4. The performance of 6 is consistent throughout and does not seem to be 
affected by the performance of $I or $2. 

6. Concluding remarks 

Extensions of these results to the more general SETAR (1 ;1, .  1) model (see a ,  

Tong and Lim (1980)), for both the known and unknown threshold case, are 
currently being investigated. 
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Appendix 1 

Proof of Theorem 2.2. Due to symmetry, we shall assume that 41<42 
without loss of generality. This implies that 1 421 < 1 and hence that there exists a 
ko2 1 such that 

ko= min {k 2 1 : 1 4142*-1< 1).1 
Note that for 4, i- 1 and - 1<4250, ko =2 by hypothesis and so k >2 only 
if - 1  and 0 < 4 1 ~ < 1 .  Let k*=ko-1 ,  a=max(l1$~1,14~1) and v =  
2" - 1. Then 

where {Si ;14 j 4 q},{pi;14j S q ) and {yi ;15 j 5 ko} are sequences of posi- 
tive constants depending only on 41, 42and ko while, for 1 5j 4 7, cj is a linear 
combination of {a,-,,+,+, ;1 5 1 5 ko} and as such has a finite absolute moment of 
order 2 + 5 and has zero mean and is independent of 2,-,,+,. We also note that, by 
definition, 0 5 a 1 42I k *  <1. From (A.1.1), we have 

(A.1.2) E(IZ,I 1~*-,,+,)4a ~ # J ~ I ~ ' I Z , - ~ ~ + M ~ ,  

where, by Markov's inequality, 

E(IZt-ko(I(~i>~jl~-bI)(~z-,,+,)~@~l~(~Ej~),
l S j S v ,  

and 

so that we may take 
ko 

M1 tx y,A + 2Si/3;'E(I q I). 
j=1 j=1 

However, (A.1.2) implies that, if RI  = rnaxa,l,,,+,E((Z 1 (ZO), then 

where p = [tlko] and [ . I  is the greatest integer function. But, the right side of 
(A.1.3) is bounded independently of t. Hence, there is a constant B1 >0 such that 

E ( I Z , ( I Z ~ ) ~ B ~ < : ~ ,Vt. 
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For any integer v L 2, we use (A.l.l) to obtain 

where f l  ( .,..., a )  is a polynomial in which the powers of I Z,-,, I do not exceed 
v -1 and all indicator functions are replaced by their upper bounds of 1. Using 
(A.1.4), with v =2, we obtain 

where f2(.) is a polynomial of degree 1 or less and 

so that we may take 

In addition, 

where f2(B1)is fz(x) evaluated at x = B,.Hence, letting M = M2+fi(Bl) and 
Rz = maxoslsb E(IZI l 2  ( ZO), 

Again, the right-hand side is bounded independently of t so that 

(A.1.6) E(I Z, 1 2 1  Z 0 ) 6B2< 

for some B2>0 and all t. 
Now choose an integer 1 such that I- '<  5 < 1. Let v =21 + 1 so that 

vll = 2 + I-' <2 + 5. Using (A.1.4) and the fact that, for 0 <a < 1, I Cr=lci 1" 5 
ZY-l 1 ci I", we obtain 

where p = vll and f'll'(.) is a polynomial in fractional powers {mll;m = 

1,. .,21) of 1 ZI-b1and {mll;m = 1,. .,21+ 1) of the 1 a 1's. Consequently, 
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where f:" is a polynomial in fractional powers {mll ;  m = 1,. . a ,  21) of I IZr-koand, 
since 

E(1 Zr-r, IPI(ej > pj 12;-,1) 1 zt-,) 5 PypE(l~j IP), 

we may take 

We now use (A . I .~ )  to obtain ~ ( f : " ( I ~ ~ - , 1 ) 1  zO)< B$)<co for some 0 < B:"< m 

and all t. Hence, taking M"' = M:" + BI" and R:' = ma%,,,, E(I Z,,, 1' I Zo), we 
can again bound E (  1 Z 1' I Zo) independently of t as we did to obtain (A.1.6). 

Using Feller (1971), pp. 251-252, along with the ergodicity of {Z,), we 
conclude that 

~ ( 1 2 ,l 2  ( z O ) + ~ ( I z I 2 ) < m  
for Z a random variable having the invariant probability distribution for {Zt). 

Appendix 2 Computational formulas for Tables 5.1 and 5.2 

Let {Zki; k = 1, .  . ., n} be the observations generated for the ith simulation, 
i = 1, .  . ., 1000, where n = 50 (Table 5.1) or yl = 100 (Table 5.2). In addition, for 
the ith simulation, let Gi denote the estimator for a and $,, denote the estimator 
for $,, j = 1,2. 

From Theorem 3.2, the asymptotic standard errors of dli and dzi are 
U ( ~ E Z + ~ ) - ~ ' ~  respectively. Hence, for the ith simulation, we and a ( n E ~ - * ) - " ~  
estimate these standard errors by 

The quantities in Tables 5.1 and 5.2 are then computed as follows: 
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and 

Finally, the quantity POI (~05)  is the proportion of the 1000 simulations for which 
the value of -21n A (see Section 4) exceeds X:,o.trl (X~. l , .~ ,~) .  
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