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SUMMARY
Statistical process control charts are intended to assist operators of a usually stable system in monitoring whether
a change has occurred in the process. When a change does occur, the control chart should detect it quickly.
If the operator can also be provided information that aids in the search for the special cause, then critical
off-line time can be saved. We investigate a process-monitoring tool that not only provides speedy detection
regardless of the magnitude of the process shift, but also supplies useful change point statistics. A likelihood
ratio approach can be used to develop a control chart for permanent step change shifts of a normal process mean.
The average run length performance for this chart is compared to that of several cumulative sum (CUSUM) charts.
Our performance comparisons show that this chart performs better than any one CUSUM chart over an entire
range of potential shift magnitudes. The likelihood ratio approach also provides point and interval estimates for
the time and magnitude of the process shift. These crucial change-point diagnostics can greatly enhance special
cause investigation. Copyright  2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Statistical process control (SPC) charts are used to
monitor for process changes by distinguishing the
special causes of variation from the common causes
of variation. Data from a process are collected, often in
subgroups, and a control chart statistic is compared to
one or more control limits. As long as the control chart
statistic is within its limits, the control chart suggests
that only the common causes of variation are present.
When the control chart statistic exceeds a limit, the
control chart signals that there may be one or more
special causes present.

An important aspect of how well a control chart
performs is how quickly it responds or reacts to
changes in a process. The sooner a process change
is detected by a control chart, the sooner the process
engineers can initiate their search for the special
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cause. Once the special cause has been identified the
appropriate action can then be taken to rectify or
improve the process.

In this paper, we investigate a control chart
that quickly detects changes in the mean of a
normal process for any magnitude. This magnitude-
robust chart also provides both point and interval
estimates of the time when the process change
first manifested itself and of the magnitude of that
change. These estimates can be valuable diagnostic
tools to help process engineers in identifying the
special cause responsible for the process change.
We show that the magnitude-robust control chart
can be derived from a likelihood ratio test for a
step change in a normal process mean. It turns
out that the cumulative sum (CUSUM) chart is a
special case of the magnitude-robust control chart.
We compare average run length performances and
show that the magnitude-robust chart has a better
overall average run length performance than that of the
CUSUM.
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2. COMMON CONTROL CHARTS FOR
MONITORING NORMAL PROCESS MEANS,

PROCESS BEHAVIOR MODELS AND
ASSOCIATED HYPOTHESIS TESTS

We will assume that the process to be monitored
can be modeled well with a normal distribution with
mean µ and standard deviation σ . We will assume
that subgroups consist of n independent observations,
allowing for the n = 1 case of individual observations.
When the process is in-control we will assume that
µ = µ0 and that the standard deviation is equal to
its in-control value of σ = σ0.

The Shewhart X chart is the most commonly used
control chart for monitoring the mean of a normal
process. The X chart operates by plotting XT , the
average for subgroup T , against the control limits
LCL = µ0 − 3σx and UCL = µ0 + 3σx , where
σx = σ0/

√
n. If XT < LCL or XT > UCL then the

chart signals that the process mean has changed.
Shewhart did not initially develop the X chart

from a hypothesis testing perspective. However, for all
intents and purposes, with each subgroup the Shewhart
X chart does conduct a test of the null hypothesis H0 :
µ = µ0 versus the two-sided composite alternative
Ha : µ �= µ0. With the standard control limits as given
above, the probability of type I error is 0.0027.

The average run length (ARL) has been traditionally
used to assess how quickly, on average, a control chart
reacts to process changes. The Shewhart X chart’s
ARL performance for detecting a step change in the
mean from µ0 to µ is easily obtained from ARL(µ) =
1/(1 − β(µ)), where β(µ) = �(3 − δ) − �(−3 − δ),
δ = (µ − µ0)/σx is the standardized magnitude of the
step change in the mean and � is the standard normal
cumulative distribution function.

Although the Shewhart X chart’s ARL is reasonably
low for large changes in the mean (i.e. |δ| ≥ 3), the
chart is fairly slow to react to small-to-moderately-
sized changes (i.e. |δ| ≤ 2). To improve ARL
performance for the X chart, supplemental Western
Electric runs rules (WERR) are often applied. Champ
and Woodall [1] investigated the ARL performance
of the X chart when the supplemental WERR were
applied. They found that the supplemental WERR
significantly improve the ARL performance for the
Shewhart X chart, but that it is still not as good as that
of the CUSUM control chart.

Developed by Page [2,3], the CUSUM chart was
derived from a sequential probability ratio test (SPRT)
of the null hypothesis H0 : µ = µ0 versus the simple
alternative Ha : µ = µa , where µa = µ0 + δaσx and
δa is the specific standardized magnitude of change

that one wishes to detect. The SPRT (see [4]) operates
by comparing the sequential probability ratio

SPR(T ) =
[ T∏

t=1

1√
2πσx

exp

( −1

2σ 2
x

(xt −µa)
2
)]

×
[ T∏

t=1

1√
2πσx

exp

( −1

2σ 2
x

(xt −µ0)
2
)]−1

(1)

to an appropriate constant A as each new subgroup T

is formed. If SPR(T ) > A, then the test concludes in
favor of Ha after observing subgroup T .

For δa > 0, it can be shown that the SPRT leads
to the following CUSUM procedure for detecting an
increase in the mean. For subgroup T , compute ZT =
(XT − µ0)/σx and then compare

S+
T = max{0, ZT − k+ + S+

T −1} (2)

to h+. If S+
T > h+, then signal that the process

mean has increased. The reference value k+ is often
taken to be 0.5 [5]. The choice of k+ is related to the
specific simple alternative hypothesis Ha through δa .
In particular, the SPRT leads to choosing k+ = δa/2.
Thus, the common choice of k+ = 0.5 (see [5]
or [6]) comes from the specific simple alternative
Ha : µ = µa , where µa = µ0 + 1σx .

It also follows that for δa < 0, the CUSUM for
detecting decreases in the mean is

S−
T = max{0,−ZT − k− + S−

T −1} (3)

and a signal is generated when S−
T > h−. Usually,

h+ = h− = h and k+ = k− = k. To detect changes
in either direction, two one-sided CUSUM charts are
monitored simultaneously.

Stoumbos and Reynolds [7] proposed a control
chart scheme that involves the SPRT. They suggested
using the SPRT to sequentially determine the required
sample size at fixed sampling intervals.

Note that the SPRT only considers two specific
states. That is, the SPRT considers the process to be
either in-control with µ = µ0 or else the process
is out-of-control with µ = µa . The SPRT does not
explicitly account for a possible change from one state
to another. That is, the SPRT’s underlying process
behavior model assumes that the process has been and
still is in the state of control (H0) or else the process
has been in the pre-specified out-of-control state (Ha)
since the process monitoring began. Also, this process
behavior model does not explicitly consider any out-
of-control value for the process mean other than the
prespecified µa .
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An alternative to the SPRT is to consider a change-
point model and a likelihood ratio test. The change-
point model assumes that the process is in-control for
a period of time before shifting to an out-of-control
state. Hinkley [8,9] considered some asymptotic
results related to this general approach. Pollak and
Siegmund [10] proposed a likelihood-based control
chart for situations involving an unknown initial mean.
Sullivan and Woodall [11] use the likelihood ratio test
to determine whether preliminary observations were
collected from an in-control or out-of-control process.
A generalized CUSUM was proposed by Lorden [12]
and generalized likelihood ratio control charts were
proposed by Basseville and Nikiforov [13]. Lai [14]
presented a summary of these methods as well as a
class of sequential detection rules. The strategy of
using the likelihood ratio for detecting a change in
a process is also mentioned in Crowder et al. [15].
The purpose of this paper is to evaluate the likelihood
ratio strategy for detecting and characterizing step
changes in the mean.

3. NORMAL PROCESS LOCATION STEP
CHANGE MODEL

Consider a permanent step change model for the
behavior of a normal process mean. The model
assumes that the process is initially in-control with
independent observations coming from a normal
distribution with a known mean µ0 and a known
standard deviation σ0. After an unknown point in
time τ ≥ 0 (known as the process change point),
the process location abruptly changes from µ0 to
µa = µ0 + δσx , where δ is the unknown magnitude
of the change. The model also assumes that once
this step change in the process location occurs, the
process remains at the new level µa until the special
cause has been identified and removed. It is in this
sense that we say that the location step change is
permanent.

The location step change model can be parameter-
ized as follows. During the formation of subgroups
t = 1, 2, . . . , τ , the process mean µt is equal to
its known in-control value of µ0. For subgroups t =
τ +1, τ +2, . . . , the process mean µt = µa where µa

is an unknown value of the mean when the process
is out-of-control. The unknown change point τ is
the last subgroup formed from the in-control process.
The special case τ = 0 indicates that the process was
out-of-control when the first subgroup was formed.
Letting T refer to the current or most recent subgroup,
then τ ≥ T indicates that a subgroup from the changed
process has not yet been formed.

Traditionally, the step change model has been
implicitly assumed when evaluating and comparing
the ARL performances of various control charts.
In some analyses [16,17], the change point is assumed
to be τ = 0. In such cases, the change point
model reduces to the process behavior model that is
associated with the SPRT. The resulting ARL refers
to the performance of a control chart which is applied
to a process that is already out-of-control. This ARL
performance is referred to as the control chart’s initial
or zero-state ARL performance [18]. For an arbitrarily
large τ > 0, the ARL performance of a control
chart is called its asymptotic or steady-state ARL
performance [18].

4. THE LIKELIHOOD RATIO TEST AND
CONTROL CHART FOR A NORMAL

PROCESS LOCATION STEP
CHANGE MODEL

After observing T subgroups, the null hypothesis of
interest is that the process has been and still is in-
control. Thus, H0 : µt = µ0 for 1 ≤ t ≤ T , where µ0
is the known value for the mean when the process is in
control. The alternative hypothesis is that the process
was initially in-control, but following some change
point τ , the process mean changed from µ0 to µa

where µa is unknown. Thus, the alternative hypothesis
can be stated as Ha : µt = µ0 for 0 ≤ t ≤ τ and
µt = µa for τ + 1 ≤ t ≤ T where both τ and µa are
unknown.

Given the T subgroup averages, the likelihoods for
H0 and Ha and their ratio can be considered for this
hypothesis testing situation. Implemented as a control
chart, this likelihood ratio test is conducted as each
new subgroup T is formed until a signal is issued.
The likelihood under the null hypothesis H0 : µt = µ0
for t = 1, 2, . . . , T is

L0(x) =
T∏

t=1

1√
2πσx

exp

(
−1

2

(
xt − µ0

σx

)2
)

(4)

Assuming a location change point at τ , the likelihood
under the alternative hypothesis is

La(τ, µa |x) =
τ∏

t=1

1√
2πσx

exp

(
−1

2

(
xt − µ0

σx

)2
)

×
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t=τ+1

1√
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2
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(5)
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The natural logarithm of the ratio of La to L0 can be
expressed as

R(τ,µa |x) = loge

La(τ, µa |x)

L0(x)

= 1

2σ 2
x

( T∑
t=τ+1

(xt − µ0)
2

−
T∑

t=τ+1

(xt − µa)
2
)

(6)

Sufficiently large values of this ratio favor the
alternative hypothesis that a step change in the mean
occurred.

Since τ and µa are unknown, the test is conducted
by determining the value of R(τ,µa |x) maximized
over all possible values of µa and τ given the
observed subgroup averages, x′ = [X1,X2, . . . , XT ].
This maximum value is denoted as RT .

For any given value of τ , it is easy to show that the
value of µa which maximizes R(τ,µa |x) is

µ̂a(τ ) = XT,τ = 1

T − τ

T∑
i=τ+1

Xi (7)

the average of the T − τ most recent subgroup
averages. Substituting µ̂a(τ ) for µa in R(τ,µa |x) in
(6) and reducing,

R(τ, µ̂a(τ )|x) = T − τ

2σ 2
x

(XT,τ − µ0)
2 (8)

can be expressed as a function of τ . Thus, for each new
subgroup T , the maximum of the log-likelihood ratio
is

RT = R(̂τ , µ̂a (̂τ )|x) = max
0≤τ<T

R(τ, µ̂a(τ )|x) (9)

where τ̂ is the value of τ which maximizes
R(τ, µ̂a(τ )|x) in (8). If RT is sufficiently large, say
RT > B where B is an appropriate constant, then the
test concludes in favor of Ha .

Consider the implementation of this hypothesis
test as a control chart. Once each new subgroup T

is formed, the statistic RT would be computed and
plotted against an upper control limit of B. If RT > B

then this control chart would signal at subgroup T

that there is evidence of a step change in the mean.
Furthermore, when this control chart signals,

τ̂ = arg max
0≤t<T

T − t

2σ 2
x

(XT,t − µ0)
2 (10)

and

µ̂a(̂τ ) = XT ,̂τ = 1

T − τ̂

T∑
i=τ̂+1

Xi (11)

provide (maximum-likelihood) point estimates of the
change point τ and the new process mean µa ,
respectively.

It should be noted that the standard one-sided
CUSUM charts given in Equations (2) and (3) are
special cases of the magnitude-robust chart when δ =
δa is a known fixed quantity. If a specific δa > 0
is given, then it can be shown that maximizing the
log-likelihood ratio in (6) results in the use of S+

T

in Equation (2) with k = δa/2. Thus, the standard
CUSUM with k = 0.50 results from fixing δa =
1. Similarly, S−

T in Equation (3) follows when the
specified δa < 0 and the reference value is taken to be
k = −δa/2. The chart which we are considering uses
the same likelihood approach, but with an unknown µa

(or, equivalently, δa). So, an advantage of this control
chart is that prior knowledge or specification of δa is
not required to fine tune the chart.

Another distinct advantage of using a control chart
derived from the likelihood ratio approach is that it
provides valuable diagnostic tools which can help
process engineers focus their search for the special
cause. Along with the signal of a process change,
the chart being investigated here additionally provides
process engineers with point and interval estimates
of both the magnitude of the change and when that
change first manifested itself in the data.

Samuel et al. [19] considered some of the point
estimation properties of τ̂ . Pignatiello and Samuel
[20] showed that the point estimate τ̂ is much less
biased than the CUSUM chart’s built-in estimate of
the change point. They also showed that a confidence
set for τ (based on [21]) which provides at least 90%
coverage for δ ≥ 1 can be constructed as

C = {t | R(t, µ̂a(t)) > RT − 2.97} (12)

where T represents the subgroup when the control
chart signaled and RT is the maximum value of the
log-likelihood function from (9). Process engineers
could consider any t ∈ C as a possible last
subgroup from the in-control process. Finally, a 90%
confidence interval on µa can be given as µ̂a (̂τ ) ±
1.645σx/

√
T − τ̂ .

5. AVERAGE RUN LENGTH COMPARISON

Understanding that additional benefits of this method
are estimates of the time and magnitude of the
process change, we now focus attention on the chart’s
detection performance relative to some common
alternatives. Specifically, we compare the ARL
performance of the likelihood-ratio-based chart to that
of three CUSUM charts, which differ in the reference
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values k and corresponding decision intervals h.
Each CUSUM chart is designed to detect different-
sized shifts in the mean. Although the k = 0.50
CUSUM is predominately used in practice, it is also
insightful to compare the ARL performances of the
k = 0.25 and k = 1.00 CUSUM charts. Later, we
also consider the combined Shewhart–CUSUM chart
[22] with Shewhart limits placed at ±3.5σx .

The performance comparison assumes that a step
change of magnitude δ occurs following subgroup
τ ≥ 0. Although several methods including integral
equations [16,17] and Markov chains [23] exist for
computing ARLs for CUSUM charts, these methods
cannot be extended for the likelihood-ratio-based
chart. Thus, Monte Carlo simulation is used to
estimate ARLs for all of the control charts. To partially
verify this approach, simulations of the CUSUM
charts were run for τ = 0 and essentially the same
results given by the integral equations approach were
obtained. These simulation results also agreed with
published steady-state ARL results for τ > 0.

In the next section, simulation modeling of the
step change is described. Some issues related to the
handling of false alarms when τ > 0 and making
fair ARL comparisons is then discussed. Finally, ARL
results are presented and compared with those of some
other control charts.

5.1. Simulation modeling of a step change

Monte Carlo simulation was used to estimate the
ARL performances of the various control charts.
The simulation study was conducted as follows.
Observations were generated from an in-control
normal distribution for subgroups t = 1, 2, . . . , τ .
Starting with subgroup τ + 1, observations were
generated from a normal distribution with mean µa =
µ0 + δσx . Without loss of generality, µ0 = 0 and
σx = 1. That is, the simulations focussed on the
Zt = (Xt − µ0)/σx which are N(0, 1) when the
process is in-control and N(δ, 1) after the change
point. Step changes of standardized magnitudes δ =
0.25, 0.50, . . . , 5.00 were examined. Observations on
Zt were collected until the control chart issued a signal
at subgroup T . The length for that run was recorded as
T − τ . This procedure was then repeated for a total
of N independently-seeded runs for each value of δ.
A total of N = 100 000 independently-seeded runs
were used for each estimated ARL.

5.2. False alarms

The simulation modeling of false alarms needs to
be carefully addressed. When τ > 0 and a control

chart issues a signal at subgroup T where T ≤ τ , then
the signal is a false alarm since the signal was given
before the simulated process change could occur.
When a false alarm was encountered in a simulation
run, it was treated in the same way that a false alarm
would be treated on an actual process. Namely, if one
determines that a signal is indeed a false alarm, then
one is affirming that the process is currently in-control
and could restart their monitoring of the process. Thus,
when a false alarm was encountered at subgroup T , the
control chart was restarted at subgroup T +1 while not
altering the scheduled change point.

For example, if the change point was τ = 25 and
a false alarm was issued at subgroup 10, then the
appropriate statistics would be zeroed out and that
simulation run would continue as if subgroup 11 was
the first one from an in-control process. The process
change would still occur at τ = 25. Thus, if
there were no other false alarms on this particular
run, there would have been 15 subgroups observed
from the restarted in-control process when the first
subgroup from the changed process (i.e. subgroup 26)
is observed. With this approach, the number of
subgroups since the chart was started or restarted that
have been observed from the in-control process at the
time of the process change will not necessarily be fixed
at τ , but will instead be random and less than or equal
to τ .

5.3. ARL calibration of control charts

Each control chart was calibrated so that when
the process was in-control, the ARL was equal to
about 168. This specific ARL value was chosen since
the standard k = 0.50 CUSUM with a commonly-
recommended decision interval of h = 4 has an
in-control ARL of 167.7 according to Vance [16] and
Gan [17]. For the other two CUSUM charts, decision
intervals of h = 6.53 (k = 0.25) and h = 2.129 (k =
1.00) produced estimated in-control ARLs of 167.9
and 168.4, respectively. Simulation revealed that B =
4.87 resulted in an estimated in-control ARL of 167.6
for the likelihood-ratio-based chart. This estimate was
based on N = 100 000 independently-seeded runs,
yielding an approximate 95% confidence interval of
[166.6, 168.7].

5.4. Initial ARL performance comparisons

The first scenario considers control chart ARL
performance for processes that are out-of-control
when the charts are first applied, i.e. when τ = 0.
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Table 1. ARL comparison, τ = 0. Each estimated ARL is based on N = 100 000 independently-seeded runs. Rounded standard errors greater
than or equal to 0.01 are shown in parentheses

CUSUM

δ Magnitude-robust k = 0.25 k = 0.50 k = 1.00

0.25 68.51 58.48 74.26 103.98
(0.18) (0.15) (0.22) (0.32)

0.50 26.57 22.94 26.72 44.24
(0.06) (0.04) (0.07) (0.13)

0.75 14.20 13.44 13.29 20.28
(0.03) (0.02) (0.03) (0.06)

1.00 8.92 9.42 8.42 10.83
(0.02) (0.01) (0.01) (0.03)

1.25 6.24 7.26 6.06 6.74
(0.01) (0.01) (0.01) (0.02)

1.50 4.69 5.94 4.75 4.70
(0.01) (0.01) (0.01) (0.01)

1.75 3.68 5.02 3.91 3.56
(0.01) (0.01)

2.00 3.01 4.37 3.35 2.87
(0.01)

2.25 2.52 3.88 2.93 2.41
2.50 2.16 3.50 2.62 2.08
2.75 1.89 3.19 2.39 1.83
3.00 1.68 2.94 2.20 1.65
3.25 1.52 2.73 2.04 1.50
3.50 1.38 2.54 1.92 1.38
3.75 1.28 2.38 1.81 1.27
4.00 1.19 2.25 1.71 1.20
4.25 1.13 2.15 1.61 1.13
4.50 1.08 2.07 1.50 1.09
4.75 1.05 2.02 1.40 1.05
5.00 1.03 1.98 1.31 1.03

B = 4.87 h = 6.53 h = 4.00 h = 2.129

Table 1 shows the corresponding estimated ARL
values and their associated standard errors.

The results indicate that the CUSUM charts perform
well when detecting the shifts which are close to the
ones for which they were specifically designed. For
example, the k = 0.25 CUSUM has the lowest ARL
for changes of magnitude δ ≤ 0.50. For changes of
magnitude of 0.75 ≤ δ ≤ 1.25, the standard k = 0.50
CUSUM provides the lowest ARL. For changes of
magnitude of δ ≥ 1.50, the k = 1.00 CUSUM
provides the lowest ARL. Although each CUSUM
chart performs the best in the δ region close to δ =
2k, no single CUSUM control chart is uniformly
best.

It can be seen that although the k = 0.25
CUSUM performs well for small changes, it does
not perform as well as any of the other charts at

detecting large changes. Conversely, the k = 1.00
CUSUM which performs quite well at detecting the
large changes does not perform particularly well for
small changes. The k = 0.50 CUSUM can be
considered somewhat of a compromise in that it does
not perform badly for small or large changes, and it
does expectedly well for changes close to δ = 1 in
magnitude.

For quick detection of step changes regardless of
the magnitude, the magnitude-robust chart should be
considered, since it has a strong ARL performance
for changes of all magnitudes. It outperforms the
k = 0.50 CUSUM for changes of magnitude δ =
0.25, essentially performs the same for changes of
magnitude 0.50 ≤ δ ≤ 1.25 and performs better for
changes of magnitude δ ≥ 1.50. Although it does not
have the best ARL performance at any specific value
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Table 2. ARL comparison, τ = 50. Each estimated ARL is based on N = 100 000 independently-seed runs. Rounded standard errors greater
than or equal to 0.01 are shown in parentheses

CUSUM

δ Magnitude-robust k = 0.25 k = 0.50 k = 1.00

0.25 65.41 53.85 72.75 103.46
(0.17) (0.15) (0.22) (0.33)

0.50 24.73 20.25 25.28 43.74
(0.06) (0.04) (0.07) (0.13)

0.75 13.17 11.64 12.41 19.85
(0.03) (0.02) (0.03) (0.06)

1.00 8.28 8.10 7.72 10.60
(0.02) (0.01) (0.01) (0.03)

1.25 5.85 6.21 5.55 6.52
(0.01) (0.01) (0.01) (0.02)

1.50 4.42 5.07 4.33 4.55
(0.01) (0.01) (0.01) (0.01)

1.75 3.49 4.30 3.57 3.44
(0.01) (0.01) (0.01)

2.00 2.87 3.74 3.05 2.78
(0.01)

2.25 2.42 3.32 2.68 2.33
2.50 2.09 3.00 2.40 2.01
2.75 1.83 2.75 2.18 1.78
3.00 1.63 2.53 2.01 1.60
3.25 1.48 2.36 1.87 1.46
3.50 1.36 2.20 1.76 1.34
3.75 1.26 2.08 1.65 1.25
4.00 1.18 1.97 1.56 1.18
4.25 1.12 1.89 1.47 1.12
4.50 1.08 1.82 1.38 1.07
4.75 1.05 1.76 1.29 1.05
5.00 1.03 1.71 1.22 1.03

B = 4.87 h = 6.53 h = 4.00 h = 2.129

of δ, there is no range of δ where it does not perform
well and it performs nearly the best for all values of δ.
In this sense, the magnitude-robust control chart is
robust to uncertainty in the magnitude of the change
in the mean.

5.5. Steady-state ARL performance comparisons

The second ARL performance study considers
control charts which are applied on processes that
are initially in-control, but experience a step change
of magnitude δ following the formation of subgroup
τ > 0. The results shown in Table 2 are for a change
point of τ = 50. From simulation experiments not
reported on here, the ARL performances of the control
charts for τ = 20 were approximately the same as for
larger values of τ such as τ = 100 and 200. Thus, the

results reported here are indicative of a wide range of
values of the change point.

Table 2 shows results similar to the τ = 0 case.
The k = 0.25 CUSUM has the lowest ARLs for
changes of magnitude δ ≤ 0.75. The standard k =
0.50 CUSUM has the lowest ARLs for magnitudes of
change in the 1.00 ≤ δ ≤ 1.50 range. The k = 1.00
CUSUM has the lowest ARLs when the magnitude of
change is δ ≥ 1.75. Again, there is no single best
control chart for all values of δ. The control chart
that has the best ARL performance depends upon the
magnitude of the change, δ.

Again, the k = 0.50 CUSUM does reasonably
well for both small and larger changes. However, the
magnitude-robust chart has a better ARL performance
than the standard k = 0.50 CUSUM for changes
of magnitude δ ≤ 0.50 as well as for changes of
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Table 3. ARL comparison with combined Shewhart–CUSUM scheme and FIR CUSUM, τ = 0

Combined
δ Magnitude-robust Shewhart-CUSUM FIR CUSUM

0.00 167.6 159.2 278.3
0.25 68.5 72.3 60.7
0.50 26.6 26.3 17.8
0.75 14.2 13.2 9.4
1.00 8.9 8.3 6.4
1.50 4.7 4.7 4.0
2.00 3.0 3.2 2.9
2.50 2.2 2.4 2.2
3.00 1.7 1.9 1.8
4.00 1.2 1.3 1.2
5.00 1.0 1.1 1.0

B = 4.87 h = 4.00 h = 8.00
k = 0.5 k = 0.25
z = 3.5 z = 3.5, S0 = 4

MACRO

LIKELIHD X RT
# Develops the control chart statistic RT(T) for the
magnitude-robust chart

MCOLUMN X MU R TEMP RT
MCONSTANT I N T MUNOT

LET N = COUNT(X)
LET MUNOT = 0

DO T = 1: N
DO I = 1:T
COPY X TEMP;

USE I:T
LET MU(I)=MEAN(TEMP)
LET R(I)=(T-(I-1))/2*(MU(I)-MUNOT)**2

ENDDO
LET RT(T) = MAX(R)

ENDDO

ENDMACRO

Figure 1. MINITAB macro for computing the magnitude-robust control chart statistic as well as the change point estimaters

magnitude δ ≥ 1.75. Over the range of magnitudes
0.75 ≤ δ ≤ 1.50, the difference in the ARLs of
the magnitude-robust chart and that of the standard
k = 0.50 CUSUM is not more than 0.76. Although the
magnitude-robust control chart does not have the best
ARL performance for any specific value of δ, it nearly
has the best ARL performance for all values of δ.
Thus, unless the magnitude of the change is known
a priori, we conclude that the magnitude-robust chart
has a better ARL performance over the entire range of
δ values.

5.6. Comparison with a combined
Shewhart–CUSUM scheme

Another alternative procedure that one might
consider is the combined Shewhart–CUSUM scheme
(see [22]), which augments a standard CUSUM chart
with a Shewhart X chart whose limits are placed at
±3.5σx . The ARLs of the magnitude-robust procedure
and the combined Shewhart–CUSUM scheme are
given in Table 3. The magnitude-robust chart and
the combined Shewhart–CUSUM scheme have similar
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Figure 2. Magnitude-robust control charts for data experiencing a 0.50σ
X

shift in the mean at t = 51. Realization 1 signals at t = 60, while
realization 2 signals at t = 89

ARL performances while that of the FIR CUSUM is
superior.

Certainly, the improved statistical performance
of a control chart is desirable. However, when
selecting a control chart to implement on a process,
there are other characteristics of the control chart
to consider. For example, the combined Shewhart–
CUSUM scheme requires simultaneous monitoring of
three control chart statistics and the FIR adds yet
another stipulation. Also, neither of these combined
schemes readily provide the user with any change-
point diagnostics. On the other hand, the magnitude-
robust chart requires that only a single statistic be
monitored against an upper control limit and readily
provides information on the time and magnitude of the

change point. In the next section, we use an example
to illustrate the design and use of the magnitude-robust
chart.

6. IMPLEMENTATION ISSUES

The magnitude-robust chart can be built in a similar
manner to most standard control charts for variables.
The RT statistic, which is the maximum of all
R(τ, µ̂a(τ )|x) values over 0 ≤ τ < T , can
be plotted on a chart against an upper control
limit of B. Determining RT requires T calculations
of R (Equation (8)), which increases the amount
of computation over most standard control charts.
However, a simple program can be written using a
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Figure 3. CUSUM control charts with h = 4, k = 0.5 for the same two realizations of data experiencing a δ = 0.50 in the mean at t = 51.
Realization 1 signals at t = 58, while realization 2 does not signal

common programming language or even a spreadsheet
to compute R for each subgroup. Computing RT for
relatively large values of T hardly takes any time even
on a modest personal computer.

Values of RT that exceed B are worthy of special
cause investigation. When RT > B, estimates for
the time and magnitude of the change (both point
estimates and confidence sets) can be provided to aid
the search for the special cause. Since point estimates
of the time and magnitude of the change are arguments
of the RT statistic, they are available immediately.
Another couple of lines of code (or cells in a
spreadsheet) can be added to calculate the confidence
set for the time of the change and the confidence

interval for the magnitude of the change. An example
Minitab macro (see Figure 1) demonstrates the relative
ease in coding the chart and the change point
diagnostics.

The magnitude-robust chart will be illustrated using
simulated data generated from known distributions.
Initially the data is drawn from random normal
variates from an in-control process with mean µ =
0.0 and standard deviation σx = 1.0. Starting at
t = 51, the data is drawn from a normal process with a
slightly higher mean, µ = 0.50, and the same standard
deviation (σx = 1.0). As a result, the example dataset
is in-control for n = 50 and experiences a 0.50 σx

shift in the mean at t = 51. Based on an average run
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Figure 4. Change-point estimates for dataset realization 2. (a) R versus subgroup index. Large R values correspond to most likely times for the
change point. The circled points show the eleven most likely times for the shift change to occur. (b) The estimated size of the shift

length for the magnitude-robust chart with B = 4.87
of about 25, we would expect the chart to signal out-
of-control sometime around t = 75, depending on the
actual dataset used.

Two realizations of the above-described data were
generated and the resulting control chart statistic RT

is plotted against the upper control limit B (Figure 2).
In each case, the control chart signals although the
time of signal varies. For comparison, the same data
was charted using a CUSUM with similar in-control

properties. The time of the signal was similar for
realization 1, but the CUSUM did not signal for any
of the 100 observations generated in realization 2
(Figure 3).

Once the magnitude-robust control chart signals,
diagnostics are immediately available regarding the
time and magnitude of the change. Figure 4 shows
change-point estimation plots from the realization 2
dataset, where the magnitude-robust chart signals at
t = 89. The top change-point plot shows computed
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Table 4. In-control ARLs for various values of B

B ARL

4.00 78.626
4.25 97.282
4.50 123.666
4.75 152.392
4.87 167.626
5.00 187.604
5.25 232.366
5.50 292.361
5.75 357.632
6.00 457.914

values for R at each sampling point up to the signal at
t = 89. The largest values for R indicate the most
likely time (̂τ ) the change occurred. A confidence
set of these most likely times can also be developed.
The estimates µ̂ are also calculated for each possible
change-point estimate. The µ̂ values associated with
the most likely time of the change can be easily
identified.

To design the magnitude-robust control chart, one
must select an upper control limit B to obtain a desired
in-control ARL of ARL0. We conducted additional
simulation runs (see Table 4) of the magnitude-robust
control chart with τ = 0, δ = 0 and N =
10 000. In-control ARLs were obtained for various
values of B. Applying ordinary least squares to those
simulation results yields the following approximately
linear relationship between the natural logarithm of
ARL0 and B

loge ARL = 0.8728 + 0.8732B (13)

Thus, to obtain a value of B for the magnitude-robust
control chart for a given ARL0, an approximate value
of B would be

B̂ = loge ARL0 − 0.8728

0.8732
(14)

assuming that one is interpolating within the range of
these data.

7. DISCUSSION

The magnitude-robust control chart offers some
significant advantages over existing control charts.
In addition to having better overall ARL performance,
the magnitude-robust control chart also provides
valuable information to process engineers concerning
the time of the change and the magnitude of the
change. Although the CUSUM chart also provides a
change-point estimator (but not a confidence interval),
Pignatiello and Samuel [23] showed that it is inferior

to the MLE τ̂ that the magnitude-robust control chart
provides.

The use of the likelihood function also suggests
a more efficient search strategy for identifying the
special cause. The traditional search strategy for
finding the special cause is to start with the time of
the signal, T , and work backwards in time. That is,
at the time of the signal, T , process engineers would
examine their logbooks and records corresponding to
the time frame of subgroup T . Assuming that nothing
was found corresponding to subgroup T , they would
then consider the time frames for subgroups T − 1,
T − 2, etc. This procedure would continue until
either: (1) the special cause was correctly identified;
(2) an incorrect cause was mistakenly identified as
the special cause; or (3) the search was (prematurely)
terminated since nothing was found. Obviously, both
of the last two outcomes result in some loss of
faith in using statistical methods and could lead to
abandonment of SPC altogether.

In contrast to the traditional search strategy, the
likelihood function can be used to help guide the
search by first examining the logbooks and records
for the time frame associated with subgroup τ̂ .
Assuming that the special cause is not identified
there, the next subgroup to consider would be the
one with the next-largest log-likelihood ratio. That
is, the subgroups t could be searched in order t[1],
t[2], . . . according to their associated log-likelihood
ratios R(t[1], µ̂a(t[1])) ≥ R(t[2], µ̂a(t[2])) ≥ · · · .
Thus, the process engineers could focus their search on
those subgroups that are most likely to be associated
with the change in the process. Also, associated with
each subgroup t is the estimated changed mean, µ̂a(t).

The benefit of using the likelihood-ratio approach
is that it not only produces a control chart with good
ARL properties, but it also provides an estimate of
the magnitude of the change and a confidence set
for when the process change first manifested itself
in the data. Identifying which combination of the
many process variables is responsible for a change
in a process allows engineers to improve quality by
preventing or avoiding changes in those variables
which lead to poor quality and by perpetuating those
changes and optimizing those variables which can
lead to better quality. Knowing when a process has
changed and by how much would simplify the search
for the special cause. If the time of the change
could be determined, process engineers would have a
smaller search window within which to look for the
special cause. Consequently, the special cause can be
identified more quickly and the appropriate actions
needed to improve quality can be implemented sooner.
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