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Abstract. One of the most challenging problems in econometrics is
the prediction of turning points in financial time series. We compare
ARMA- and Vector-Autoregressive (VAR-) models by examining their
abilities to predict turning points in monthly time series. An approach
proposed by Wecker[1] and enhanced by Kling[2] forms the basis to ex-
plicitly incorporate uncertainty in the forecasts by producing probabilis-
tic statements for turning points. To allow for possible structural change
within the time period under investigation, we conduct Data Mining by
using rolling regressions over a fix-sized window. For each datapoint a
multitude of models is estimated. The models are evaluated by an eco-
nomic performance criterion, the Sharpe-Ratio, and a testing procedure
for its statistical significance developed by Jobson/Korkie[3]. We find
that ARMA-models seem to be valuable forecasting tools for predicting
turning points, whereas the performance of the VAR-models is disap-
pointing.

1 Introduction

Facing the task of forecasting with a quantitative model, an economist usually
estimates a single model to produce point forecasts. Thereby the uncertainty in-
herent in any kind of forecast is neglected: ”The generation of a forecast is of no
great practical value if some measure of the uncertainty of that forecast cannot
also be provided.”[4]. In this paper, our intention is to explicitly incorporate this
uncertainty into probabilistic statements for turning points in monthly finan-
cial time series. We implement a Monte-Carlo-based regression introduced by
Wecker[1] and enhanced by Kling[2], which is described in section 2. To decide
which models (ARMA or VAR) perform better we take the view of a partici-
pant in the financial markets. Here one is not interested to optimize statistical
criteria, like Mean Squared Error etc., but in an acceptable profit for the taken
risk. The Sharpe-Ratio is a performance criterion which allows to relate the
profits to the risk of an investment. In section 3 we briefly review its basics
and a test for statistical significance of the Sharpe Ratio of two investments.
Section 4 describes our Data Mining approach to out-of-sample model selection

D.J. Hand, J.N. Kok, M.R. Berthold (Eds.): IDA’99, LNCS 1642, pp. 427–436, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



428 Thorsten Poddig and Claus Huber

with the rolling regressions and the research design to compare the ARMA- and
VAR-models. Section 5 presents empirical results and concludes.

2 Probabilistic Statements for Turning Points in Time
Series

As a first step to obtain a probabilistic statement about a near-by turning point
one has to define a rule when a turning point in the time series is detected. The
turning point indicator

zP
t =

{
1, if a peak occurs at time t
0, otherwise (1)

is defined as a local extreme value of a certain amount of preceding and succeed-
ing datapoints:

zP
t =

{
1, if xt > xt+i, i = −τ,−τ + 1, . . . ,−1, 1, . . . , τ − 1, τ
0, otherwise (2)

The trough indicator zT
t is defined in an analogous way.1 As we investigate

monthly time series, we define τ = 2. Choosing τ = 1 would result in a model
too sensitive to smaller movements of the time series, whereas with τ > 2 the
model would react with inacceptable delay. At time t the economist knows only
the current and past datapoints xt, xt−1, . . . , xt−τ+1, xt−τ . The future values
xt+1, . . . , xt+τ−1, xt+τ have to be estimated. Since the turning point indicators
zP

t , zP
t+1, . . . , respectively zT

t , zT
t+1, . . . , are functions of the future datapoints

Xt+1, Xt+2, . . ., they are random variables. Using econometric models and the
known xt, xt−1, ..., xt−τ+1, xt−τ , one can estimate x̂t+1, . . . , x̂t+τ−1, x̂t+τ . Here
it becomes clear that the ability for the detection of turning points critically
depends on the forecasting model. The time series (Xt) could be generated by
a univariate autoregressive process. In this case the following model is adequate
to describe the true data generating process (DGP):2

xt+1 = β0 + β1xt + β2xt−1 + . . . + βRxt−R+1 + εt+1 (3)

where βi are the regression coefficients, R is the order of the AR process, and εt+1

is a white noise disturbance term. Using optimisation techniques, such as Ordi-
nary Least Squares, a model can be estimated from the data so that E[β̂i] = βi.
The model reflects the supposed DGP. The standard deviations σβ̂i

of the esti-
mated regression coefficients β̂i and the standard deviation σε̂t+1 of the distur-
bance term are measures of the uncertainty of the forecast by the model and
can be used to judge the ability of the model to mimic the true DGP. High σβ̂i

1 Furtheron we do not explicitly distinguish between peaks and troughs.
2 The simple AR-process only serves for illustration purposes. More complex processes

(e.g. VAR-, non-linear processes) could be relevant as well. The time series (Xt) here
is meant to decribe a scalar. Generalisations to vector notation are straightforward.
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resp. σε̂t+1 correspond to high uncertainty, whereas low values of σβ̂i
resp. σε̂t+1

mean low uncertainty. After estimating x̂t+1, . . . , x̂t+τ the indicators zP
t and zT

t

can be computed. We are interested in a statement for the next turning point,
so we define

wP
t = w(zP

t−τ+1, z
P
t−τ+2, . . .) = k (4)

where k is such that zP
t+k = 1 and zP

t+j = 0, j < k. Verbally interpreted wP
t

expresses the number of periods until the next turning point. The following 6-
step Monte-Carlo procedure can be used to derive probabilistic statements for
near-by turning points:

1. Draw random numbers β̃1(1), β̃2(1), . . . , β̃R(1) from a multivariate normal
distribution with mean vector3 (β̂1, β̂2, . . . , β̂R)T and empirical variance-
covariance matrix of the regression coefficients.

2. Draw a random number ε̃t+1(1) from a univariate normal distribution with
mean 0 and variance σ2

ε̂t+1
.4

3. Compute x̃t+1(1) = β̃0(1)xt + β̃1(1)xt−1+ . . .+ β̃R(1)xt−R+1+ ε̃t+1(1). If τ >
1, draw ε̃t+2(1), . . . , ε̃t+τ (1) and iterate step 3 to obtain x̃t+2(1), . . . , x̃t+τ (1).

4. Compute zP
t−τ+1(1), . . . , zP

t+h−τ (1) and zT
t−τ+1(1), . . . , zT

t+h−τ(1).
5. Compute wP

t (1) and wT
t (1).

6. Repeat steps 1 to 5 N times.

The predictive distributions PP
t and PT

t for a near-by turning point can be
approximated by the empirical distributions wP

t (1), . . . , wP
t (N) and wT

t (1), . . . ,
wT

t (N). As an example take the following table derived from a Monte-Carlo-
Simulation with N = 10 drawings: There are three entries for a turning point in

Table 1. Example for determination of the turning point probabilities

n 1 2 3 4 5 6 7 8 9 10

wP
t (n) 3 0 2 1 2 2 1 2 2 1

t + 1 : wP
t (4) = 1, wP

t (7) = 1, wP
t (10) = 1. It follows that PP

t (WP
t = 1) = 3

10 =
0.3. The probabilities for one period are characterised by PP

t +PT
t ≤ 1. A turning

point ist detected, if PP
t reaches or exceeds a certain threshold θ, e.g. θ = 0.5.

Summarizing section 2, we explicitly incorporate uncertainty of the forecasts by
producing probabilistic statements for near-by turning points. Furthermore, by
not only considering one single model, but a family of N models, our forecasts
are more reliable than those of single models. To compare the ARMA and VAR
models, we need a measure of performance we base our decision on. It is discussed
in the next section.
3 The exponent T symbolizes transposition of the vector.
4 Kling[2], p. 212, estimates the turning points with a VAR model. He draws the

residual vector from a multivariate normal distribution with mean 0 and empirical
variance-covariance matrix of the residuals.
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3 Evaluation of Performance

The econometric model classes (ARMA and VAR) applied in this paper have
to be evaluated concerning their task to forecast turning points. Hence it does
not make sense in this context to rely on error measures of function approxi-
mation, such as MSE, MAE, etc. A participant in the financial markets usu-
ally is not interested in function approximation but in economic performance.
Unfortunately error measures of function approximation show little coherence
with trading profits[5]. Criteria especially developed to evaluate a model’s abil-
ity to forecast turning points were developed, amongst others, by Brier[6] and
Diebold/Rudebusch[7]. But those performance measures are similar to the er-
ror measures and a statistical test of significance is not available. One of our
main goals in this study is evaluation based on economic criteria such as profits
from a trading strategy. Since our models do not produce return forecasts but
probabilities for turning points, we have to measure performance indirectly by
generating trading signals from those probabilities: A short position is taken
when a peak is detected (PP

t ≥ θ, implying that the market will fall, trading
signal s=-1), a long position in the case of a trough (PT

t ≥ θ, market will rise,
s=+1), and the position of the previous period is maintained if there is no turn-
ing point. One possibility to evaluate the quality of the trading signal forecasts is
to count the number of correct forecasts and relate it to the number of incorrect
ones. Unfortunately, this type of performance measurement does not discrim-
inate between trading signals attributed to large and small movements of the
time series. A participant in the financial markets usually is interested to get
the large movements rather than the small ones. Correctly predicting the large
movements corresponds to the idea of maximising a profit-oriented criterion.
The Sharpe-Ratio, which is briefly described in the following, is such a criterion.
With the actual period-to-period return ractual,t we can calculate the return rm,t

from a turning point forecast of our model:

rm,t = s · ractual,t (5)

Subtracting the risk-free rate of interest rf,T from the average return of the model
r̄m = 1

T

∑T
t=1 rm,t over T periods yields the average excess return ēm = r̄m−rf,T .

The Sharpe-Ratio SR[8] relates ēm to the return’s standard deviation σm:

SR =
ēm

σm
(6)

The Sharpe-Ratio measures the excess return a model produces for a unit of risk
the model takes. Jobson/Korkie[3] developed a test for the null hypothesis

H0 : SRm − SRBM = 0 (7)
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of no significant difference between the Sharpe-Ratios of a forecasting model and
a benchmark.5 By re-arranging (7) and relating it to the variance δ of the two
Sharpe-Ratios6, Jobson/Korkie find that the test statistic

zm,BM =
ēm · σBM − ēBM · σm√

δ
(8)

asymptotically follows a standard normal distribution and is powerful in mod-
erately large samples. A positive and statistically significant zm,BM means that
the model outperforms the benchmark in terms of the Sharpe-Ratio. The next
section shows how the Jobson/Korkie-test was used within our Data Mining
approach.

4 Data Mining in Financial Time Series

To test the ability of the ARMA and VAR models to predict turning points, we
investigated the logarithms of nine financial time series, namely DMDOLLAR,
YENDOLLAR, BD10Y (performance index for the 10 year German government
benchmark bond), US10Y, JP10Y, MSWGR (performance index for the German
stock market), MSUSA, MSJPA, and the CRB-Index. The data was available
in monthly periodicity from 83.12 to 97.12, equalling 169 datapoints. One was
lost because of differencing. 100 datapoints were used to estimate the models, so
that we can base our decision which model class performs better on 68 out-of-
sample forecasts. To allow for the possibility of structural change in the data, we
implemented rolling regressions: After estimating the models with the first 100
datapoints and forecasting the succeeding datapoints, the data-”window” of the
fixed size of 100 datapoints was put forth for one period and the estimation pro-
cedure was repeated. We estimated a multitude of models for each model class:
15 ARMA-models from (1,0), (0,1), (1,1),..., to (3,3) and 3 VAR models VAR(1),
(2), and (3). We do not specify a model and estimate all rolling regressions with
this model. Rather we specify a class of models (ARMA and VAR). Within a
class the best model is selected for forecasting. As an extreme case, a different
model specification could be chosen for every datapoint (within the ARMA class
e.g. the ARMA(1,0) model for the first rolling regression, ARMA(2,2) for the
second etc.). This model selection procedure is purely data-driven, so it can be
regarded as Data Mining. Since it is well known that in-sample evaluation is a
poor approximation for out-of-sample performance [10], reliable model selection
has to be based on true out-of-sample validation. Therefore we divided the data
in three subsequent, disjunct parts: a training subset (70 datapoints), a valida-
tion subset (30 datapoints), and a forecast subset (τ = 2 datapoints, see Fig.
1).7

5 Jobson/Korkie[3] developed a test statistic which allows to compare the Sharpe-
Ratios of more than two portfolios simultaneously, too.

6 δ = 1
T

2σ2
mσ2

BM − 2σmσBMσm,BM + 1
2
ē2

mσ2
BM + 1

2
ē2

BMσ2
m − ēm ēBM

2σmσBM
(σ2

m,BM +

σ2
mσ2

BM )].
7 τ symbolizes the number of periods that have to be forecast in order to make a

turning point decision at time t, cf. section 2.
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Fig. 1. Division of the database

The first 70 datapoints from t-99 to t-30 were used to estimate the models,
which were validated with respect to their abilities to predict turning points on
the following 30 datapoints from t-29 to t. This is true out-of-sample validation of
the models, because at time t-30 the datapoints from t-29 to t are unknown. For
each model and each datapoint in each rolling regression N=200 Monte-Carlo-
simulations in order to calculate the turning point probabilities were performed.
If the model at the beginning of the validation period in t-29 decided ”no turn-
ing point” (results in maintenance of the previous period’s trading signal), there
is no trading signal originally stemming from the model. In this case we used
the last trading signal which could be produced with certainty. With τ = 2
the last certain signal for a turning point can be generated for t-31. Then the
best model on the validation subset was selected. For each of the two model
sequences (ARMA and VAR) only one model was selected at each time. The
specification of this model, e.g. ARMA(2,2), then was re-estimated with the 100
datapoints from t-99 to t to forecast the at time t unknown τ values of the
time series, which are necessary to decide whether there is a turning point at
time t. The decision which model is the ”best” was made with respect to the
Jobson/Korkie-test on the difference between the Sharpe-Ratio of the models
and a benchmark. Thus each of the multitude of models of each sequence had
to be tested against a benchmark. Since our goal is the comparison of the two
competing classes ARMA vs. VAR models, each sequence has to consist of rep-
resentatives of this model class. The simplest model of each class served as a
benchmark in the statistical tests: for the ARMA-sequence the benchmark was
the (1,0)-model, in the other case the VAR(1)-model. Using the Jobson/Korkie-
test as a criterion for selection, each of the multitude of ARMA models was
tested against the (1,0) model. If e.g. the ARMA(2,2) model could reject the
null hypothesis zm,BM = 0 with a significantly positive zm,BM on the validation
subset (t-29 to t), this model specification was selected and re-estimated with
t-99 to t to forecast the τ unknown values of the time series for t + 1, ..., t+ τ . If
more than one model qualified, the one with the highest SR was selected. If the
null could not be rejected, the forecasts were conducted with the (1,0)-model.
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Table 2. ARMA- and VAR-sequence as an example for the rolling regressions

ARMA VAR

RR training validation forecast Spec. zm,BM Spec. zm,BM

1 84.1-89.10 89.11-92.4 92.5-92.6 (1,0) * (3) 3.3563
(.0008)

2 84.2-89.11 89.12-92.5 92.6-92.7 (2,2) 1.9823 (1) *
(.0475)

...
...

...
...

...
...

...
...

68 89.8-95.4 95.5-97.10 97.11-97.12 (3,0) 2.1486 (3) 1.9987
(.0317) (.0456)

This procedure was implemented for the VAR-sequence in an analogous way.
As we solely rely on economic performance to select the best model, we do not
consider statistical criteria, like t-values etc. The variances resp. standard devi-
ations of the regression coefficients are needed for the drawings of the random
numbers to incorporate the uncertainty in the forecasts. Badly fitted models
with high variability in the coefficients and according high variances will not
be able to detect the relevant turning points in the validation subset and so be
disqualified in the selection procedure. Two sequences with a threshold θ = 0.5
and a significance level of 0.1 could look like Table 2. The first four columns
refer to the number of the rolling regressions and the training, validation, and
forecast period, respectively. The 5th (7th) column gives the specification of the
selected ARMA (VAR) model, the 6th (8th) column gives zm,BM (the entry (*)
in the column ”zm,BM” means that in this period no model qualifies against the
benchmark; p-values in parenthesis below the zm,BM -value):

The first turning point forecast was done for 92.4 (with the unknown values
of 92.5 and 92.6), the last for 97.10. The primary objective of this paper is to
make a statement about the relative performance of ARMA- vs. VAR-models
to detect turning points in time series. We created two model sequences with a
sample size of 68 forecasts each. In order to produce a statistically significant
result, we compare the ARMA sequence with the VAR sequence. Therefore we
compute the Sharpe-Ratios of the ARMA excess returns (SRARMA) and the
VAR excess returns (SRV AR) over the 68 out-of-sample rolling regression fore-
casts. Comparing those two Sharpe-Ratios with the Jobson/Korkie test statistic
zARMA,V AR (thereby using SRV AR as the benchmark) allows to make a state-
ment which model class performs better on the 68 datapoints. A result might
be that zARMA,V AR > 0 and statistically significant (e.g. zARMA,V AR = 1.96 is
significant at the 5%-level). In that case the conclusion is that ARMA models
outperform VAR models.8 This does not mean that ARMA models are valuable
forecasting tools. In order to be sure that ARMA models in this example are
valuable forecasting tools, one would like to test if this model class is able to

8 In the case zARMA,V AR < 0 VAR-models outperform ARMA-models.
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outperform a simple benchmark as well. When forecasting economic time series,
a simple benchmark is the naive forecast. The naive forecast uses the status of
the current period to forecast the next period. In the context of return forecasts,
the return of the current period is extrapolated as a forecast of the next period.
As we deal with turning point predictions and do not produce explicit return but
trading signal forecasts derived from turning point predictions, the extrapolation
of returns is not adequate. One could think of using the actual return from t-1
to t as an indicator for the trading signal of the future period: a past positive
return means a trading signal +1 for the future period, a negative return means
a trading signal -1. One goal of turning point predictions is to detect the longer
term trend reversals. Using the past return as a benchmark is more adequate for
short-term, period-to-period forecasts. Hence we need a naive benchmark which
works in a similar way as our model and thereby reflects the idea of turning
point forecasts.9 Using the last certain turning point statement can be regarded
as a benchmark in this sense. As τ = 2, the last certain turning point statement
can be made for t − 2, using the datapoints from t − 4 to t. A valuable fore-
casting model should be able to outperform this Naive Turning Point Forecast
(NTPF), so it is straightforward to test the ARMA- and VAR-sequences against
the NTPF. E.g. a significantly positive zARMA,NTPF (zV AR,NTPF ) calculated
with the Sharpe-Ratios for the ARMA- (VAR-) and NTPF-sequences over the
68 out-of-sample forecasts implies that e.g. the ARMA- (VAR-) models are valu-
able tools for forecasting turning points in financial time series. If zARMA,NTPF

is negative, the NTPF produces a higher Sharpe-Ratio over the 68 datapoints.
The next section presents empirical results from the turning point forecasts with
our Data Mining approach.

5 Empirical Results

The following Table 3 exhibits the results for the turning point forecasts with a
significance level of SL=.1 for the Jobson/Korkie-test and a threshold of θ = .75.
Results with different threshold values θ = .5 and θ = .95 showed that overall
θ = .75 produces the best results of the model classes vs. NTPF. The lower the
level of significance for the Jobson/Korkie-test, the higher is the required differ-
ence between the two Sharpe-Ratios to be considered as statistically significant.
With SL=.01, the sequences almost solely comprised the simplest (=benchmark)
model (ARMA(1,0) resp. VAR(1)) in each model sequence. To a lesser degree
this was valid for the turning point forecasts with a significance level SL=.1,
whose results are presented in Table 3. Another point in this direction comes
from the sample size of only 30 datapoints in the validation subset, which results
in low discriminative power of the test. Hence the bias for the selection of the
simplest model in each sequence is relatively high. The nine financial time series
are considered as a closed market system, where every variable influences each
other. Therefore the VAR models consisted of nine equations with lags of all
9 For a detailed discussion of the problem to select an adequate benchmark for turning

point models see Poddig/Huber[11], p. 30ff.
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Table 3. Empirical results

ARMAvsVAR ARMAvsNTPF VARvsNTPF
θ = .75 SRARMA SRV AR SRNTPF z p(z) z p(z) z p(z)

MSWG .0124 -.1419 -.0038 1.44 .1488 .13 .8897 -.94 .3450

MSUSA .1149 -.0287 .0341 1.10 .2703 .71 .4774 -.49 .6265

MSJPA -.0398 .1300 -.0700 -1.14 .2544 .13 .8955 1.07 .2862

BD10Y -.2206 -.3545 -.2602 1.39 .1653 .47 .6402 -.78 .4352

US10Y -.1253 -.0851 -.1597 -.36 .7187 .27 .7855 .50 .6178

JP10Y .0883 .0480 -.0824 .58 .5613 1.35 .1764 1.16 .2450

DMDO -.2569 -.3169 -.3098 .45 .6520 .39 .6977 -.05 .9636

YEND -.1966 -.1931 .1015 -.03 .9755 -.52 .5992 -.56 .5778

CRB -.3458 -.4307 -.4759 .44 .6597 1.05 .2920 .24 .8132

variables in the system and a constant. Table 3 exhibits in the first column the
name of the time series under consideration. The three following columns show
the values of the Sharpe-Ratios of the ARMA- and VAR-models, and the NTPF,
respectively. For each change from a long- into a short-position transaction costs
of 0.75% were subtracted. The 5th column and 6th column give the z-values
for the Jobson/Korkie-test statistic and its corresponding p-value for the test of
the ARMA- vs. the VAR-sequences. The two following columns present z- and
p-values for the comparison of the ARMA- vs. NTPF-sequences. The 9th and
10th column exhibit those values for the VAR- vs. NTPF-sequences.

Looking at the results for e.g. MSWGR in detail, only the ARMA-models
were able to produce a positive Sharpe-Ratio (SRARMA = .0124) in the out-
of-sample forecasts for the 68 months under consideration. This means that the
ARMA-models on average reward each unit of risk, measured in standard devia-
tions of the return, with an excess return of 1.24% per month. From the positive
zARMA,V AR = 1.44 (p = .1488) for the nullhypothesis H0 : SRARMA−SRV AR =
0 it can be seen that they outperformed VAR models, although not significantly
at the usual levels (1% to 10%). ARMA-models outperformed the NTPF as well
(zARMA,NTPF = .13, p = .8897). VAR-models underperformed even the NTPF,
so they do not seem to be a valuable tool for forecasting turning points in
the German stock market. ARMA-models managed to produce positive Sharpe-
Ratios for three out of the nine markets (MSWGR, MSUSA, JP10Y), VAR
(MSJPA, JP10Y) and NTPF only twice (MSUSA, YENDOLLAR). In six mar-
kets ARMA-models outperformed VAR-models (positive zARMA,V AR-values),
and in all markets but YENDOLLAR they outperformed the NTPF (positive
zARMA,NTPF -values), but not significantly. VAR-models manage to beat the
NTPF only four times (positive zV AR,NTPF –values for MSJPA, US10Y, JP10Y,
CRB). MSJPA is the only market in which VAR-models remarkably outperform
ARMA-models (zARMA,V AR = −1.14, p = .2544). In two more cases VAR at
least produce higher Sharpe-Ratios (zARMA,V AR negative for US10Y and YEN-
DOLLAR). Only the Japanese stock market MSJPA could be predicted remark-
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ably more successfully by VAR- than by ARMA-models and NTPF (MSJPA:
zV AR,NTPF = 1.07; zARMA,V AR = −1.14. For JP10Y the VAR outperformed
the NTPF, but so did the ARMA-models. The CRB-index seems to be unpre-
dictable: none of the three sequences produced a positive Sharpe-Ratio, but the
ARMA-(SR=-.3458) and VAR-models (SR=-.4307) still performed better than
the NTPF (SR=-.4759). Summarizing the results in brief, it seems that ARMA-
models are better tools for forecasting turning points in financial time series.
In all but one case they managed to outperform the NTPF, although not in
one single case statistically significant. The bad performance of the VAR-models
might be due to their possible overparameterisation with nine variables and
one to three lags. The simplest VAR(1)-model comprises nine variables plus a
constant in each equation, which results in (9+1)·9=90 regression coefficients.
Future research in the area of turning point forecasts will concentrate on smaller
VAR-models and the derivation of portfolio weights from the turning point prob-
abilities. This can be accomplished by ”rewarding” forecasts with a high degree
of certainty in the forecasts (e.g. PP

t ≈ 1 ⇒ certainty of a peak, or PP
t ≈ 0 ⇒

certainty of no peak) and ”penalizing” the ones with a low degree of certainty
(P P

t ≈ θ).
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