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A BAYESIAN ANALYSIS OF SOME THRESHOLD SWITCHING
MODELS

AM. POLE and A F.M. SMITIL
University of Nottingham, Nottingham, NG7 2RI, Engiond

This paper presents 4 Bayesian analysis of vardous threshold switching regression models, including
simple time serics models, where the change of regime is governed by a known function of
cxogenous variables. Some special features arising from the choice of a two-dimensional lincar
dichotomy function are then discussed and the concepts of concurrency and duality introduced.
Within this framework, we compare the maximum likelihood and Bayesian methodologies for
inference and prediction. [n particular, we show that the Bayesian approach selves the non-unique-
ness problem which affects maximum likelihood prediction in coriain situations. These resulls are
Mlustrated with two numerical examples.

1. Introduction

The term switching regression has been used to describe a number of
different types of model discussed in the literature. A comprehensive list would
include two-phasc (or changepoint) models [Quandt (£960), Hinkley (1969,
1971) from the maximam likelhood viewpoint, and Ferreira (1975), Chin-Choy
and Broemeling (1980, Booth and Smith (1982), Holbert (1982) from the
Bayesian viewpoint]; stochastic choice of regime, which has nature cheosing
between two competing regimes with probability A [Goldfeld and Quandt
(1973a,b), Kieffer (1978, 1979)]; the Markov model, which cxtends the A
model 1o include a probability transition matrix [Goldfeld and Quandt
(1973a,b)]; time-trending regression [Farley and Hinich (1970), Farley, Hinich
and McGuire (1975), Hackl (1980)]; varizble parameter regression, more
familiar to statisticians as the dynamic linear model [Garbade (1977), Griffiths,
Drynan and Prakash (1979)}; disequilibrium meodels [Goldfeld and Quandt
(1975), Farr and Jaffce (1972), Maddala and Nelson (1974), Hartley and
Mallela (1977), Quandt (1982) from the maximum likelihood perspective, and
Lubrano (1983) from the Bayesian perspectivel; and the threshold switching
model [Goldfeld and Quandt (1972, 1973a), Tishler and Zang (1979)].

Various applications of these models have been proposcd in the literaturc.
The Housing Starts model, first discussed by Fair and Jaffee (1972) in a
discquilibrium context, was reformulated as a switching model with a single-
vartable dichotomy function by Tishler and Zang (1979). If the disturbance
lerms are autocorrelated, as assumed by Iair and JafTee, then we cannot simply
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reorder the data in terms of the dichotomy variable and proceed with an
analysis of the standard changepoint modcl. The morc general threshold
switching formulation is required. Furthermore, it is often the case that
decisions are based upon the cumulative evidence of more than one period; the
specifications we shall consider will allow this situation to be mvestigated.

Another application was discussed by Ginsburgh et al. {1979) within the
context of export price setling behaviour. They proposed a model whereby the
cxport price of a commodity is determined either as a lincar function of
the domestic price or as a linear function of {foreign) competitors’ price, with
the decision as to which obtains depending on the value of some (unspecificd)
function of cxogenous variables, For the purposcs of their paper, they analyse
the case where g(x), the dichotemy function, is specified so as to give a
disequilibrium tvpe of model. However, their general argument certainly
suggests that the switching models we describe later in this paper are applica-
ble.

In this paper we shall confine attention to a Baycsian analysis of some
threshold switching models, comparing and contrasting the Bavesian and
maximum likelihood approaches. In section 2 we shall develop inference
procedures for the standard linear threshold model and discuss some of the
problems cncountered in using these models Tor prediction. Section 3 presents
the cxtensions to linear lime series models, together with a simple numerical
illustration.

Z. Bayesian analysis of the linear threshold model

2.1, Tmtroduction

The general linear threshold model with two regimes is

y=X{# +e, i g(7,2,)<0 Regimel,
= X8, +e, if g{mz,)>0 Regimell,
where

X, (X;,)= ki(k,)-dimensional vector of explanatory variables,

6.(8,) = k,(k,)-dimensional vector of paramelers,

gl) = some function of a sel of » parameters = and EXOECNous vari-
ables z,

€, ~ 1id N{0,62), i=1,2,

covl(e;,, gy,)=0, Vi, ;.

Thus, according to the value of some dichotomy function g(-), a given

o
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observation is generated by cither regime I or regime II. In the most general
case, no restrictions arc placed on the components of X,,, X,, 7 or the
functional form of g(-). That is, the two regimes may have some common
independent variables; the dichotomy variables, 7, may be a subset of or
include a subset of the independent variables of cither or both regimes; g(-)
may be lincar or non-linear in 7.

However, the dichotomy function parameters, #, must be distinct from the
regimie parameters, #,, 8, Also, 8, und #, must not contain any common
parameters.

2.2, Basic notation and results

We first introduce some simplilying notation. Given a daty st y=
(¥1s.--, yp)’ with independent variables X7 = [X,, X,,,.... X3p). X{=
[Xu1, Xogyovoy Xyl 2 =129, 25, ... 2], then, for any given o, we may write the
model as

il _[xe o fa] [
» 0 X¥ 18 £f

where yi*,..., »* is the time ordering of thc observations generated by regime
I, and m:dmwzuw o yF lor regime I1; X¥ =TXp% gLoxS =
| X3 ..o, X% ) The interpretation of the asterisked variables is analogous
for X, and kE (i—=1...,t, j=¢.+1,...,T}) and so on. What we have
done, for notational convenicnce, is simply to pul in order of occurrence
regime | observations followed by regime II observations — the dichotomy
conditional on the values of the parameters .

With the model in this form, we adopt the usual non-infermative prior forms
[see Box and Tiao (1970, pp. 116-118)] and consider first the case of constant

regime variances, o) = of = g2, so that

.ﬁﬁauu%mvn—mv"&VA@ﬂ_QuuhﬂﬁuﬁvaﬁAQNvu

where p(fjo?) « constant, i=1,2, and p(o?) ¢~ 2. Combining this with the
likelihood, we get the following posterior forms:

_ ANy Ay | —(e+ky2
IX'X12s75 | (8-8)X'X(8 - 8)
p(6lm, DY = 1 2 :

so that §’ = (8, 6;) has, a posteriori, a multivariate- distribution, conditional
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onwand D, where D={y, ...,y z{,...,20} = { p,z}, and

XXy 0
xx=|"" .
0 XXX
8| [(xrxr) xpr

_wu Akm*cmw*v\_ s

p5% =y ST+ 0,52, k=k +k,,

57 = F.LA y* I.ﬁ,v‘ﬁ R =X, i=1.2,

v, =1t

w kL =T, — k.
Since p(8|D)= [p(8m, D)p(x|D)dm, it follows that p(#|D} is a weighted
average of multivariate-t densities, with weights given by the posterior distribu-
tion of « (which we shall ¢examine in more detail below). By standard
arguments, it follows that, conditional on m, ¢2/28” is distributed as inverse
chi-square with » degrees of freedom, where v =», + »,. Clearly, posterior
moments are weighted averages of moments of the individual conditional
{multivariale) ¢ and x> densities, su that computation of these quantilies is
straightforward.

W now consider the case of different regime variances, 0m #ad, so that,
conditional on 7, we have the two models

Y= X0 e, pF = X0, + ek,
with o(el)=o0f and v(ef)=o0) The difluse prior is now given by
2 , 2 2 2 I

p(8,,8,,07,0})= p{81]ol) p(B3l07)p(ai}p(al), where p(8]07) < constant
and p(e?)ee % i=1,2. Again, straightforward Bayesian manipulation
establishes that the joint and marginal distributions of repime parameters are,
conditional on #, mullivariate- and univariate-f respectively, and also that
o/ |y, 82 ~ x_ﬂ.uv i=12

We now cxamine the posterior distribution of @, beginning with the case

where ai = 67 = 6. The likclihood in this case is given by

- _ 1 ’
NAE_Q:QN.QJ?NVQQ qwxmﬁlmr.tww N_*m_v A%WIXWQL

H{ oy = X70,) (- Nwémv:n
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which, combined with the diffuse prior forms and the prior density p(#) for =,
gives the joint posterior density of 8,,8,, 02 7,

@A%_uhwuobuﬂ._bvnnalm\ﬁ .-LQT% gQMumﬂ‘Nv»ﬁ-Aﬂv.

Integrating out §,, §, and o then yields
( Sg_ﬁk% 7| (xxs) | sz
plap)e [[(xpexe) ™ || O~ ] s plm). (1)

In fact, in all our later numerical illustrations we shall take p{m) &« constant.
In the case where o] # o, we have the likelihood
£ ¥8,.8,, 08,63, m,7)

1 , -
% or texp) - wwﬁ pi = X48) (pr = X26,) oy T 1
i

1 ,
xexpy ~ [y — X26,) ( pF — X76,) ),
20;

and hence the joint posterior
ﬁmmﬂvmuu of, o, ﬂ_bw o Q_amawwr\ﬁ yié, m?qw,aumvs,.n:%ﬂvu
which, on integrating out @, 8,, of and o?, vields

H:Nalhﬁu\m_ﬂ:.ﬂl halkuv\m_
<[l o)

Aﬁ_ ﬂmvfs\hl\mﬁt mﬁu.v::[ha\.:w\m
il | 292

plmD)«

(2)

There are a number of points to note. First, we must be careful when
computing p(7|D}) to avoid infeasible values of w (i.c., with {y T1_ less
than required for identifiability). It may happen, of course, that for some
samples there are no such regions. In general, we can always avoid the problem
by specifying a proper prior form for any unidentified parameters. Secondly,
the analytic forms for p(w(D) in (1) and (2) are only available up to
proportionally. For any given application, the normalising factor must be
found (approximately) by numerical computation. Thirdly, the forms of (1)
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and (2) reveal that the value of p{#|D) is inversely proportional to a measure
of the overall model variance based upon the dichotomy ol the data given by
a. Thus, combinations of « which determine sample separations into the two
regimes yielding a high estimated residual variance (Le., which are poorly
fitting) acquire low posterior probability.

2.3, Special features arising from (m,7} combinations

In what follows, we assume a (two-dimensional) linear dichotomy [unction,
g{m, zy=mz, + mz,, and examine some peculiar features of regime classifica-
tion inference which do not appear to bave been fully discussed by previous
authors,

The first feature ariscs [rom what we shall call concurrency. For a given data
set, using the observed z = (z,, 2;)’, we construct a diagram in 7 space (i.e., the
plane with orthogonal #,, m,-axes) which consists of rays through the origin. 1t
is the configuration of these rays which can lead to special problems. For n
observations with distincl z, /z, ratios there are 2n possible groupings [so that,
assuming a uniform prior distribution for =, p(#|D} will comprise at most 2n
distinct values]. However, concurrent rays (given by coincident z;/z, ralios)
lcad to complications in the number of possible groupings of a given data set
as we show in the following example (corresponding to n = 3).

‘I'he six groupings arc the distinct infinite cones numbered 1 6 in fig. 1. If
there is no concurrency, each boundary is associated with two groupings - one
on either side — and the boundary itself belongs to only one of them. In the
case of concurrency, however, a boundary can be associated with three
different groupings: one either side and the boundary itself. This will be the
case if the concurrency is what we shall call an ‘awkwurd’ concurrency, whose
meaning we can illustrate as follows with the aid of fig. 2. Consider two
observations (a) and (b) of the z variable taking the following values:

‘Nice’ concurrency {a) z,=1 by z,=2
Zy= —1 = 2 /=1
‘Awkward’ concurrency (a) 2z, =1 (b) z,=-1 2z, /z2,=-1.
7= —1 z,=1

In both cases, the two sets of z values define only a single ray or boundary in #
space. In fig. 2 the boundary is labelled (a), (b) and «, B, v are three
representalive points in the # plane. 1f we calculate the value of the dichotomy
function m,z + m,z, lor both observations at cach ol the points a=(3,1),
£ =(1,1), y=(1,}) for the two cases we obtain the following: {1} either both
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T2

&)

m

Iig. 1. sr-cones for three distinet z ratios.

observations are classified 1o regime I or hoth to regime II, and (2} a = (a) € 1,
by €I, B=(a), (byel, y=(a) €11, (b) 1.

*Nice’ concurrencies — 1.¢., those where z; values are of the same sign for ail
concurrent observations, and likewise for z,, but z, and z, may have any sign
combination for a particular obscrvation — pose no further problem. However,
‘awkward’ concurrencies — where at least one pair in any sel ol concurrent
observations violates the above conditions — do causc problems, whose nature
will be examined as and when appropriate in the following scctions.

Another phenomenen, which we call duality, occurs when, in parameter
switching models, including modcls where ooly a subset of parameters
change — i.e., those involving identical independent variables in both regimes
{ X, = X,) - the prior specifications are non-informative within cach model,

For example, suppose we have four observations [rom (say) two compeling
straight lincs and @, gives the dichotomy 1,2 =1, 3,4  II. Suppose that the
corresponding likelihood function is /;. Then #, = — =, will give the opposile
dichotomy 1,2 € 11, 3,4 =1 (assuming = does not lie on a boundary) and a
likelihood function /,. If we maximise such /; and /,, we find they are
equivalent, and yield the following pattern of maximum likelihood estimates:
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T2

(a),(m

m

Fig. 2. 'The effect of concurrency on the number of pessible data groupings.

from [, & = a, B, =b, &,=#, f,— b, and from Ly & =2, B =V, &, =a,
mu = b. In this case, we have the same underlying information in both cases,
and so, if there are no awkward concurrencies in the data, we need only look aut
a half-plane in = space. Awkward concurrencies causc problems because they
de not give opposite classifications either side of the origin (sce fig. 3).

From a Bayesian point of view, the consequence of duality is that if we
discretize o over the whole w-plane (by which we mean a suitable subset
covering all possible groupings of the data — for example, uniformly around
the umit circle), then the posterior distributions of the regime paramcters are
identical. For a moderate sized data sct, these poslerior distributions will be
bimodal with a mode corresponding 1o each regime. Similurly, the posterior
distribution of & will consist of a lwicc repeated patiern of plateaux (see, for
example, the time series illustration given in section 3.3).

Awkward concurrencies introduce perturbations from symmetry, but these
will be negligible if the data set is large relative to the number of such awkward
concurrencies,

Maximum likelihood analysis does not reflect these leaturcs. If we use the
whole #-plane and the selected optimal region is one of the infinite cones
(awkward concurrencies notwithstanding) then the opposile grouping is also
optimal {sce above example).
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Fig. 3. Awkward type of concurrency.,

2.4. Comparison of the Bayesian and maximum likelihood approaches

In general, maximum likelihood analysis will not yield a unigue estimate of
7. This is easiest 10 sec from a diagram of two-dimensional = space using o
linear dichotomy function, as shown in fig. 4. All « values in the shaded region
in fig. 4 [ignoring (4) and (b), whose significance will be discussed in the
following scction] give the same sample separution and hence the same
likclihood. Fven if we impose some normalisation rule on = (such as mt+ i
= 1) we still have an infinite set of optimat values. There are two exceptions to
this general case: if either the number of observations tends (o infinity, so that
the optimal cone reduces to a single ray, or if (he maximum likelihood
dichotomy occurs at an awkward concurrency, then, in both cases, a normal-
isation rule leads to a unique result.

The first situation is irrelevant in finite-sample practice, and the sccond
situation is highty unlikely if the z’s are continuous variates, Of course, this
non-uniqueness extends to the posterior distribution (corresponding to a
uniform prior) if we are looking for modal values. However, the implications
for prediction are very different in the two cases as we shall see in section 2.5,
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2
Table 1
ML estimates and posterior moments,
(a) (b) ML Mein S1

k&~~~ optimal 7 region # 0.3216 0.5432 0.679

\ ) o 2.3755 19175 (.691

hN 0.4343 0.3736 0.178

a

1.0993 1.8442 0.808

.:A
9.2}

T

a.2

8.1B |

=

-

-
T

Fig. 4. Non-uniqueness of ML estimate for .

A further major difference between the Bayesian and maximum likelihood
methodologics for these threshold problems is that for the models under study
maximum likelihood analysis does not appear capable of producing measures .08
ol uncertainty lor w. Thus, we can get no feel for the properties of @, even '
locally. Bayesian analysis, on the other hand, readily provides posterior mo-

W T A OO 3T
©
3
T

ments, and the complete posterior distribution provides a rich global overview 0.86 -
of the inferences to be drawn in these rather non-standard situations as we see
in the {ollowing example. @.84
We consider the example of a straight line versus a constant:
9.02 -
=0+, Regime 1,
1 A 1 i 3
Y, =a+ fix,+& Regimell, e -3 -2

Wﬁﬂw NL =2y, + TyZgs Fig, 5. Marginal posterior distribution of £,

where §=0, a=2, B=0.3, ¢~ iid N(0,1), m; ==, = 1.

A simulation was performed which generated twenty observations, ten from
cach regime. Comparative summary inferences are presented in table 1 and
complete Bayesian posterior densities (based on nen-informative priors) are
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Tig. 6. Marginal posterior distribubion of «.

shown in figs. 5-9. To obtain a representative picture of the posterior density
for = (which actually consists of a step function defined over infinite wedges in
the plane), we calculate values on a grid of 160 points, 40 cqually spread along
cach sidc of the unit square [procceding anti-clockwise, starting at (—0.95,1)].
The modal spike gives a maximum likelithood estimate (recall that a uniform
pricer for @ has been used). In what follows, we shall continue to usc such a
summation in place of the integral over #.

2.5, Prediction

The problem of uniqueness discussed in the previous section leads to
situations in which the maximum likelihood approach runs into fundamental
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Fig. 7. Margina] pesterior distribution of #.

difficulties. Again, we shall illustrate this in the two-dimensional case. Suppose
we want to forecast a new observation given a previous sample in which we
observe all the independent and dichotomy variables. 1f our new z is such that
it defines a boundary of the type depicted by (a) in fig. 4, then we have no
problem. Whichever maximum likelihood estimate we select, T+,
uniqucly assigns the observation to be predicted to one or other of the regimes.
However, il the new boundary is similar to that depicted by (b}, we have a
problem, since different maximum likelihood estimates of # would classify the
new observation (o different regimes. The choice of regime then appears totally
arbitrary and the maximum likelihood approach gives no guidance. We know
of no satisfactory solution to this problem. There are circumstances in which
this inability of maximum likelihood to select a predictive regime is not a
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serious problem, but this occurs basically when the predicted values for each
regime are very similar — not, perhaps, a typical situation.

If we adopt the Bayesian approach, we encounter no such problem. There
are various ways in which to approach the cheice of predictive regime. One
possibility is simply to select that regime which has the greatest posterior
probability for the new z. Denoting the new value of 7 by z,,. and with

p=p(lz,)~ 3} p(=iD),

miuz, <0

we choose regime T if p> 4. The only arbitrariness in this case is what happens
when p =4, and clearly this will happen, if at all, far less often than case (b)
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Iig. 9. Marginal posterior distribuiion of 7,

above, This simple approach corresponds to a decision-theoretic regime choice
with zcro-one loss function. A more philosophically sound approach might be
to use decision theoretic ideas for the prediction itself. The first requirement is
then to choose an appropriate utility function. Following Bernardo (1979), we
adopt the form

U(p(-),y)=Alogp(y)+B(y),

where A is a positive constant, B is a function of y, p(y) is the predictive
densily, and y is the value to be predicted. Muximising cxpected utility, we
sclect regime [ if

P2yl ylz,)
_Om LN T el * z. d VO_
\‘ ruCrky) |7 (v, )dy
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where
p*(ylz,y=poy(yle,)+ (1~ plpy(rl,),

and where p(yjz,) and p,(ylz,) are the predictive densities resulting from
the choice of regime I and 11, respectively, We now require the forms of
pi{ylz,) and p (yz,). We shall consider the case of constant regime vari-
ances; the exlension (o0 non-constant regime variances is straightforward.
Consider, for example,

pi(vke) = [ [p(218..07)p(8,.0%D) d6, do’.

Under our assumptions, the first term is & Normal density, but unlortunately
the second term is not available in closed form, hecause of the nature of .
Thus, as it stands, the predictive densily is only available numerically and
seems to require heavy computation. However, we can reduce this to a single
summalion in the following way. Conditioning on # we have

Pyl = [ [p(5181.0%)Ep(8,0%m, D) p(mID)d8, do®.

If we now interchange integration and summation,

pily

2.)=2 [ [p(118,,0%)p(8}7, D, o?)

xp(o?|w, D)d8,da’p{m|D),
from which we obtain
.EP,QM ~ ZAHET QMY
6:)0%, 7, D~ N(8,, 02 XXr) ),
o%/vSm, D~ x; 7,

so that evaluation of the above integral vields

_—

(y=xB)NsC+ V) .ar 1,

where V= x,( X{*X*) lx,, x, is the new value of x, and all other quantities
are previously defined. Thus, the prediclive densities are weighted averages of
t-densities with mixing parameters p{a|D).
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3. Extension to linear time series

3.1, Introduction .

We confine attention to processes assumed to have started at some distant
time in the past, and such that each regime may be modelled, for some choice
of u, v by an ARMA(u, v) form

(1-¢B— - =B ) y—n)=(1+6,B+ - +6,8%)¢,.

We concentrate here on infercnce problems for this limited class of models.
For an account of more general modelling possibilities, see Tong (1983).

The approach we shall use is un extension of that used by Booth and Smith
(1982) whose change-point models are in fact special cases of the switching
model we ure considering here. What we seek is a transformation of yq...., ¥y,
conditienal on #, to independent homoscedastic variables w,, ..., w4, such that
the models for each regime can be written in the standard linear model form
w= Xy +e Once we have such a transformation, all cur previous results
apply, except that we are now conditioning on ($,8) as well as o [so that in
the analysis we must not forget to multiply by the appropriate Jacobian
J(¢p, 8)]. Tor example, following such a transformation (1) becomes

_\J (T=13/2

ﬁmawﬁv%_bvnﬁ:kﬁk@.ml J E&.ﬁma_&u_

XJ(¢.8)p(w)ple.0).
Approximate marginal distributions can then be obtained by summing over a
suitable grid for (¢, #) (as long as w, v are small, which is usually the case in
applications). Alternatively, more refined numerical integration procedures
could be used.

Various special cases can be studied within this general class of models
depending on the assumptions made about the model parameters. We shall
look at (i) change in mean level and time series paramelers across regimes, (ii)
change in mean level only, (iii) change in time series parameters only.

3.2, AR(1) v AR(L)

We assume that the regimes correspond to the following models, with a
linear threshold function as defined in earlier sections:

Y-k = &y (¥ — _:.hlv +¢, Regimel,
y—py=¢{py_,—p,_,)+e Regimell,

[T Tl ] if Eh\_mHu
=p, if y_, €Il
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Suppose without loss of generality that we begin with observations being
gencrated by regime [ The required transformation to a standard linear model
1s then given by

W) = AH - @3,5,

1 i yel
=Y — ) j = ...‘.N..._ = " u
w=y—¥_, (=2, J 2 otherwise,

with Jacobian (1 — ¢2).

3.2.1. Change in all parameters

Suppose we have switches occurring at ry,r,..., so that yy,..., 5 €1,
Vr 410+ ¥y, €11 and so on. Then the required form of X’ is
. {n) ()
k(=@ 1=¢y L= —¢5, O, ., 0, L L—d, .
0, 9, ., 0, 1,1 gy l—dy, =y, O

3.2.2. Change in mean level only
X has the same form as above cxcept that now ¢, = ..
3.2.3 Change in AR parameters only

The columns of the above matrix are now combined to form a single (7 X 1)
vector

{r) (r;)
Xr= THIQWVULIﬁT cn = el =y, 1=y, 1 — 9y, ﬁ

Table 2

Maximum likelihood estimates.

M P 5’ 9
(0.13%8 1.97 0.899 0.6

Table 3

A discretized summary posterior distribution for ¢.

n -0.9 ey -0 0.6 —0.5
29 0.014 0077 0216 0315 0.241
® 0.4 -03 0.2 —01 0...09
pidly) 0103 0.207 0.005 0.001 9
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In cases (i) and (i), if regime 11 gencerates the first observation then the form of
X is obtained by interchanging the columns and the AR parameters. The
Facobian then becomes (1 — ¢3):.

3.3 Example

We supposc that the model is AR(1) v AR(1) with a changc in mean level
only,

v, p— (¥, —n, )+e Regimel,
yi—po =y —p,_;)+e Regimell,
glm,z,}=mz, +mzy,
g, ~ iid N(0, a?),

where ¢ = —0.6, u, =0, u,=2.0, 6> =1

Tables 2 and 3 above summarise maximum likelthood and Bayes’ inferences
based on a simulated sample of 40 observations, 17 from regime 1 and 23 from

‘r 3
3 A
1
2}
1 b
1

el
-t B
i" " 1 A L A IS a2 A i

] %5 8 1% 20 25 30 » 10

Fig. 10. Time plot of observations ( X = regime [ observation, O = regime II observation).
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regime 11, as shown in fig. 10. Table 3 clearly shows that inference on ¢ is
i L accurate and quite sharp.

Although this is a time series example, the phenomenon of duality described
. carlier does occur when only the mean level changes. In order to illustrate its
a8t effects, we have used the full # plane in the calculations. In fig. 11 the repeated
pattern of plateaux in p(w|yp) is clear; since p(p;|y}=p(u,|p) we only
illustrate one of these as shown in fig. 12.

3.4. A note on identification

L™

Analysis of other simple time series examples (not reported here) shows that
competing AR(1) regimes can give rise to sample autocorrelations and partial
autocorrelations which depart radically from the anticipated pattemns for a
(single regime) AR(1) model. Thus, given a data set to which we wish to fit an
ARMA model, indications of a complex model, for which we have no
convincing theoretical foundations, may well be indicting the presence of a
two-regime switching model in which cach regime is a relatively simple [orm.

n A s, - 4 4 " i
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